Skip to content
2000
Volume 32, Issue 5
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background

Molting and reproduction play vital roles in the life cycle of brachyuran crabs, and these two processes are closely interconnected. A key player in the molting cycle is cryptocyanin, which is similar to hemocyanin in sequence, size, and structure. Hemocyanin is a copper-containing oxygen-binding protein, while cryptocyanin is a copper-free protein that lacks oxygen-binding capacity.

Objective

The goal of the study was to carry out the isolation, cloning, and expression of the partial cryptocyanin gene from the Indian variety of

Methods

The partial cryptocyanin gene was isolated from the hemocytes of the male and female crabs by qPCR for comparative expression analysis of the cryptocyanin gene.

Results

We successfully amplified, cloned, and expressed a 519 bp partial cDNA encoding cryptocyanin from the Indian variety of , within the pRSET-B vector.

Discussion

In this study, we conducted a comprehensive analysis of cryptocyanin expression in male and female crabs during the intermolt stage. Our findings revealed Cq values of 28.97 for males and 33.68 for females, highlighting a significantly lower abundance of cryptocyanin protein in female crabs.

Conclusion

Our study showed that crustacean cDNA can be effectively expressed in bacterial vectors, and clones were stable for up to 6 months at -80°C. Real-time data showed a significant difference in cryptocyanin levels between male and female crabs. This finding highlights the need for further research with a larger sample size for better understanding.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665387863250506105601
2025-05-21
2025-09-02
Loading full text...

Full text loading...

References

  1. AsthanaM. AhamedM. ShanthiC. First mass spectrometric report of cryptocyanin, a moulting protein from the mud crab Scylla serrata (Forskål, 1775) (Decapoda: Brachyura: Portunidae) in India.J. Crustac. Biol.2021411ruaa09410.1093/jcbiol/ruaa094
    [Google Scholar]
  2. ViswanathanC. RaffiS.M. The natural diet of the mud crab Scylla olivacea (Herbst, 1896) in Pichavaram mangroves, India.Saudi J. Biol. Sci.201522669870510.1016/j.sjbs.2015.08.00526586996
    [Google Scholar]
  3. TerwilligerN.B. Hemolymph proteins and molting in crustaceans and insects.Am. Zool.199939358959910.1093/icb/39.3.589
    [Google Scholar]
  4. TerwilligerN.B. DangottL. RyanM. Cryptocyanin, a crustacean molting protein: Evolutionary link with arthropod hemocyanins and insect hexamerins.Proc. Natl. Acad. Sci. USA19999652013201810.1073/pnas.96.5.201310051586
    [Google Scholar]
  5. TerwilligerN.B. RyanM.C. TowleD. Evolution of novel functions: Cryptocyanin helps build new exoskeleton in Cancer magister.J. Exp. Biol.2005208132467247410.1242/jeb.0166715961732
    [Google Scholar]
  6. HaunerlandN.H. Insect storage proteins: Gene families and receptors.Insect Biochem. Mol. Biol.1996268-975576510.1016/S0965‑1748(96)00035‑59014325
    [Google Scholar]
  7. KuballaA.V. MerrittD.J. ElizurA. Gene expression profiling of cuticular proteins across the moult cycle of the crab Portunus pelagicus.BMC Biol.2007514510.1186/1741‑7007‑5‑4517925039
    [Google Scholar]
  8. FredrickW.S. RavichandranS. Hemolymph proteins in marine crustaceans.Asian Pac. J. Trop. Biomed.20122649650210.1016/S2221‑1691(12)60084‑723569958
    [Google Scholar]
  9. BeintemaJ.J. StamW.T. HazesB. SmidtM.P. Evolution of arthropod hemocyanins and insect storage proteins (hexamerins).Mol. Biol. Evol.199411349350310.1093/oxfordjournals.molbev.a0401298015442
    [Google Scholar]
  10. DemianW. Bottom up proteomics of cryptocyanin protein and anti-tumor Thomsen–Friedenreich neoglycoconjugate vaccine.Masters thesis: Memorial University of Newfoundland2015
    [Google Scholar]
  11. BurmesterT. Identification, molecular cloning, and phylogenetic analysis of a non-respiratory pseudo-hemocyanin of Homarus americanus.J. Biol. Chem.199927419132171322210.1074/jbc.274.19.1321710224079
    [Google Scholar]
  12. CaoJ. WangZ. ZhangY. QuF. GuoL. ZhongM. LiS. ZouH. ChenJ. WangX. Identification and characterization of the related immune-enhancing proteins in crab Scylla paramamosain stimulated with rhubarb polysaccharides.Mol. Immunol.201457226327310.1016/j.molimm.2013.10.00324211534
    [Google Scholar]
  13. ChangE.S. BruceM.J. TamoneS.L. Regulation of crustacean molting: A multi-hormonal system.Am. Zool.199333332432910.1093/icb/33.3.324
    [Google Scholar]
  14. SkinnerD.M. Interacting factors in the control of the crustacean molt cycle.Am. Zool.198525127528410.1093/icb/25.1.275
    [Google Scholar]
  15. Lachaise, F.; Le Roux A.; Hubert, M.; Lafont, R. The molting gland of crustaceans: Localization, activity, and endocrine control (a review).J. Crustac. Biol.199313219823410.1163/193724093X00020
    [Google Scholar]
  16. HopkinsP.M. The eyes have it: A brief history of crustacean neuroendocrinology.Gen. Comp. Endocrinol.2012175335736610.1016/j.ygcen.2011.12.00222197211
    [Google Scholar]
  17. WebsterS.G. Neurohormonal control of ecdysteroid biosynthesis by Carcinus maenas Y-organs in vitro, and preliminary characterization of the putative molt-inhibiting hormone (MIH).Gen. Comp. Endocrinol.198661223724710.1016/0016‑6480(86)90201‑73956985
    [Google Scholar]
  18. WebsterS.G. ChangE.S. ThielM. Endocrinology of molting.Physiology.Oxford University Press2015135
    [Google Scholar]
  19. YuX. ChangE.S. MyklesD.L. Characterization of limb autotomy factor-proecdysis (LAF(pro)), isolated from limb regenerates, that suspends molting in the land crab Gecarcinus lateralis.Biol. Bull.2002202320421210.2307/154347012086991
    [Google Scholar]
  20. MyklesD.L. Ecdysteroid metabolism in crustaceans.J. Steroid Biochem. Mol. Biol.20111273-519620310.1016/j.jsbmb.2010.09.00120837145
    [Google Scholar]
  21. DonaldL. Interactions between limb regeneration and molting in decapod crustaceans.Am. Zool.200141399406
    [Google Scholar]
  22. MyklesD.L. Skeletal muscle differentiation, growth, and plasticity.The Natural History of the Crustacea: PhysiologyOxford University Press2015
    [Google Scholar]
  23. ChangE.S. MyklesD.L. Regulation of crustacean molting: A review and our perspectives.Gen. Comp. Endocrinol.2011172332333010.1016/j.ygcen.2011.04.00321501612
    [Google Scholar]
  24. AchdiatM. FujayaY. FazhanH. RozaimiR. ChungJ.S. WangY. Identification and characterization of the Y-organ of orange mud crab Scylla olivacea. Microsc. Res. Tech.20248841155116610.1002/jemt.2477739711003
    [Google Scholar]
  25. HeadT.B. MyklesD.L. TomanekL. Proteomic analysis of the crustacean molting gland (Y-organ) over the course of the molt cycle.Comp. Biochem. Physiol. Part D Genomics Proteomics20192919321010.1016/j.cbd.2018.11.01130580103
    [Google Scholar]
  26. SöderhällK. SmithV.J. Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution.Dev. Comp. Immunol.19837222923910.1016/0145‑305X(83)90004‑66409683
    [Google Scholar]
  27. SambrookJ. Molecular Cloning: A Laboratory Manual. Third.New YorkCold Spring Harbor Laboratory Press2001
    [Google Scholar]
  28. BrouwerM. SyringR. Hoexum BrouwerT. Role of a copper-specific metallothionein of the blue crab, Callinectes sapidus, in copper metabolism associated with degradation and synthesis of hemocyanin.J. Inorg. Biochem.200288222823910.1016/S0162‑0134(01)00381‑611803044
    [Google Scholar]
  29. TerwilligerN.B. Gene expression profile, protein production, and functions of cryptocyanin during the crustacean molt cycle.Invertebr. Reprod. Dev.201256322923510.1080/07924259.2011.595972
    [Google Scholar]
  30. KuballaA.V. HoltonT.A. PatersonB. ElizurA. Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus.BMC Genomics201112114710.1186/1471‑2164‑12‑14721396120
    [Google Scholar]
  31. KuballaA.V. ElizurA. Differential expression profiling of components associated with exoskeletal hardening in crustaceans.BMC Genomics20089157510.1186/1471‑2164‑9‑57519040762
    [Google Scholar]
  32. LorenzonS. GiulianiniP.G. LibralatoS. MartinisM. FerreroE.A. Stress effect of two different transport systems on the physiological profiles of the crab Cancer pagurus.Aquaculture20082781-415616310.1016/j.aquaculture.2008.03.011
    [Google Scholar]
  33. FotedarS. EvansL. Health management during handling and live transport of crustaceans: A review.J. Invertebr. Pathol.2011106114315210.1016/j.jip.2010.09.01121215361
    [Google Scholar]
  34. NieuwoudtS. Characterising the metabolic and stress physiology of the spanner crab (Ranina ranina): Increasing survivorship during live transport.Thesis: CQ University2025
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665387863250506105601
Loading
/content/journals/ppl/10.2174/0109298665387863250506105601
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): cDNA; cloning; Cryptocyanin; molting; mRNA; Scylla olivacea
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test