Skip to content
2000
image of Enhancing Tissue Factor Production: The Role of N-Glycosylation and ERAD Pathway Modulation

Abstract

Background

Tissue Factor (TF) is a crucial transmembrane glycoprotein that triggers blood coagulation upon vascular or tissue injury by binding to plasma factors VII and VIIa. In recent years, the demand for TF has rapidly increased due to its pivotal role in preoperative coagulation tests. However, large-scale production of TF remains challenging despite successful recombinant expression, as incorrect post-translational modifications adversely affect TF activity.

Objective

This study aims to investigate the role of post-translational modifications, specifically N-glycosylation, in TF activity and stability. Additionally, it explores strategies to enhance TF production by reducing its degradation through genetic modulation.

Methods

We compared TF activity derived from human cells and to assess the impact of post-translational modifications. Furthermore, we examined the effect of N-glycosylation on TF function. To address TF degradation, we knocked out the HRD1 gene, a key component of the endoplasmic-reticulum-associated degradation (ERAD) pathway, and evaluated its impact on TF stability and activity.

Results

TF produced in human cells exhibited higher activity than TF expressed in , emphasizing the importance of post-translational modifications. Specifically, N-glycosylation was found to influence TF activity and stability. Additionally, we observed that knocking out the HRD1 gene effectively reduced TF degradation without compromising its activity.

Conclusion

Our findings underscore the crucial role of N-glycosylation in TF function and stability. Moreover, the modulation of the ERAD pathway through knocking out HRD1 presents a promising approach for enhancing TF production. These insights could contribute to the large-scale manufacturing of functionally active TF for clinical and research applications.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665364078250519065417
2025-05-27
2025-09-08
Loading full text...

Full text loading...

References

  1. Bächli E. History of tissue factor. Br. J. Haematol. 2000 110 2 248 255 10971380
    [Google Scholar]
  2. Cimmino G. Ciccarelli G. Golino P. Role of Tissue Factor in the Coagulation Network. Semin. Thromb. Hemost. 2015 41 7 708 717 10.1055/s‑0035‑1564045 26408920
    [Google Scholar]
  3. Cimmino G. Cirillo P. Tissue factor: newer concepts in thrombosis and its role beyond thrombosis and hemostasis. Cardiovasc. Diagn. Ther. 2018 8 5 581 593 10.21037/cdt.2018.10.14 30498683
    [Google Scholar]
  4. Mann K.G. Krudysz-Amblo J. Butenas S. Tissue factor controversies. Thromb. Res. 2012 129 Suppl 2 S5 S7 10.1016/j.thromres.2012.02.018 22401799
    [Google Scholar]
  5. Gundappa M. Arumugam V.A. Hsieh H.L. Balasubramanian B. Shanmugam V. Expression of tissue factor and TF-mediated integrin regulation in HTR-8/SVneo trophoblast cells. J. Reprod. Immunol. 2022 150 103473 10.1016/j.jri.2022.103473 35030354
    [Google Scholar]
  6. Merad M. Martin J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020 20 6 355 362 10.1038/s41577‑020‑0331‑4 32376901
    [Google Scholar]
  7. Hisada Y. Mackman N. Tissue factor and cancer: Regulation, tumor growth, and metastasis. Semin. Thromb. Hemost. 2019 45 4 385 395 10.1055/s‑0039‑1687894 31096306
    [Google Scholar]
  8. Grover S.P. Mackman N. Tissue factor in atherosclerosis and atherothrombosis. Atherosclerosis 2020 307 80 86 10.1016/j.atherosclerosis.2020.06.003 32674807
    [Google Scholar]
  9. Li H. Yu Y. Gao L. Zheng P. Liu X. Chen H. Tissue factor: A neglected role in cancer biology. J. Thromb. Thrombolysis 2022 54 1 97 108 10.1007/s11239‑022‑02662‑0 35763169
    [Google Scholar]
  10. Ruf W. Tissue factor and cancer. Thromb. Res. 2012 130 1 Suppl. 1 S84 S87 10.1016/j.thromres.2012.08.285 23026674
    [Google Scholar]
  11. Mackman N. Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler. Thromb. Vasc. Biol. 2004 24 6 1015 1022 10.1161/01.ATV.0000130465.23430.74 15117736
    [Google Scholar]
  12. Lawson J.H. Butenas S. Mann K.G. The evaluation of complex-dependent alterations in human factor VIIa. J. Biol. Chem. 1992 267 7 4834 4843 10.1016/S0021‑9258(18)42907‑9 1537862
    [Google Scholar]
  13. Mackman N. The role of tissue factor and factor VIIa in hemostasis. Anesth. Analg. 2009 108 5 1447 1452 10.1213/ane.0b013e31819bceb1 19372318
    [Google Scholar]
  14. Smith S.A. Travers R.J. Morrissey J.H. How it all starts: Initiation of the clotting cascade. Crit. Rev. Biochem. Mol. Biol. 2015 50 4 326 336 10.3109/10409238.2015.1050550 26018600
    [Google Scholar]
  15. Muller M.P. Mortenson A. Sedzro J.C. Wen P.C. Morrissey J.H. Tajkhorshid E. Membrane-bound model of the ternary complex between factor VIIa/tissue factor and factor X. Blood Adv. 2025 9 4 729 740 10.1182/bloodadvances.2024014845 39671302
    [Google Scholar]
  16. Madsen J.J. Persson E. Olsen O.H. The intricate allostery in factor VIIa: Triggering the trigger. J. Thromb. Haemost. 2025 23 1 1 10 10.1016/j.jtha.2024.08.026 39332529
    [Google Scholar]
  17. Witkowski M. Landmesser U. Rauch U. Tissue factor as a link between inflammation and coagulation. Trends Cardiovasc. Med. 2016 26 4 297 303 10.1016/j.tcm.2015.12.001 26877187
    [Google Scholar]
  18. Butenas S. Tissue factor structure and function. Scientifica (Cairo) 2012 2012 1 15 10.6064/2012/964862 24278763
    [Google Scholar]
  19. Butenas S. Comparison of natural and recombinant tissue factor proteins: new insights. Biol. Chem. 2013 394 7 819 829 10.1515/hsz‑2012‑0350 23412875
    [Google Scholar]
  20. Butenas S. Orfeo T. Mann K.G. Tissue factor in coagulation: Which? Where? When? Arterioscler. Thromb. Vasc. Biol. 2009 29 12 1989 1996 10.1161/ATVBAHA.108.177402 19592470
    [Google Scholar]
  21. Stark K. Massberg S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol. 2021 18 9 666 682 10.1038/s41569‑021‑00552‑1 33958774
    [Google Scholar]
  22. Luchini A. Tidemand F.G. Araya-Secchi R. Campana M. Cárdenas M. Arleth L. Structural model of tissue factor (TF) and TF-factor VIIa complex in a lipid membrane: A combined experimental and computational study. J. Colloid Interface Sci. 2022 623 294 305 10.1016/j.jcis.2022.04.147 35594588
    [Google Scholar]
  23. Rao L.V.M. Kothari H. Pendurthi U.R. Tissue factor mechanisms of decryption. Front. Biosci. (Elite Ed.) 2012 E4 4 1513 1527 10.2741/e477 22201972
    [Google Scholar]
  24. Rao L.V.M. Pendurthi U.R. Regulation of tissue factor coagulant activity on cell surfaces. J. Thromb. Haemost. 2012 10 11 2242 2253 10.1111/jth.12003 23006890
    [Google Scholar]
  25. Varki A. Biological roles of glycans. Glycobiology 2017 27 1 3 49 10.1093/glycob/cww086 27558841
    [Google Scholar]
  26. Huang Y.F. Aoki K. Akase S. Ishihara M. Liu Y.S. Yang G. Kizuka Y. Mizumoto S. Tiemeyer M. Gao X.D. Aoki-Kinoshita K.F. Fujita M. Global mapping of glycosylation pathways in human-derived cells. Dev. Cell 2021 56 8 1195 1209.e7 10.1016/j.devcel.2021.02.023 33730547
    [Google Scholar]
  27. Ma M. Dubey R. Jen A. Pusapati G.V. Singal B. Shishkova E. Overmyer K.A. Cormier-Daire V. Fedry J. Aravind L. Coon J.J. Rohatgi R. Regulated N-glycosylation controls chaperone function and receptor trafficking. Science 2024 386 6722 667 672 10.1126/science.adp7201 39509507
    [Google Scholar]
  28. Pongracz T. Mayboroda O.A. Wuhrer M. The human blood N-Glycome: Unraveling disease glycosylation patterns. JACS Au 2024 4 5 1696 1708 10.1021/jacsau.4c00043 38818049
    [Google Scholar]
  29. Paborsky L.R. Harris R.J. Post-translational modifications of recombinant human tissue factor. Thromb. Res. 1990 60 5 367 376 10.1016/0049‑3848(90)90219‑3 2084958
    [Google Scholar]
  30. Koizume S. Miyagi Y. Tissue factor in cancer-associated thromboembolism: possible mechanisms and clinical applications. Br. J. Cancer 2022 127 12 2099 2107 10.1038/s41416‑022‑01968‑3 36097177
    [Google Scholar]
  31. Krudysz-Amblo J. Jennings M.E. II Mann K.G. Butenas S. Carbohydrates and activity of natural and recombinant tissue factor. J. Biol. Chem. 2010 285 5 3371 3382 10.1074/jbc.M109.055178 19955571
    [Google Scholar]
  32. Kothari H. Rao L.V.M. Pendurthi U.R. Glycosylation of tissue factor is not essential for its transport or functions. J. Thromb. Haemost. 2011 9 8 1511 1520 10.1111/j.1538‑7836.2011.04332.x 21535396
    [Google Scholar]
  33. Kothari H. Pendurthi U.R. Rao L.V.M. Tissue factor purified from different cellular sources and non-glycosylated tissue factor show similar procoagulant activity. J. Thromb. Haemost. 2013 11 11 2066 2068 10.1111/jth.12407 24112816
    [Google Scholar]
  34. Erzurumlu Y. Catakli D. Dogan H.K. Circadian oscillation pattern of endoplasmic reticulum quality control (ERQC) components in human embryonic kidney HEK293 cells. J. Circadian Rhythms 2023 21 1 10.5334/jcr.219 37033333
    [Google Scholar]
  35. Neal S. Jaeger P.A. Duttke S.H. Benner C. K Glass C. Ideker T. Hampton R.Y. The Dfm1 derlin is required for ERAD retrotranslocation of integral membrane proteins. Mol. Cell 2018 69 2 306 320.e4 10.1016/j.molcel.2017.12.012 29351849
    [Google Scholar]
  36. Tax G. Lia A. Santino A. Roversi P. Erratum to “modulation of ERQC and ERAD: A broad-spectrum spanner in the works of cancer cells?”. J. Oncol. 2020 2020 1396429 32695163
    [Google Scholar]
  37. Fasana E. Fregno I. Galli C. Soldà T. Molinari M. ER-to-lysosome-associated degradation acts as failsafe mechanism upon ERAD dysfunction. EMBO Rep. 2024 25 6 2773 2785 38773321
    [Google Scholar]
  38. Wu X. Rapoport T.A. Mechanistic insights into ER-associated protein degradation. Curr. Opin. Cell Biol. 2018 53 22 28 10.1016/j.ceb.2018.04.004 29719269
    [Google Scholar]
  39. Printsev I. Curiel D. Carraway K.L., III Membrane protein quantity control at the endoplasmic reticulum. J. Membr. Biol. 2017 250 4 379 392 10.1007/s00232‑016‑9931‑0 27743014
    [Google Scholar]
  40. Christianson J.C. Carvalho P. Order through destruction: How ER-associated protein degradation contributes to organelle homeostasis. EMBO J. 2022 41 6 e109845 10.15252/embj.2021109845 35170763
    [Google Scholar]
  41. Adhikary S.D. Thiruvenkatarajan V. Pruett A. Coagulation testing in the perioperative period. Indian J. Anaesth. 2014 58 5 565 572 10.4103/0019‑5049.144657 25535418
    [Google Scholar]
  42. Stone M.J. Ruf W. Miles D.J. Edgington T.S. Wright P.E. Recombinant soluble human tissue factor secreted by Saccharomyces cerevisiae and refolded from Escherichia coli inclusion bodies: glycosylation of mutants, activity and physical characterization. Biochem. J. 1995 310 2 605 614 10.1042/bj3100605 7654202
    [Google Scholar]
  43. Paborsky L.R. Tate K.M. Harris R.J. Yansura D.G. Band L. McCray G. Gorman C.M. O’Brien D.P. Chang J.Y. Swartz J.R. Purification of recombinant human tissue factor. Biochemistry 1989 28 20 8072 8077 10.1021/bi00446a016 2690932
    [Google Scholar]
  44. Jalili-Nik M. Soukhtanloo M. Mojarrad M. Sadeghian M.H. Mashkani B. Challenges of expressing recombinant human tissue factor as a secreted protein in Pichia pastoris. Prep. Biochem. Biotechnol. 2022 52 9 1001 1007 10.1080/10826068.2021.2023823 35133942
    [Google Scholar]
  45. Brucato C.L. Birr C.A. Bruguera P. Ruiz J.A. Sánchez-Martínez D. Expression of recombinant rabbit tissue factor in Pichia pastoris, and its application in a prothrombin time reagent. Protein Expr. Purif. 2002 26 3 386 393 10.1016/S1046‑5928(02)00563‑6 12460762
    [Google Scholar]
  46. Ettelaie C. Featherby S. Rondon A.M.R. Greenman J. Versteeg H.H. Maraveyas A. De-palmitoylation of tissue factor regulates its activity, Phosphorylation and cellular functions. Cancers 2021 13 15 3837 10.3390/cancers13153837 34359738
    [Google Scholar]
  47. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  48. Tsai Y.X. Chang N.E. Reuter K. Chang H.T. Yang T.J. von Bülow S. Sehrawat V. Zerrouki N. Tuffery M. Gecht M. Grothaus I.L. Colombi Ciacchi L. Wang Y.S. Hsu M.F. Khoo K.H. Hummer G. Hsu S.T.D. Hanus C. Sikora M. Rapid simulation of glycoprotein structures by grafting and steric exclusion of glycan conformer libraries. Cell 2024 187 5 1296 1311.e26 10.1016/j.cell.2024.01.034 38428397
    [Google Scholar]
  49. Bach R. Konigsberg W.H. Nemerson Y. Human tissue factor contains thioester-linked palmitate and stearate on the cytoplasmic half-cystine. Biochemistry 1988 27 12 4227 4231 10.1021/bi00412a004 3166978
    [Google Scholar]
  50. Vadivel K. Agah S. Messer A.S. Cascio D. Bajaj M.S. Krishnaswamy S. Esmon C.T. Padmanabhan K. Bajaj S.P. Structural and functional studies of γ-carboxyglutamic acid domains of factor VIIa and activated Protein C: Role of magnesium at physiological calcium. J. Mol. Biol. 2013 425 11 1961 1981 10.1016/j.jmb.2013.02.017 23454357
    [Google Scholar]
  51. Prasad R. Sen P. Structural modulation of factor VIIa by full-length tissue factor (TF1-263): Implication of novel interactions between EGF2 domain and TF. J. Biomol. Struct. Dyn. 2018 36 3 621 633 10.1080/07391102.2017.1289125 28150568
    [Google Scholar]
  52. Neal S. Syau D. Nejatfard A. Nadeau S. Hampton R.Y. HRD complex self-remodeling enables a novel route of membrane protein retrotranslocation. iScience 2020 23 9 101493 10.1016/j.isci.2020.101493 32891886
    [Google Scholar]
  53. De Marco Verissimo C. Cwiklinski K. Nilsson J. Mirgorodskaya E. Jin C. Karlsson N.G. Dalton J.P. Glycan complexity and heterogeneity of glycoproteins in somatic extracts and secretome of the infective stage of the helminth fasciola hepatica. Mol. Cell. Proteomics 2023 22 12 100684 10.1016/j.mcpro.2023.100684 37993102
    [Google Scholar]
  54. Suzuki N. Tissue N-glycan analysis using LC-MS, MS/MS, and MSn. Curr. Protoc. 2021 1 7 e200 34314112
    [Google Scholar]
  55. Preston G.M. Brodsky J.L. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem. J. 2017 474 4 445 469 10.1042/BCJ20160582 28159894
    [Google Scholar]
  56. Sun Z. Brodsky J.L. Protein quality control in the secretory pathway. J. Cell Biol. 2019 218 10 3171 3187 31537714
    [Google Scholar]
  57. Lin L.L. Wang H.H. Pederson B. Wei X. Torres M. Lu Y. Li Z.J. Liu X. Mao H. Wang H. Zhou L.E. Zhao Z. Sun S. Qi L. SEL1L-HRD1 interaction is required to form a functional HRD1 ERAD complex. Nat. Commun. 2024 15 1 1440 38365914
    [Google Scholar]
  58. Christianson J.C. Ye Y. Cleaning up in the endoplasmic reticulum: Ubiquitin in charge. Nat. Struct. Mol. Biol. 2014 21 4 325 335 24699081
    [Google Scholar]
  59. Roth J. Zuber C. Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9. Histochem. Cell Biol. 2017 147 2 269 284 27803995
    [Google Scholar]
  60. Hosokawa N. Kamiya Y. Kamiya D. Kato K. Nagata K. Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans. J. Biol. Chem. 2009 284 25 17061 17068 19346256
    [Google Scholar]
  61. Chino H. Mizushima N. ER-Phagy: Quality control and turnover of endoplasmic reticulum. Trends Cell Biol. 2020 30 5 384 398 32302550
    [Google Scholar]
  62. De Leonibus C. Cinque L. Settembre C. Emerging lysosomal pathways for quality control at the endoplasmic reticulum. FEBS Lett. 2019 593 17 2319 2329 31388984
    [Google Scholar]
  63. Stolz A. Grumati P. The various shades of ER-phagy. FEBS J. 2019 286 23 4642 4649 31386802
    [Google Scholar]
  64. Schuck S. Gallagher C.M. Walter P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J. Cell Sci. 2014 127 Pt 18 jcs.154716 10.1242/jcs.154716 25052096
    [Google Scholar]
  65. Fregno I. Molinari M. Proteasomal and lysosomal clearance of faulty secretory proteins: ER-associated degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD) pathways. Crit. Rev. Biochem. Mol. Biol. 2019 54 2 153 163 10.1080/10409238.2019.1610351 31084437
    [Google Scholar]
  66. Hassan N. Efing J. Kiesel L. Bendas G. Götte M. The tissue factor pathway in cancer: Overview and role of heparan sulfate proteoglycans. Cancers (Basel) 2023 15 5 1524 10.3390/cancers15051524 36900315
    [Google Scholar]
  67. Campello E. Ilich A. Simioni P. Key N.S. The relationship between pancreatic cancer and hypercoagulability: A comprehensive review on epidemiological and biological issues. Br. J. Cancer 2019 121 5 359 371 10.1038/s41416‑019‑0510‑x 31327867
    [Google Scholar]
  68. de Bono J.S. Harris J.R. Burm S.M. Vanderstichele A. Houtkamp M.A. Aarass S. Riisnaes R. Figueiredo I. Nava Rodrigues D. Christova R. Olbrecht S. Niessen H.W.M. Ruuls S.R. Schuurhuis D.H. Lammerts van Bueren J.J. Breij E.C.W. Vergote I. Systematic study of tissue factor expression in solid tumors. Cancer Rep. 2023 6 2 e1699 10.1002/cnr2.1699 36806722
    [Google Scholar]
  69. Manoharan J. Rana R. Kuenze G. Gupta D. Elwakiel A. Ambreen S. Wang H. Banerjee K. Zimmermann S. Singh K. Gupta A. Fatima S. Kretschmer S. Schaefer L. Zeng-Brouwers J. Schwab C. Al-Dabet M.M. Gadi I. Altmann H. Koch T. Poitz D.M. Baber R. Kohli S. Shahzad K. Geffers R. Lee-Kirsch M.A. Kalinke U. Meiler J. Mackman N. Isermann B. Tissue factor binds to and inhibits interferon-α receptor 1 signaling. Immunity 2024 57 1 68 85.e11 10.1016/j.immuni.2023.11.017 38141610
    [Google Scholar]
  70. Featherby S. Faulkner E. Ettelaie C. Tissue factor signalling modifies the expression and regulation of G1/S checkpoint regulators: Implications during injury and prolonged inflammation. Mol. Med. Rep. 2024 31 2 39 10.3892/mmr.2024.13404 39611476
    [Google Scholar]
  71. Leon G. Klavina P.A. Rehill A.M. Cooper S.E.J. Dominik A. Basavarajappa S.C. O’Donnell J.S. Hussey S. Walsh P.T. Preston R.J.S. Tissue factor-dependent colitogenic CD4+ T cell thrombogenicity is regulated by activated protein C signalling. Nat. Commun. 2025 16 1 1677 10.1038/s41467‑025‑57001‑7 39956825
    [Google Scholar]
  72. Kothari H. Pendurthi U.R. Rao L.V.M. Analysis of tissue factor expression in various cell model systems: Cryptic vs. active. J. Thromb. Haemost. 2013 11 7 1353 1363 10.1111/jth.12272 23621622
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665364078250519065417
Loading
/content/journals/ppl/10.2174/0109298665364078250519065417
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: blood coagulation ; coagulation test ; N-glycosylation ; preoperative test ; Tissue factor ; ERAD
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test