Skip to content
2000
Volume 32, Issue 5
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background

COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a highly pathogenic human coronavirus (CoV). For the treatment of COVID-19, various drugs, ayurvedic formulations, used for other diseases, were repurposed. Ayurveda and yoga exhibited a pivotal role in the treatment of COVID-19. Various medicinal plants, including garlic, tulsi, clove, cinnamon, ginger, black pepper, and turmeric, are recommended for the prevention of COVID-19 as immunity boosters along with their antiviral property.

Objective

In view of the drug repurposing approach, the present work has been initiated with the broader objectives of screening and identification of phytoconstituents of Indian spices against targets, namely furin, 3C-like protease (3CL-PRO), NSP-9 RNA binding protein, papain-like protease, RNA dependent RNA polymerase (RDRP), spike protein concerned with life cycle of SARS-CoV-2 using tools.

Methods

The phytoconstituents of Indian spices were screened for interaction with several targets using a molecular docking approach with the help of Discovery Studio 4.5 software. Furthermore, the pharmacokinetic analyses of selected ligands using ADMET and Lipinski’s rule of five were also performed.

Results

In the present study, a total of 37 active phytoconstituents of Indian spices were screened for interaction with several identified targets of COVID-19 using a molecular docking approach. The ligands, namely morin, gingerol, myristic acid, quercetin, gallic acid and alliin were found to be the top interacting ligands with the targets analyzed.

Conclusion

Based on the present finding, the active components of spices could be considered for drug-lead compounds against COVID-19.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665366911250416113831
2025-05-08
2025-09-02
Loading full text...

Full text loading...

References

  1. UmashankarV. DeshpandeS.H. HegdeH.V. SinghI. ChattopadhyayD. Phytochemical moieties from Indian traditional medicine for targeting dual hotspots on SARS-CoV-2 spike protein: An integrative in-silico approach.Front. Med. (Lausanne)2021867262910.3389/fmed.2021.67262934026798
    [Google Scholar]
  2. RenJ. ZhangA.H. WangX.J. Traditional Chinese medicine for COVID-19 treatment.Pharmacol. Res.202015510474310.1016/j.phrs.2020.10474332145402
    [Google Scholar]
  3. BeckB.R. ShinB. ChoiY. ParkS. KangK. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model.Comput. Struct. Biotechnol. J.20201878479010.1016/j.csbj.2020.03.02532280433
    [Google Scholar]
  4. ZhongN.S. ZhengB.J. LiY.M. PoonL.L.M. XieZ.H. ChanK.H. LiP.H. TanS.Y. ChangQ. XieJ.P. LiuX.Q. XuJ. LiD.X. YuenK.Y. PeirisJ.S.M. GuanY. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China.Lancet200336293931353135810.1016/S0140‑6736(03)14630‑214585636
    [Google Scholar]
  5. HuiD.S. I AzharE. MadaniT.A. NtoumiF. KockR. DarO. IppolitoG. MchughT.D. MemishZ.A. DrostenC. ZumlaA. PetersenE. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health: The latest 2019 novel coronavirus outbreak in Wuhan, China.Int. J. Infect. Dis.20209126426610.1016/j.ijid.2020.01.00931953166
    [Google Scholar]
  6. PanC. ChenL. LuC. ZhangW. XiaJ.A. SklarM.C. DuB. BrochardL. QiuH. Lung recruitability in COVID-19–associated acute respiratory distress syndrome: A single-center observational study.Am. J. Respir. Crit. Care Med.2020201101294129710.1164/rccm.202003‑0527LE32200645
    [Google Scholar]
  7. GaoZ.C. Efficient management of novel coronavirus pneumonia by efficient prevention and control in scientific manner.Chinese. J. Tuberculosis. Resp. Dis.202043E00132023684
    [Google Scholar]
  8. SheoranN. KumarR. KumarA. BatraK. SihagS. MaanS. MaanN.S. Nutrigenomic evaluation of garlic (Allium sativum) and holy basil (Ocimum sanctum) leaf powder supplementation on growth performance and immune characteristics in broilers.Vet. World201710112112910.14202/vetworld.2017.121‑12928246456
    [Google Scholar]
  9. KulkarniA.V. HanchanaleP. PrakashV. KalalC. SharmaM. KumarK. BishnuS. KulkarniA.V. AnandL. PatwaA.K. KumbarS. KainthS. PhilipsC.A. Liver Research Club India Tinospora Cordifolia (Giloy)–Induced liver injury during the COVID-19 pandemic—multicenter nationwide study from India.Hepatol. Commun.2022661289130010.1002/hep4.190435037744
    [Google Scholar]
  10. Quintero-FabiánS. Ortuño-SahagúnD. Vázquez-CarreraM. López-RoaR.I. Alliin, a garlic (Allium sativum) compound, prevents LPS-induced inflammation in 3T3-L1 adipocytes.Mediators Inflamm.20132013111110.1155/2013/38181524453416
    [Google Scholar]
  11. KhubberS. HashemifesharakiR. MohammadiM. GharibzahediS.M.T. Garlic (Allium sativum L.): A potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19.Nutr. J.202019112410.1186/s12937‑020‑00643‑833208167
    [Google Scholar]
  12. SelvarajG. KaliamurthiS. PeslherbeG.H. WeiD.Q. Identifying potential drug targets and candidate drugs for COVID-19: Biological networks and structural modeling approaches.F1000 Res.20211012710.12688/f1000research.50850.333968364
    [Google Scholar]
  13. MartinK.W. ErnstE. Antiviral agents from plants and herbs: A systematic review.Antivir. Ther.200382779010.1177/13596535030080020112741619
    [Google Scholar]
  14. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.20126441710.1016/j.addr.2012.09.01911259830
    [Google Scholar]
  15. NaithaniR. HumaL. HollandL. ShuklaD. McCormickD. MehtaR. MoriartyR. Antiviral activity of phytochemicals: A comprehensive review.Mini Rev. Med. Chem.20088111106113310.2174/13895570878590994318855727
    [Google Scholar]
  16. NagA. BanerjeeR. ChowdhuryR.R. VenkateshK.C. Phytochemicals as potential drug candidates for targeting SARS CoV-2 proteins, an in silico study.Virusdisease20213219810710.1007/s13337‑021‑00654‑x33842673
    [Google Scholar]
  17. EganW.J. MerzK.M.Jr BaldwinJ.J. Prediction of drug absorption using multivariate statistics.J. Med. Chem.200043213867387710.1021/jm000292e11052792
    [Google Scholar]
  18. CiurliS. BeniniS. RypniewskiW.R. WilsonK.S. MilettiS. ManganiS. Structural properties of the nickel ions in urease: Novel insights into the catalytic and inhibition mechanisms.Coord. Chem. Rev.1999190-19233135510.1016/S0010‑8545(99)00093‑4
    [Google Scholar]
  19. GuptaA. AhmadR. SiddiquiS. YadavK. SrivastavaA. TrivediA. AhmadB. KhanM.A. ShrivastavaA.K. SinghG.K. Flavonol morin targets host ACE2, IMP-α, PARP-1 and viral proteins of SARS-CoV-2, SARS-CoV and MERS-CoV critical for infection and survival: A computational analysis.J. Biomol. Struct. Dyn.202240125515554610.1080/07391102.2021.187186333526003
    [Google Scholar]
  20. LeeM.H. ChaH.J. ChoiE.O. HanM.H. KimS.O. KimG.Y. HongS.H. ParkC. MoonS.K. JeongS.J. JeongM.J. KimW.J. ChoiY.H. Antioxidant and cytoprotective effects of morin against hydrogen peroxide-induced oxidative stress are associated with the induction of Nrf-2-mediated HO-1 expression in V79-4 Chinese hamster lung fibroblasts.Int. J. Mol. Med.201739367268010.3892/ijmm.2017.287128204816
    [Google Scholar]
  21. GuptaM.K. VemulaS. DondeR. GoudaG. BeheraL. VaddeR. In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel.J. Biomol. Struct. Dyn.20213972617262710.1080/07391102.2020.175130032238078
    [Google Scholar]
  22. KimJ.W. LeeJ.H. HwangB.Y. MunS.H. KoN.Y. KimD.K. KimB. KimH.S. KimY.M. ChoiW.S. Morin inhibits Fyn kinase in mast cells and IgE-mediated type I hypersensitivity response in vivo.Biochem. Pharmacol.20097791506151210.1016/j.bcp.2009.01.01919426688
    [Google Scholar]
  23. ChenL. LiuW. ZhangQ. XuK. YeG. WuW. SunZ. LiuF. WuK. ZhongB. MeiY. ZhangW. ChenY. LiY. ShiM. LanK. LiuY. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak.Emerg. Microbes Infect.20209131331910.1080/22221751.2020.172539932020836
    [Google Scholar]
  24. KahkeshaniN. FarzaeiF. FotouhiM. AlaviS.S. BahramsoltaniR. NaseriR. MomtazS. AbbasabadiZ. RahimiR. FarzaeiM.H. BishayeeA. Pharmacological effects of gallic acid in health and diseases: A mechanistic review.Iran. J. Basic Med. Sci.201922322523731156781
    [Google Scholar]
  25. WangS. ZhangC. YangG. YangY. Biological properties of 6-gingerol: A brief review. Nat Prod Commun201497102725230520
    [Google Scholar]
  26. GilC. GinexT. MaestroI. NozalV. Barrado-GilL. Cuesta-GeijoM.Á. UrquizaJ. RamírezD. AlonsoC. CampilloN.E. MartinezA. COVID-19: Drug targets and potential treatments.J. Med. Chem.20206321123591238610.1021/acs.jmedchem.0c0060632511912
    [Google Scholar]
  27. AlamJ. HussainT. PatiS. Bio-active compounds (Curcumin, Allicin and Gingerol) of common spices used in Indian and South-East Asian countries might protect against COVID-19 infection: A short review.European J. Med. Plants202031206578
    [Google Scholar]
  28. BousquetJ. CzarlewskiW. ZuberbierT. MullolJ. BlainH. CristolJ.P. De La TorreR. Le MoingV. Pizarro LozanoN. BedbrookA. AgacheI. AkdisC.A. CanonicaG.W. CruzA.A. FiocchiA. FonsecaJ.A. FonsecaS. GemicioğluB. HaahtelaT. IaccarinoG. IvancevichJ.C. JutelM. KlimekL. KunaP. Larenas-LinnemannD.E. MelénE. OkamotoY. PapadopoulosN.G. PfaarO. ReynesJ. RollandY. RouadiP.W. SamolinskiB. SheikhA. Toppila-SalmiS. ValiulisA. ChoiH.J. KimH.J. AntoJ.M. Spices to control COVID-19 symptoms: Yes, but not only….Int. Arch. Allergy Immunol.2021182648949510.1159/00051353833352565
    [Google Scholar]
  29. LiY. YangD. GaoX. JuM. FangH. YanZ. QuH. ZhangY. XieL. WengH. BaiC. SongY. SunZ. GengW. GaoX. Ginger supplement significantly reduced length of hospital stay in individuals with COVID-19.Nutr. Metab. (Lond.)20221918410.1186/s12986‑022‑00717‑w36578045
    [Google Scholar]
  30. AshrafH. DilshadE. AfsarT. AlmajwalA. ShafiqueH. RazakS. Molecular screening of bioactive compounds of garlic for therapeutic effects against COVID-19. Biomedicines202311264310.3390/biomedicines11020643
    [Google Scholar]
  31. SamyA. HassanA. HegaziN.M. FaridM. ElshafeiM. Network pharmacology, molecular docking, and dynamics analyses to predict the antiviral activity of ginger constituents against coronavirus infection.Sci. Rep.20241411205910.1038/s41598‑024‑60721‑338802394
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665366911250416113831
Loading
/content/journals/ppl/10.2174/0109298665366911250416113831
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test