Skip to content
2000
Volume 32, Issue 5
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background

Gene fusion techniques have yielded promising results in the fusion of thermostable polymerases (Taq and Pfu) with single-stranded and double-stranded DNA-binding proteins. Constructing a terminal deoxynucleotidyl transferase (TdT) fusion enzyme with DNA-binding protein domains can enhance thermostability and broaden the enzyme's application field. This makes it a promising candidate for cost-effective DNA synthesis and a more effective tool for demonstrating apoptosis and detecting viral DNA/RNA.

Methods

The design of fusion proteins was based on molecular dynamics and homology modeling. Native and fusion proteins were isolated using affinity chromatography on HisTrap HP. Thermostability was assessed through differential scanning fluorimetry and dynamic light scattering. HPLC analysis was conducted to evaluate enzyme activity.

Results

According to the predictions of the fusion protein structure, a homotetramer was formed. The expressed fusion proteins were successfully purified under native conditions, similar to TdT. The total yields of the studied proteins were 130 mg/L for single-stranded binding protein from (EcSSB), 5 mg/L for TdT, 9 mg/L for TdT_L1_EcSSB, and 7 mg/L for TdT_L2_EcSSB. The measured radius of TdT (3.5 nm) was found to be consistent with a monomeric structure; however, the fusion proteins were expected to form a homotetramer. Additionally, fusion with EcSSB was found to prevent aggregation, which positively affected the thermal stability of the fusion protein. Instead of elongating the substrate by adding nucleotides, the fusion enzyme removed a nucleotide, specifically TTP, from the 3'-end of the DNA strand.

Conclusion

The fusion of TdT with EcSSB resulted in increased thermal stability and a reduced ability to add nucleotides to the substrate.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665372636250504084653
2025-05-21
2025-09-02
Loading full text...

Full text loading...

References

  1. BollumF.J. Calf thymus polymerase.J. Biol. Chem.196023582399240310.1016/S0021‑9258(18)64634‑413802334
    [Google Scholar]
  2. BollumF.J. Oligodeoxyribonucleotide primers for calf thymus polymerase.J. Biol. Chem.19602355PC18PC2010.1016/S0021‑9258(18)69443‑813802336
    [Google Scholar]
  3. DeibelM.R.Jr ColemanM.S. Purification of a high molecular weight human terminal deoxynucleotidyl transferase.J. Biol. Chem.1979254178634864010.1016/S0021‑9258(19)86939‑9468845
    [Google Scholar]
  4. SunL. XiangY. DuY. WangY. MaJ. WangY. WangX. WangG. ChenT. Template-independent synthesis and 3′-end labelling of 2′-modified oligonucleotides with terminal deoxynucleotidyl transferases.Nucleic Acids Res.20245217100851010110.1093/nar/gkae69139149896
    [Google Scholar]
  5. FowlerJ.D. SuoZ. Biochemical, structural, and physiological characterization of terminal deoxynucleotidyl transferase.Chem. Rev.200610662092211010.1021/cr040445w16771444
    [Google Scholar]
  6. RepaskyJ.A.E. CorbettE. BoboilaC. SchatzD.G. Mutational analysis of terminal deoxynucleotidyltransferase-mediated N-nucleotide addition in V(D)J recombination.J. Immunol.200417295478548810.4049/jimmunol.172.9.547815100289
    [Google Scholar]
  7. BertocciB. SmetD.A. WeillJ.C. ReynaudC.A. Nonoverlapping functions of DNA polymerases mu, lambda, and terminal deoxynucleotidyltransferase during immunoglobulin V(D)J recombination in vivo.Immunity2006251314110.1016/j.immuni.2006.04.01316860755
    [Google Scholar]
  8. DesiderioS.V. YancopoulosG.D. PaskindM. ThomasE. BossM.A. LandauN. AltF.W. BaltimoreD. Insertion of N regions into heavy-chain genes is correlated with expression of terminal deoxytransferase in B cells.Nature1984311598875275510.1038/311752a06092963
    [Google Scholar]
  9. LieberM.R. HesseJ.E. MizuuchiK. GellertM. LymphoidV. Lymphoid V(D)J recombination: Nucleotide insertion at signal joints as well as coding joints.Proc. Natl. Acad. Sci. USA198885228588859210.1073/pnas.85.22.85882847166
    [Google Scholar]
  10. SadofskyM.J. The RAG proteins in V(D)J recombination: More than just a nuclease.Nucleic Acids Res.20012971399140910.1093/nar/29.7.139911266539
    [Google Scholar]
  11. MoteaE.A. BerdisA.J. Terminal deoxynucleotidyl transferase: The story of a misguided DNA polymerase.Biochim. Biophys. Acta. Proteins Proteomics2010180451151116610.1016/j.bbapap.2009.06.03019596089
    [Google Scholar]
  12. BouléJ.B. RougeonF. PapanicolaouC. Comparison of the two murine terminal [corrected] deoxynucleotidyltransferase terminal isoforms. A 20-amino acid insertion in the highly conserved carboxyl-terminal region modifies the thermosensitivity but not the catalytic activity.J. Biol. Chem.200027537289842898810878023
    [Google Scholar]
  13. CampagnariF. BombardieriE. BraudD.F. BaldiniL. MaioloA.T. Terminal deoxynucleotidyl transferase, TdT, as a marker for leukemia and lymphoma cells.Int. J. Biol. Markers198721314210.1177/1724600887002001053323341
    [Google Scholar]
  14. NegoescuA. LorimierP. Labat-MoleurF. DrouetC. RobertC. GuillermetC. BrambillaC. BrambillaE. In situ apoptotic cell labeling by the TUNEL method: Improvement and evaluation on cell preparations.J. Histochem. Cytochem.199644995996810.1177/44.9.87735618773561
    [Google Scholar]
  15. DarzynkiewiczZ. GalkowskiD. ZhaoH. Analysis of apoptosis by cytometry using TUNEL assay.Methods200844325025410.1016/j.ymeth.2007.11.00818314056
    [Google Scholar]
  16. LatiriM. BelhocineM. SmithC. GarnierN. BalducciE. PintonA. AndrieuG.P. BruneauJ. SpicugliaS. JamainS. LatapieV. MontprevilleD.V.T. ChalabreysseL. MarxA. GirardN. BesseB. PlassC. GibaultL. BadoualC. MacintyreE. AsnafiV. MolinaT.J. TouzartA. DNA methylation as a new tool for the differential diagnosis between T-LBL and lymphocyte-rich thymoma.J. Pathol.2024264328429210.1002/path.634639329449
    [Google Scholar]
  17. TianS. YuanY. LuoF. LinC. WangJ. QiuB. LinZ. WangW. Dual self-amplification homogeneous electrochemiluminescence biosensor for terminal deoxynucleotidyl transferase activity based on controlling the surface morphology and charge of reporter nanoparticles.Anal. Chem.20239550186031861010.1021/acs.analchem.3c0457938048177
    [Google Scholar]
  18. YangH. ZhuL. WangX. SongY. DongY. XuW. Extension characteristics of TdT and its application in biosensors.Crit. Rev. Biotechnol.202444698199510.1080/07388551.2023.227077237880088
    [Google Scholar]
  19. XuJ. YangH. SuiZ. YuanX. JiaL. GuoL. One-pot isothermal amplification permits recycled activation of CRISPR/Cas12a for sensing terminal deoxynucleotidyl transferase activity.Chem. Commun.202460354683468610.1039/D4CC00825A38591968
    [Google Scholar]
  20. BouléJ.B. RougeonF. PapanicolaouC. Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides.J. Biol. Chem.200127633313883139310.1074/jbc.M10527220011406636
    [Google Scholar]
  21. LeeJ.M. ChoH. JungY. Fabrication of a structure-specific RNA binder for array detection of label-free microRNA.Angew. Chem. Int. Ed.201049468662866510.1002/anie.20100400020922734
    [Google Scholar]
  22. TjongV. YuH. HucknallA. RangarajanS. ChilkotiA. Amplified on-chip fluorescence detection of DNA hybridization by surface-initiated enzymatic polymerization.Anal. Chem.201183135153515910.1021/ac200946t21604676
    [Google Scholar]
  23. ZhangX. ZhengC. DingL. WuY. XuH. SunY. ZengY. LiuX. LiuJ. CRISPR-Cas12a coupled with terminal deoxynucleotidyl transferase mediated isothermal amplification for sensitive detection of polynucleotide kinase activity.Sens. Actuat. B Chem.202133012931710.1016/j.snb.2020.129317
    [Google Scholar]
  24. AshleyJ. PottsI.M. OlorunnijiF.J. Applications of terminal deoxynucleotidyl transferase enzyme in biotechnology.ChemBioChem2023245e20220051010.1002/cbic.20220051036342345
    [Google Scholar]
  25. ZhangC. SubthainH. GuoF. FangP. ZhengS. ShenM. JiangX. GaoZ. MengC. LiS. DuL. Terminal deoxynucleotidyl transferase: Properties and applications.Eng. Microbiol.20255110017910.1016/j.engmic.2024.100179
    [Google Scholar]
  26. LagardeJ. Uszczynska-RatajczakB. Santoyo-LopezJ. GonzalezJ.M. TapanariE. MudgeJ.M. StewardC.A. WilmingL. TanzerA. HowaldC. ChrastJ. Vela-BozaA. RuedaA. Lopez-DomingoF.J. DopazoJ. ReymondA. GuigóR. HarrowJ. Extension of human lncRNA transcripts by RACE coupled with long-read high-throughput sequencing (RACE-Seq).Nat. Commun.2016711233910.1038/ncomms1233927531712
    [Google Scholar]
  27. Minhaz Ud-DeanS.M. A theoretical model for template-free synthesis of long DNA sequence.Syst. Synth. Biol.200823-4677310.1007/s11693‑009‑9023‑x19343541
    [Google Scholar]
  28. JensenM.A. DavisR.W. Template-independent enzymatic oligonucleotide synthesis (TiEOS): Its history, prospects, and challenges.Biochemistry201857121821183210.1021/acs.biochem.7b0093729533604
    [Google Scholar]
  29. EisensteinM. Enzymatic DNA synthesis enters new phase.Nat. Biotechnol.202038101113111510.1038/s41587‑020‑0695‑933020638
    [Google Scholar]
  30. KlinglerC. AshleyJ. ShiK. StiefvaterA. KybaM. SinnreichM. AiharaH. KinterJ. DNA aptamers against the DUX4 protein reveal novel therapeutic implications for FSHD.FASEB J.20203434573459010.1096/fj.20190269632020675
    [Google Scholar]
  31. AshleyJ. Schaap-JohansenA.L. MohammadniaeiM. NaseriM. MarcatiliP. PradoM. SunY. Terminal deoxynucleotidyl transferase-mediated formation of protein binding polynucleotides.Nucleic Acids Res.20214921065107410.1093/nar/gkaa126333398328
    [Google Scholar]
  32. VacacelaJ. Schaap-JohansenA.L. ManikovaP. MarcatiliP. PradoM. SunY. AshleyJ. The protein-templated synthesis of enzyme-generated aptamers.Angew. Chem. Int. Ed.20226117e20220106110.1002/anie.20220106135167174
    [Google Scholar]
  33. HuangZ. ZhangC. WuX. SuN. XingX. Recent progress in fusion enzyme design and applications.Sheng. Wu. Gong. Cheng. Xue. Bao.201228439340922803390
    [Google Scholar]
  34. YuK. LiuC. KimB.G. LeeD.Y. Synthetic fusion protein design and applications.Biotechnol. Adv.201533115516410.1016/j.biotechadv.2014.11.00525450191
    [Google Scholar]
  35. LiC. ZhangR. WangJ. WilsonL.M. YanY. Protein engineering for improving and diversifying natural product biosynthesis.Trends Biotechnol.202038772974410.1016/j.tibtech.2019.12.00831954530
    [Google Scholar]
  36. WangY. ProsenD.E. MeiL. SullivanJ.C. FinneyM. HornV.P.B. A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro.Nucleic Acids Res.20043231197120710.1093/nar/gkh27114973201
    [Google Scholar]
  37. OlszewskiM. ŚpibidaM. BilekM. KrawczykB. Fusion of Taq DNA polymerase with single-stranded DNA binding-like protein of Nanoarchaeum equitans—Expression and characterization.PLoS One2017129e018416210.1371/journal.pone.018416228863186
    [Google Scholar]
  38. SigalN. DeliusH. KornbergT. GefterM.L. AlbertsB. A DNA-unwinding protein isolated from Escherichia coli: Its interaction with DNA and with DNA polymerases.Proc. Natl. Acad. Sci. USA197269123537354110.1073/pnas.69.12.35374566449
    [Google Scholar]
  39. SancarA. WilliamsK.R. ChaseJ.W. RuppW.D. Sequences of the ssb gene and protein.Proc. Natl. Acad. Sci. USA19817874274427810.1073/pnas.78.7.42746270666
    [Google Scholar]
  40. BondeN.J. KozlovA.G. CoxM.M. LohmanT.M. KeckJ.L. Molecular insights into the prototypical single-stranded DNA-binding protein from E. coli.Crit. Rev. Biochem. Mol. Biol.2024591-29912710.1080/10409238.2024.233037238770626
    [Google Scholar]
  41. MolineuxI.J. PauliA. GefterM.L. Physical studies of the interaction between the Escherichia coli DNA binding protein and nucleic acids.Nucleic Acids Res.19752101821183810.1093/nar/2.10.18211103088
    [Google Scholar]
  42. BujalowskiW. LohmanT.M. Monomers of the Escherichia coli SSB-1 mutant protein bind single-stranded DNA.J. Mol. Biol.19912171637410.1016/0022‑2836(91)90611‑91988680
    [Google Scholar]
  43. GreipelJ. MaassG. MayerF. Complexes of the single-stranded DNA-binding protein from Escherichia coli (Eco SSB) with poly(dT).Biophys. Chem.1987262-314916110.1016/0301‑4622(87)80018‑23300806
    [Google Scholar]
  44. BandyopadhyayP.K. WuC.W. Fluorescence and chemical studies on the interaction of Escherichia coli DNA-binding protein with single-stranded DNA.Biochemistry197817194078408510.1021/bi00612a032213102
    [Google Scholar]
  45. BochkarevA. BochkarevaE. FrappierL. EdwardsA.M. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding.EMBO J.199918164498450410.1093/emboj/18.16.449810449415
    [Google Scholar]
  46. SachankaA.B. ShchurV.V. UsanovS.A. YantsevichA.V. Effect of DNA-binding proteins on terminal deoxynucleotidyl transferase activity in systems with homopolymer substrates.Appl. Biochem. Microbiol.20246061104111710.1134/S0003683824605237
    [Google Scholar]
  47. BurenkovaY.P. SchurV.V. UsanovS.A. YantsevichA.V. VII International Conference of Young Scientists: Biophysicists, Biotechnologists, Molecular Biologists and VirologistsNovosibirsk, RussiaPublishing and Printing Center of NSU20203031
    [Google Scholar]
  48. SachankaA.B. DzichenkaY.U. YantsevichA.V. UsanovS.A. Design structure of fusion protein of bovine DNA exotransferase and E. coli SSB protein.Dokl. Natsionalnoi. Akad. Nauk Belarusi202165556857510.29235/1561‑8323‑2021‑65‑5‑568‑575
    [Google Scholar]
  49. KimD.E. ChivianD. BakerD. Protein structure prediction and analysis using the Robetta server.Nucleic Acids Res.200432Web ServerW526W53110.1093/nar/gkh46815215442
    [Google Scholar]
  50. WangS. SunS. LiZ. ZhangR. XuJ. Accurate de novo prediction of protein contact map by ultra-deep learning model.PLOS Comput. Biol.2017131e100532410.1371/journal.pcbi.100532428056090
    [Google Scholar]
  51. SunS. GengL. ShamooY. Structure and enzymatic properties of a chimeric bacteriophage RB69 DNA polymerase and single-stranded DNA binding protein with increased processivity.Proteins200665123123810.1002/prot.2108816881051
    [Google Scholar]
  52. ChistyL.T. QuagliaD. WebbM.R. Fluorescent single-stranded DNA-binding protein from Plasmodium falciparum as a biosensor for single-stranded DNA.PLoS One2018132e019327210.1371/journal.pone.019327229466468
    [Google Scholar]
  53. PettersenE.F. GoddardT.D. HuangC.C. MengE.C. CouchG.S. CrollT.I. MorrisJ.H. FerrinT.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers.Protein Sci.2021301708210.1002/pro.394332881101
    [Google Scholar]
  54. BenkertP. BiasiniM. SchwedeT. Toward the estimation of the absolute quality of individual protein structure models.Bioinformatics201127334335010.1093/bioinformatics/btq66221134891
    [Google Scholar]
  55. SauS.P. LarsenA.C. ChaputJ.C. Automated solid-phase synthesis of high capacity oligo-dT cellulose for affinity purification of poly-A tagged biomolecules.Bioorg. Med. Chem. Lett.201424245692569410.1016/j.bmcl.2014.10.06525467163
    [Google Scholar]
  56. SteitzT.A. SteitzJ.A. A general two-metal-ion mechanism for catalytic RNA.Proc. Natl. Acad. Sci. USA199390146498650210.1073/pnas.90.14.64988341661
    [Google Scholar]
  57. RaghunathanS. KozlovA.G. LohmanT.M. WaksmanG. Structure of the DNA binding domain of E. coli SSB bound to ssDNA.Nat. Struct. Biol.20007864865210.1038/7794310932248
    [Google Scholar]
  58. ChédinF. SeitzE.M. KowalczykowskiS.C. Novel homologs of replication protein A in Archaea: Implications for the evolution of ssDNA-binding proteins.Trends Biochem. Sci.199823827327710.1016/S0968‑0004(98)01243‑29757822
    [Google Scholar]
  59. VerardoD. AdelizziB. Rodriguez-PinzonD.A. MoghaddamN. ThoméeE. LomanT. GodronX. HorganA. Multiplex enzymatic synthesis of DNA with single-base resolution.Sci. Adv.2023927eadi026310.1126/sciadv.adi026337418522
    [Google Scholar]
  60. AmetN. LeeH.F. ShenW.C. Insertion of the designed helical linker led to increased expression of tf-based fusion proteins.Pharm. Res.200926352352810.1007/s11095‑008‑9767‑019002568
    [Google Scholar]
  61. ChenX. ZaroJ.L. ShenW.C. Fusion protein linkers: Property, design and functionality.Adv. Drug Deliv. Rev.201365101357136910.1016/j.addr.2012.09.03923026637
    [Google Scholar]
  62. YangH. LiuL. XuF. The promises and challenges of fusion constructs in protein biochemistry and enzymology.Appl. Microbiol. Biotechnol.2016100198273828110.1007/s00253‑016‑7795‑y27541749
    [Google Scholar]
  63. KiM.R. PackS.P. Fusion tags to enhance heterologous protein expression.Appl. Microbiol. Biotechnol.202010462411242510.1007/s00253‑020‑10402‑831993706
    [Google Scholar]
  64. LiuS. LiW. Protein fusion strategies for membrane protein stabilization and crystal structure determination.Crystals2022128104110.3390/cryst12081041
    [Google Scholar]
  65. LohmanT.M. GreenJ.M. BeyerR.S. Large-scale overproduction and rapid purification of the Escherichia coli SSB gene product. Expression of the SSB gene under lambda. PL control.Biochemistry1986251212510.1021/bi00349a0043006753
    [Google Scholar]
  66. DuttaS. BoseK.J. Protein purification by affinity chromatography expression.Textbook on Cloning, Expression and Purification of Recombinant ProteinsSpringer, Singapore2022Vol. 614117110.1007/978‑981‑16‑4987‑5_6
    [Google Scholar]
  67. OkamuraS. CraneF. MessnerH.A. MakT.W. Purification of terminal deoxynucleotidyltransferase by oligonucleotide affinity chromatography.J. Biol. Chem.1978253113765376710.1016/S0021‑9258(17)34751‑8649603
    [Google Scholar]
  68. MeyerR.R. LaineP.S. The single-stranded DNA-binding protein of Escherichia coli.Microbiol. Rev.199054434238010.1128/mr.54.4.342‑380.19902087220
    [Google Scholar]
  69. SchneiderR.J. WetmurJ.G. Kinetics of transfer of Escherichia coli single strand deoxyribonucleic acid binding protein between single-stranded deoxyribonucleic acid molecules.Biochemistry198221460861510.1021/bi00533a0027041962
    [Google Scholar]
  70. WeinerJ.H. BertschL.L. KornbergA. The deoxyribonucleic acid unwinding protein of Escherichia coli. Properties and functions in replication.J. Biol. Chem.197525061972198010.1016/S0021‑9258(19)41671‑21090613
    [Google Scholar]
  71. GuptaP. IslamA. AhmadF. HassanM.I. Applications of circular dichroism spectroscopy in studying protein folding, stability, and interaction.Protein Folding Dynamics and Stability: Experimental and Computational Methods. SaudagarP. TripathiT. SingaporeSpringer Nature Singapore202312310.1007/978‑981‑99‑2079‑2_1
    [Google Scholar]
  72. DurowojuI.B. BhandalK.S. HuJ. CarpickB. KirkitadzeM. Differential scanning calorimetry - a method for assessing the thermal stability and conformation of protein antigen.J. Vis. Exp.20171215526228287565
    [Google Scholar]
  73. SemisotnovG.V. RodionovaN.A. RazgulyaevO.I. UverskyV.N. Gripas’A.F. GilmanshinR.I. Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe.Biopolymers199131111912810.1002/bip.3603101112025683
    [Google Scholar]
  74. LoM.C. AulabaughA. JinG. CowlingR. BardJ. MalamasM. EllestadG. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery.Anal. Biochem.2004332115315910.1016/j.ab.2004.04.03115301960
    [Google Scholar]
  75. WilliamsK.R. SpicerE.K. LoPrestiM.B. GuggenheimerR.A. ChaseJ.W. Limited proteolysis studies on the Escherichia coli single-stranded DNA binding protein. Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins.J. Biol. Chem.198325853346335510.1016/S0021‑9258(18)32867‑96298232
    [Google Scholar]
  76. AndersonR.S. BollumF.J. BeattieK.L. Pyrophosphorolytic dismutation of oligodeoxy-nucleotides by terminal deoxynucleotidyltransferase.Nucleic Acids Res.199927153190319610.1093/nar/27.15.319010454617
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665372636250504084653
Loading
/content/journals/ppl/10.2174/0109298665372636250504084653
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test