Skip to content
2000
Volume 32, Issue 7
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background

Tissue Factor (TF) is a crucial transmembrane glycoprotein that triggers blood coagulation upon vascular or tissue injury by binding to plasma factors VII and VIIa. In recent years, the demand for TF has rapidly increased due to its pivotal role in preoperative coagulation tests. However, large-scale production of TF remains challenging despite successful recombinant expression, as incorrect post-translational modifications adversely affect TF activity.

Objective

This study aims to investigate the role of post-translational modifications, specifically N-glycosylation, in TF activity and stability. Additionally, it explores strategies to enhance TF production by reducing its degradation through genetic modulation.

Methods

We compared TF activity derived from human cells and to assess the impact of post-translational modifications. Furthermore, we examined the effect of N-glycosylation on TF function. To address TF degradation, we knocked out the HRD1 gene, a key component of the endoplasmic-reticulum-associated degradation (ERAD) pathway, and evaluated its impact on TF stability and activity.

Results

TF produced in human cells exhibited higher activity than TF expressed in , emphasizing the importance of post-translational modifications. Specifically, N-glycosylation was found to influence TF activity and stability. Additionally, we observed that knocking out the HRD1 gene effectively reduced TF degradation without compromising its activity.

Conclusion

Our findings underscore the crucial role of N-glycosylation in TF function and stability. Moreover, the modulation of the ERAD pathway through knocking out HRD1 presents a promising approach for enhancing TF production. These insights could contribute to the large-scale manufacturing of functionally active TF for clinical and research applications.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665364078250519065417
2025-05-27
2025-11-04
Loading full text...

Full text loading...

References

  1. BächliE. History of tissue factor.Br. J. Haematol.2000110224825510971380
    [Google Scholar]
  2. CimminoG. CiccarelliG. GolinoP. Role of tissue factor in the coagulation network.Semin. Thromb. Hemost.201541770871710.1055/s‑0035‑156404526408920
    [Google Scholar]
  3. CimminoG. CirilloP. Tissue factor: newer concepts in thrombosis and its role beyond thrombosis and hemostasis.Cardiovasc. Diagn. Ther.20188558159310.21037/cdt.2018.10.1430498683
    [Google Scholar]
  4. MannK.G. Krudysz-AmbloJ. ButenasS. Tissue factor controversies.Thromb. Res.2012129Suppl 2S5S710.1016/j.thromres.2012.02.01822401799
    [Google Scholar]
  5. GundappaM. ArumugamV.A. HsiehH.L. BalasubramanianB. ShanmugamV. Expression of tissue factor and TF-mediated integrin regulation in HTR-8/SVneo trophoblast cells.J. Reprod. Immunol.202215010347310.1016/j.jri.2022.10347335030354
    [Google Scholar]
  6. MeradM. MartinJ.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages.Nat. Rev. Immunol.202020635536210.1038/s41577‑020‑0331‑432376901
    [Google Scholar]
  7. HisadaY. MackmanN. Tissue factor and cancer: Regulation, tumor growth, and metastasis.Semin. Thromb. Hemost.201945438539510.1055/s‑0039‑168789431096306
    [Google Scholar]
  8. GroverS.P. MackmanN. Tissue factor in atherosclerosis and atherothrombosis.Atherosclerosis2020307808610.1016/j.atherosclerosis.2020.06.00332674807
    [Google Scholar]
  9. LiH. YuY. GaoL. ZhengP. LiuX. ChenH. Tissue factor: A neglected role in cancer biology.J. Thromb. Thrombolysis20225419710810.1007/s11239‑022‑02662‑035763169
    [Google Scholar]
  10. RufW. Tissue factor and cancer.Thromb. Res.20121301S84S8710.1016/j.thromres.2012.08.28523026674
    [Google Scholar]
  11. MackmanN. Role of tissue factor in hemostasis, thrombosis, and vascular development.Arterioscler. Thromb. Vasc. Biol.20042461015102210.1161/01.ATV.0000130465.23430.7415117736
    [Google Scholar]
  12. LawsonJ.H. ButenasS. MannK.G. The evaluation of complex-dependent alterations in human factor VIIa.J. Biol. Chem.199226774834484310.1016/S0021‑9258(18)42907‑91537862
    [Google Scholar]
  13. MackmanN. The role of tissue factor and factor VIIa in hemostasis.Anesth. Analg.200910851447145210.1213/ane.0b013e31819bceb119372318
    [Google Scholar]
  14. SmithS.A. TraversR.J. MorrisseyJ.H. How it all starts: Initiation of the clotting cascade.Crit. Rev. Biochem. Mol. Biol.201550432633610.3109/10409238.2015.105055026018600
    [Google Scholar]
  15. MullerM.P. MortensonA. SedzroJ.C. WenP.C. MorrisseyJ.H. TajkhorshidE. Membrane-bound model of the ternary complex between factor VIIa/tissue factor and factor X.Blood Adv.20259472974010.1182/bloodadvances.202401484539671302
    [Google Scholar]
  16. MadsenJ.J. PerssonE. OlsenO.H. The intricate allostery in factor VIIa: Triggering the trigger.J. Thromb. Haemost.202523111010.1016/j.jtha.2024.08.02639332529
    [Google Scholar]
  17. WitkowskiM. LandmesserU. RauchU. Tissue factor as a link between inflammation and coagulation.Trends Cardiovasc. Med.201626429730310.1016/j.tcm.2015.12.00126877187
    [Google Scholar]
  18. ButenasS. Tissue factor structure and function.Scientifica (Cairo)2012201211510.6064/2012/96486224278763
    [Google Scholar]
  19. ButenasS. Comparison of natural and recombinant tissue factor proteins: new insights.Biol. Chem.2013394781982910.1515/hsz‑2012‑035023412875
    [Google Scholar]
  20. ButenasS. OrfeoT. MannK.G. Tissue factor in coagulation: Which? Where? When?Arterioscler. Thromb. Vasc. Biol.200929121989199610.1161/ATVBAHA.108.17740219592470
    [Google Scholar]
  21. StarkK. MassbergS. Interplay between inflammation and thrombosis in cardiovascular pathology.Nat. Rev. Cardiol.202118966668210.1038/s41569‑021‑00552‑133958774
    [Google Scholar]
  22. LuchiniA. TidemandF.G. Araya-SecchiR. CampanaM. CárdenasM. ArlethL. Structural model of tissue factor (TF) and TF-factor VIIa complex in a lipid membrane: A combined experimental and computational study.J. Colloid Interface Sci.202262329430510.1016/j.jcis.2022.04.14735594588
    [Google Scholar]
  23. RaoL.V.M. KothariH. PendurthiU.R. Tissue factor mechanisms of decryption.Front. Biosci. (Elite Ed.)2012E441513152710.2741/e47722201972
    [Google Scholar]
  24. RaoL.V.M. PendurthiU.R. Regulation of tissue factor coagulant activity on cell surfaces.J. Thromb. Haemost.201210112242225310.1111/jth.1200323006890
    [Google Scholar]
  25. VarkiA. Biological roles of glycans.Glycobiology201727134910.1093/glycob/cww08627558841
    [Google Scholar]
  26. HuangY.F. AokiK. AkaseS. IshiharaM. LiuY.S. YangG. KizukaY. MizumotoS. TiemeyerM. GaoX.D. Aoki-KinoshitaK.F. FujitaM. Global mapping of glycosylation pathways in human-derived cells.Dev. Cell202156811951209.e710.1016/j.devcel.2021.02.02333730547
    [Google Scholar]
  27. MaM. DubeyR. JenA. PusapatiG.V. SingalB. ShishkovaE. OvermyerK.A. Cormier-DaireV. FedryJ. AravindL. CoonJ.J. RohatgiR. Regulated N-glycosylation controls chaperone function and receptor trafficking.Science2024386672266767210.1126/science.adp720139509507
    [Google Scholar]
  28. PongraczT. MayborodaO.A. WuhrerM. The human blood N-Glycome: Unraveling disease glycosylation patterns.JACS Au2024451696170810.1021/jacsau.4c0004338818049
    [Google Scholar]
  29. PaborskyL.R. HarrisR.J. Post-translational modifications of recombinant human tissue factor.Thromb. Res.199060536737610.1016/0049‑3848(90)90219‑32084958
    [Google Scholar]
  30. KoizumeS. MiyagiY. Tissue factor in cancer-associated thromboembolism: possible mechanisms and clinical applications.Br. J. Cancer2022127122099210710.1038/s41416‑022‑01968‑336097177
    [Google Scholar]
  31. Krudysz-AmbloJ. JenningsM.E.II MannK.G. ButenasS. Carbohydrates and activity of natural and recombinant tissue factor.J. Biol. Chem.201028553371338210.1074/jbc.M109.05517819955571
    [Google Scholar]
  32. KothariH. RaoL.V.M. PendurthiU.R. Glycosylation of tissue factor is not essential for its transport or functions.J. Thromb. Haemost.2011981511152010.1111/j.1538‑7836.2011.04332.x21535396
    [Google Scholar]
  33. KothariH. PendurthiU.R. RaoL.V.M. Tissue factor purified from different cellular sources and non-glycosylated tissue factor show similar procoagulant activity.J. Thromb. Haemost.201311112066206810.1111/jth.1240724112816
    [Google Scholar]
  34. ErzurumluY. CatakliD. DoganH.K. Circadian oscillation pattern of endoplasmic reticulum quality control (ERQC) components in human embryonic kidney HEK293 cells.J. Circadian Rhythms202321110.5334/jcr.21937033333
    [Google Scholar]
  35. NealS. JaegerP.A. DuttkeS.H. BennerC. K GlassC. IdekerT. HamptonR.Y. The Dfm1 derlin is required for ERAD retrotranslocation of integral membrane proteins.Mol. Cell2018692306320.e410.1016/j.molcel.2017.12.01229351849
    [Google Scholar]
  36. TaxG. LiaA. SantinoA. RoversiP. Erratum to “modulation of ERQC and ERAD: A broad-spectrum spanner in the works of cancer cells?”J. Oncol.20202020139642932695163
    [Google Scholar]
  37. FasanaE. FregnoI. GalliC. SoldàT. MolinariM. ER-to-lysosome-associated degradation acts as failsafe mechanism upon ERAD dysfunction.EMBO Rep.20242562773278538773321
    [Google Scholar]
  38. WuX. RapoportT.A. Mechanistic insights into ER-associated protein degradation.Curr. Opin. Cell Biol.201853222810.1016/j.ceb.2018.04.00429719269
    [Google Scholar]
  39. PrintsevI. CurielD. CarrawayIII K.L. Membrane protein quantity control at the endoplasmic reticulum.J. Membr. Biol.2017250437939210.1007/s00232‑016‑9931‑027743014
    [Google Scholar]
  40. ChristiansonJ.C. CarvalhoP. Order through destruction: How ER-associated protein degradation contributes to organelle homeostasis.EMBO J.2022416e10984510.15252/embj.202110984535170763
    [Google Scholar]
  41. AdhikaryS.D. ThiruvenkatarajanV. PruettA. Coagulation testing in the perioperative period.Indian J. Anaesth.201458556557210.4103/0019‑5049.14465725535418
    [Google Scholar]
  42. StoneM.J. RufW. MilesD.J. EdgingtonT.S. WrightP.E. Recombinant soluble human tissue factor secreted by Saccharomyces cerevisiae and refolded from Escherichia coli inclusion bodies: glycosylation of mutants, activity and physical characterization.Biochem. J.1995310260561410.1042/bj31006057654202
    [Google Scholar]
  43. PaborskyL.R. TateK.M. HarrisR.J. YansuraD.G. BandL. McCrayG. GormanC.M. O’BrienD.P. ChangJ.Y. SwartzJ.R. Purification of recombinant human tissue factor.Biochemistry198928208072807710.1021/bi00446a0162690932
    [Google Scholar]
  44. Jalili-NikM. SoukhtanlooM. MojarradM. SadeghianM.H. MashkaniB. Challenges of expressing recombinant human tissue factor as a secreted protein in Pichia pastoris.Prep. Biochem. Biotechnol.20225291001100710.1080/10826068.2021.202382335133942
    [Google Scholar]
  45. BrucatoC.L. BirrC.A. BrugueraP. RuizJ.A. Sánchez-MartínezD. Expression of recombinant rabbit tissue factor in Pichia pastoris, and its application in a prothrombin time reagent.Protein Expr. Purif.200226338639310.1016/S1046‑5928(02)00563‑612460762
    [Google Scholar]
  46. EttelaieC. FeatherbyS. RondonA.M.R. GreenmanJ. VersteegH.H. MaraveyasA. De-palmitoylation of tissue factor regulates its activity, Phosphorylation and cellular functions.Cancers20211315383710.3390/cancers1315383734359738
    [Google Scholar]
  47. JumperJ. EvansR. PritzelA. GreenT. FigurnovM. RonnebergerO. TunyasuvunakoolK. BatesR. ŽídekA. PotapenkoA. BridglandA. MeyerC. KohlS.A.A. BallardA.J. CowieA. Romera-ParedesB. NikolovS. JainR. AdlerJ. BackT. PetersenS. ReimanD. ClancyE. ZielinskiM. SteineggerM. PacholskaM. BerghammerT. BodensteinS. SilverD. VinyalsO. SeniorA.W. KavukcuogluK. KohliP. HassabisD. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑234265844
    [Google Scholar]
  48. TsaiY.X. ChangN.E. ReuterK. ChangH.T. YangT.J. von BülowS. SehrawatV. ZerroukiN. TufferyM. GechtM. GrothausI.L. Colombi CiacchiL. WangY.S. HsuM.F. KhooK.H. HummerG. HsuS.T.D. HanusC. SikoraM. Rapid simulation of glycoprotein structures by grafting and steric exclusion of glycan conformer libraries.Cell2024187512961311.e2610.1016/j.cell.2024.01.03438428397
    [Google Scholar]
  49. BachR. KonigsbergW.H. NemersonY. Human tissue factor contains thioester-linked palmitate and stearate on the cytoplasmic half-cystine.Biochemistry198827124227423110.1021/bi00412a0043166978
    [Google Scholar]
  50. VadivelK. AgahS. MesserA.S. CascioD. BajajM.S. KrishnaswamyS. EsmonC.T. PadmanabhanK. BajajS.P. Structural and functional studies of γ-carboxyglutamic acid domains of factor VIIa and activated Protein C: Role of magnesium at physiological calcium.J. Mol. Biol.2013425111961198110.1016/j.jmb.2013.02.01723454357
    [Google Scholar]
  51. PrasadR. SenP. Structural modulation of factor VIIa by full-length tissue factor (TF1-263): Implication of novel interactions between EGF2 domain and TF.J. Biomol. Struct. Dyn.201836362163310.1080/07391102.2017.128912528150568
    [Google Scholar]
  52. NealS. SyauD. NejatfardA. NadeauS. HamptonR.Y. HRD complex self-remodeling enables a novel route of membrane protein retrotranslocation.iScience202023910149310.1016/j.isci.2020.10149332891886
    [Google Scholar]
  53. De Marco VerissimoC. CwiklinskiK. NilssonJ. MirgorodskayaE. JinC. KarlssonN.G. DaltonJ.P. Glycan complexity and heterogeneity of glycoproteins in somatic extracts and secretome of the infective stage of the helminth fasciola hepatica.Mol. Cell. Proteomics2023221210068410.1016/j.mcpro.2023.10068437993102
    [Google Scholar]
  54. SuzukiN. Tissue N-glycan analysis using LC-MS, MS/MS, and MSn.Curr. Protoc.202117e20034314112
    [Google Scholar]
  55. PrestonG.M. BrodskyJ.L. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation.Biochem. J.2017474444546910.1042/BCJ2016058228159894
    [Google Scholar]
  56. SunZ. BrodskyJ.L. Protein quality control in the secretory pathway.J. Cell Biol.2019218103171318731537714
    [Google Scholar]
  57. LinL.L. WangH.H. PedersonB. WeiX. TorresM. LuY. LiZ.J. LiuX. MaoH. WangH. ZhouL.E. ZhaoZ. SunS. QiL. SEL1L-HRD1 interaction is required to form a functional HRD1 ERAD complex.Nat. Commun.2024151144038365914
    [Google Scholar]
  58. ChristiansonJ.C. YeY. Cleaning up in the endoplasmic reticulum: Ubiquitin in charge.Nat. Struct. Mol. Biol.201421432533524699081
    [Google Scholar]
  59. RothJ. ZuberC. Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9.Histochem. Cell Biol.2017147226928427803995
    [Google Scholar]
  60. HosokawaN. KamiyaY. KamiyaD. KatoK. NagataK. Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans.J. Biol. Chem.200928425170611706819346256
    [Google Scholar]
  61. ChinoH. MizushimaN. ER-Phagy: Quality control and turnover of endoplasmic reticulum.Trends Cell Biol.202030538439832302550
    [Google Scholar]
  62. De LeonibusC. CinqueL. SettembreC. Emerging lysosomal pathways for quality control at the endoplasmic reticulum.FEBS Lett.2019593172319232931388984
    [Google Scholar]
  63. StolzA. GrumatiP. The various shades of ER-phagy.FEBS J.2019286234642464931386802
    [Google Scholar]
  64. SchuckS. GallagherC.M. WalterP. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery.J. Cell Sci.2014127Pt 18jcs.15471610.1242/jcs.15471625052096
    [Google Scholar]
  65. FregnoI. MolinariM. Proteasomal and lysosomal clearance of faulty secretory proteins: ER-associated degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD) pathways.Crit. Rev. Biochem. Mol. Biol.201954215316310.1080/10409238.2019.161035131084437
    [Google Scholar]
  66. HassanN. EfingJ. KieselL. BendasG. GötteM. The tissue factor pathway in cancer: Overview and role of heparan sulfate proteoglycans.Cancers (Basel)2023155152410.3390/cancers1505152436900315
    [Google Scholar]
  67. CampelloE. IlichA. SimioniP. KeyN.S. The relationship between pancreatic cancer and hypercoagulability: A comprehensive review on epidemiological and biological issues.Br. J. Cancer2019121535937110.1038/s41416‑019‑0510‑x31327867
    [Google Scholar]
  68. de BonoJ.S. HarrisJ.R. BurmS.M. VandersticheleA. HoutkampM.A. AarassS. RiisnaesR. FigueiredoI. Nava RodriguesD. ChristovaR. OlbrechtS. NiessenH.W.M. RuulsS.R. SchuurhuisD.H. Lammerts van BuerenJ.J. BreijE.C.W. VergoteI. Systematic study of tissue factor expression in solid tumors.Cancer Rep.202362e169910.1002/cnr2.169936806722
    [Google Scholar]
  69. ManoharanJ. RanaR. KuenzeG. GuptaD. ElwakielA. AmbreenS. WangH. BanerjeeK. ZimmermannS. SinghK. GuptaA. FatimaS. KretschmerS. SchaeferL. Zeng-BrouwersJ. SchwabC. Al-DabetM.M. GadiI. AltmannH. KochT. PoitzD.M. BaberR. KohliS. ShahzadK. GeffersR. Lee-KirschM.A. KalinkeU. MeilerJ. MackmanN. IsermannB. Tissue factor binds to and inhibits interferon-α receptor 1 signaling.Immunity20245716885.e1110.1016/j.immuni.2023.11.01738141610
    [Google Scholar]
  70. FeatherbyS. FaulknerE. EttelaieC. Tissue factor signalling modifies the expression and regulation of G1/S checkpoint regulators: Implications during injury and prolonged inflammation.Mol. Med. Rep.20243123910.3892/mmr.2024.1340439611476
    [Google Scholar]
  71. LeonG. KlavinaP.A. RehillA.M. CooperS.E.J. DominikA. BasavarajappaS.C. O’DonnellJ.S. HusseyS. WalshP.T. PrestonR.J.S. Tissue factor-dependent colitogenic CD4+ T cell thrombogenicity is regulated by activated protein C signalling.Nat. Commun.2025161167710.1038/s41467‑025‑57001‑739956825
    [Google Scholar]
  72. KothariH. PendurthiU.R. RaoL.V.M. Analysis of tissue factor expression in various cell model systems: Cryptic vs. active.J. Thromb. Haemost.20131171353136310.1111/jth.1227223621622
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665364078250519065417
Loading
/content/journals/ppl/10.2174/0109298665364078250519065417
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): blood coagulation; coagulation test; ERAD; N-glycosylation; preoperative test; Tissue factor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test