Skip to content
2000
Volume 32, Issue 5
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background and Objective

Canonical Wnt (Wnt/β-catenin) signaling maintains bone homeostasis by promoting osteoblastic activities. The inhibitory factor, Dickkopf-1 (DKK1), enhances bone resorption in malignant diseases. Low-density lipoprotein-related protein (LRP) 5 is antagonized by DKK1. This study aimed to investigate the expression of DKK1 and LRP5 in renal cell carcinoma bone metastasis (RCC-BM).

Methods

RCC-BM patients with paired samples of primary and metastatic lesions were selected for the study (RCC-BM group). RCC patients without any metastasis served as the control group (RCC-only group). Immunohistochemical staining with monoclonal anti-DKK1 and polyclonal anti-LRP5 antibody was conducted on paraffin-embedded slides. The staining results were recorded using scoring according to staining intensity in the renal tissue adjacent to the tumor, primary RCC lesions, and RCC-BM lesions.

Results

DKK1 was differently expressed among normal renal tissues, primary RCC, and RCC-BM tissues (0.001). The DKK1 expression in primary RCC was significantly lower than that in normal renal tissues (0.001) without a difference between the RCC-BM and RCC-only groups. DKK1 expression in bone metastasis was significantly higher than that in primary tumors (0.001). For RCC-BM patients, the expression of LRP5 in the primary tumor was significantly lower than that in adjacent renal tissues (0.01). The tendency of lower expression was found in primary RCC from RCC-BM patients compared to RCC without metastasis (=0.073).

Conclusion

A “rebound” pattern of DKK1 expression in bone metastasis lesions and the decreasing LRP5 expression in primary lesions of RCC-BM patients suggested that Wnt/β-catenin signaling was inhibited in RCC-BM. The overexpression of DKK1 and reduced expression of LRP5 suggest that these markers may be useful for the early prediction of RCC-BM.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665357331250416081850
2025-05-07
2025-10-25
Loading full text...

Full text loading...

References

  1. AdigaG.U. DutcherJ.P. LarkinM. GarlS. KooJ. Characterization of bone metastases in patients with renal cell cancer.BJU Int.20049391237124010.1111/j.1464‑410X.2004.04849.x15180614
    [Google Scholar]
  2. WoodwardE. JagdevS. McParlandL. ClarkK. GregoryW. NewshamA. RogersonS. HaywardK. SelbyP. BrownJ. Skeletal complications and survival in renal cancer patients with bone metastases.Bone201148116016610.1016/j.bone.2010.09.00820854942
    [Google Scholar]
  3. GrünwaldV EberhardtB. BexA. FlörckenA. GaulerT DerlinT. An interdisciplinary consensus on the management of bone metastases from renal cell carcinoma.Nat. Rev. Urol.201815851152110.1038/s41585‑018‑0034‑9
    [Google Scholar]
  4. BeuselinckB. Jean-BaptisteJ. CouchyG. JobS. De ReyniesA. WolterP. ThéodoreC. GravisG. RousseauB. AlbigesL. JoniauS. VerkarreV. LerutE. PatardJ.J. SchöffskiP. MéjeanA. ElaidiR. OudardS. Zucman-RossiJ. RANK/OPG ratio of expression in primary clear-cell renal cell carcinoma is associated with bone metastasis and prognosis in patients treated with anti-VEGFR-TKIs.Br. J. Cancer201511391313132210.1038/bjc.2015.35226528707
    [Google Scholar]
  5. KalraS. VermaJ. AtkinsonB.J. MatinS.F. WoodC.G. KaramJ.A. Outcomes of patients with metastatic renal cell carcinoma and bone metastases in the targeted therapy era.Clin. Genitourin Cancer2017Jun15336337010.1016/j.clgc.2017.01.010
    [Google Scholar]
  6. HillT.P. SpäterD. TaketoM.M. BirchmeierW. HartmannC. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes.Dev. Cell20058572773810.1016/j.devcel.2005.02.01315866163
    [Google Scholar]
  7. VaesB. DecheringK. VansomerenE. HendriksJ. VandevenC. FeijenA. MummeryC. ReindersM. OlijveW. VanzoelenE. SteegengaW.T. Microarray analysis reveals expression regulation of Wnt antagonists in differentiating osteoblasts.Bone200536580381110.1016/j.bone.2005.02.00115820155
    [Google Scholar]
  8. KatoM. PatelM.S. LevasseurR. LobovI. ChangB.H.J. GlassD.A.II HartmannC. LiL. HwangT.H. BraytonC.F. LangR.A. KarsentyG. ChanL. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor.J. Cell Biol.2002157230331410.1083/jcb.20020108911956231
    [Google Scholar]
  9. HallC.L. BaficoA. DaiJ. AaronsonS.A. KellerE.T. Prostate cancer cells promote osteoblastic bone metastases through Wnts.Cancer Res.200565177554756010.1158/0008‑5472.CAN‑05‑131716140917
    [Google Scholar]
  10. MarizK. IngolfJ.B. DanielH. TeresaN.J. Erich-FranzS. The Wnt inhibitor dickkopf-1: A link between breast cancer and bone metastases.Clin. Exp. Metastasis201532885786610.1007/s10585‑015‑9750‑126420587
    [Google Scholar]
  11. ZhuangX. ZhangH. LiX. LiX. CongM. PengF. YuJ. ZhangX. YangQ. HuG. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1.Nat. Cell Biol.201719101274128510.1038/ncb361328892080
    [Google Scholar]
  12. EscateR. PadroT. Borrell-PagesM. SuadesR. AledoR. MataP. Macrophages of genetically characterized familial hypercholesterolaemia patients show up-regulation of LDL-receptor-related proteins.J. Cell Mol. Med.20172134879910.1111/jcmm.1299327680891
    [Google Scholar]
  13. Borrell-PagesM. CarolinaR.J. BadimonL. LRP5 and plasma cholesterol levels modulate the canonical Wnt pathway in peripheral blood leukocytes.Immunol. Cell Biol.201593765366110.1038/icb.2015.4125748163
    [Google Scholar]
  14. ColemanR.E. CroucherP.I. PadhaniA.R. ClézardinP. ChowE. FallonM. GuiseT. ColangeliS. CapannaR. CostaL. Bone metastases.Nat. Rev. Dis. Primers.2020618310.1038/s41572‑020‑00216‑333060614
    [Google Scholar]
  15. AminM.B. GreeneF.L. EdgeS.B. ComptonC.C. GershenwaldJ.E. BrooklandR.K. MeyerL. GressD.M. ByrdD.R. WinchesterD.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging.CA Cancer J. Clin.2017672939910.3322/caac.2138828094848
    [Google Scholar]
  16. DagherJ. DelahuntB. Rioux-LeclercqN. EgevadL. SrigleyJ.R. CoughlinG. DunglinsonN. GianduzzoT. KuaB. MaloneG. MartinB. PrestonJ. PokornyM. WoodS. YaxleyJ. SamaratungaH. Clear cell renal cell carcinoma: Validation of World Health Organization/International Society of Urological Pathology grading.Histopathology201771691892510.1111/his.1331128718911
    [Google Scholar]
  17. MotzerR.J. BacikJ. MurphyB.A. RussoP. MazumdarM. Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma.J. Clin. Oncol.200220128929610.1200/JCO.2002.20.1.28911773181
    [Google Scholar]
  18. TobeihaM. MoghadasianM.H. AminN. JafarnejadS. RANKL/RANK/OPG pathway: A mechanism involved in exercise-induced bone remodeling.BioMed Res. Int.202020201691031210.1155/2020/691031232149122
    [Google Scholar]
  19. QuinnJ.M.W. SalehH. Modulation of osteoclast function in bone by the immune system.Mol. Cell. Endocrinol.20093101-2405110.1016/j.mce.2008.11.00219056462
    [Google Scholar]
  20. SteeveK.T. MarcP. SandrineT. DominiqueH. YannickF. IL-6, RANKL, TNF-alpha/IL-1: Interrelations in bone resorption pathophysiology.Cytokine Growth Factor Rev.2004151496010.1016/j.cytogfr.2003.10.00514746813
    [Google Scholar]
  21. BaronR. KneisselM. WNT signaling in bone homeostasis and disease: From human mutations to treatments.Nat. Med.201319217919210.1038/nm.307423389618
    [Google Scholar]
  22. NwaboK.A.H. SekeE.P.F. VecchioL. MullerJ.M. KramperaM. LukongK.E. Signaling pathways in breast cancer: Therapeutic targeting of the microenvironment.Cell. Signal.201426122843285610.1016/j.cellsig.2014.07.03425093804
    [Google Scholar]
  23. DuchartreY. KimY.M. KahnM. The Wnt signaling pathway in cancer.Crit. Rev. Oncol. Hematol.20169914114910.1016/j.critrevonc.2015.12.00526775730
    [Google Scholar]
  24. AberleH. BauerA. StappertJ. KispertA. KemlerR. β-catenin is a target for the ubiquitin–proteasome pathway.EMBO J.199716133797380410.1093/emboj/16.13.37979233789
    [Google Scholar]
  25. FengX. LiuJ. XuY. ZhuJ. ChenW. FengB. PanQ. YuJ. ShiX. YangJ. LiY. LiL. CaoH. Molecular mechanism underlying the difference in proliferation between placenta-derived and umbilical cord-derived mesenchymal stem cells.J. Cell. Physiol.2020235106779679310.1002/jcp.2957231990045
    [Google Scholar]
  26. Guillén-AhlersH. Wnt signaling in renal cancer.Curr. Drug Targets20089759160010.2174/13894500878491181318673245
    [Google Scholar]
  27. HirataH. UenoK. NakajimaK. TabatabaiZ.L. HinodaY. IshiiN. DahiyaR. Genistein downregulates onco-miR-1260b and inhibits Wnt-signalling in renal cancer cells.Br. J. Cancer2013108102070207810.1038/bjc.2013.17323591200
    [Google Scholar]
  28. KruckS. EyrichC. ScharpfM. SievertK.D. FendF. StenzlA. BedkeJ. Impact of an altered Wnt1/β-catenin expression on clinicopathology and prognosis in clear cell renal cell carcinoma.Int. J. Mol. Sci.2013146109441095710.3390/ijms14061094423708097
    [Google Scholar]
  29. HsuR.J. HoJ.Y. ChaT.L. YuD.S. WuC.L. HuangW.P. ChuP. ChenY.H. ChenJ.T. YuC.P. WNT10A plays an oncogenic role in renal cell carcinoma by activating WNT/β-catenin pathway.PLoS One2012710e4764910.1371/journal.pone.004764923094073
    [Google Scholar]
  30. HirataH. HinodaY. NakajimaK. KikunoN. YamamuraS. KawakamiK. SuehiroY. TabatabaiZ.L. IshiiN. DahiyaR. Wnt antagonist gene polymorphisms and renal cancer.Cancer2009115194488450310.1002/cncr.2449119562778
    [Google Scholar]
  31. GuoC.C. ZhangX.L. YangB. GengJ. PengB. ZhengJ.H. Decreased expression of Dkk1 and Dkk3 in human clear cell renal cell carcinoma.Mol. Med. Rep.2014962367237310.3892/mmr.2014.207724676838
    [Google Scholar]
  32. HirataH. HinodaY. NakajimaK. KawamotoK. KikunoN. UenoK. YamamuraS. ZamanM.S. KhatriG. ChenY. SainiS. MajidS. DengG. IshiiN. DahiyaR. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma.Int. J. Cancer201112881793180310.1002/ijc.2550720549706
    [Google Scholar]
  33. ZhangY. GeC. WangL. LiuX. ChenY. LiM. ZhangM. Induction of DKK1 by ox-LDL negatively regulates intracellular lipid accumulation in macrophages.FEBS Lett.20155891525810.1016/j.febslet.2014.11.02325436422
    [Google Scholar]
  34. HuangZ. DuY. ZhangX. LiuS. Association of dyslipidemia and systematic inflammation with renal cell carcinoma bone metastasis.Chin. J. Urol.20204112901905
    [Google Scholar]
  35. BadimonL. LuqueroA. CrespoJ. PeñaE. Borrell-PagesM. PCSK9 and LRP5 in macrophage lipid internalization and inflammation.Cardiovasc. Res.202111792054206810.1093/cvr/cvaa25432991689
    [Google Scholar]
  36. WilliamsB.O. LRP5: From bedside to bench to bone.Bone2017102263010.1016/j.bone.2017.03.04428341377
    [Google Scholar]
  37. GoniasS.L. Karimi-MostowfiN. MurrayS.S. MantuanoE. GilderA.S. Expression of LDL receptor-related proteins (LRPs) in common solid malignancies correlates with patient survival.PLoS One20171210e018664910.1371/journal.pone.018664929088295
    [Google Scholar]
  38. Borrell-PagesM. RomeroJ.C. CrespoJ. Juan-BabotO. BadimonL. LRP5 associates with specific subsets of macrophages: Molecular and functional effects.J. Mol. Cell. Cardiol.20169014615610.1016/j.yjmcc.2015.12.00226666179
    [Google Scholar]
  39. LuqueroA. VilahurG. CrespoJ. BadimonL. Borrell-PagesM. Microvesicles carrying LRP5 induce macrophage polarization to an anti-inflammatory phenotype.J. Cell. Mol. Med.202125167935794710.1111/jcmm.1672334288375
    [Google Scholar]
  40. SunX. LiK. HaseM. ZhaR. FengY. LiB.Y. YokotaH. Suppression of breast cancer-associated bone loss with osteoblast proteomes via Hsp90ab1/moesin-mediated inhibition of TGFβ/FN1/CD44 signaling.Theranostics202212292994310.7150/thno.6614834976221
    [Google Scholar]
  41. PinzoneJ.J. HallB.M. ThudiN.K. VonauM. QiangY.W. RosolT.J. ShaughnessyJ.D.Jr. The role of Dickkopf-1 in bone development, homeostasis, and disease.Blood2009113351752510.1182/blood‑2008‑03‑14516918687985
    [Google Scholar]
  42. FulcinitiM. TassoneP. HideshimaT. ValletS. NanjappaP. EttenbergS.A. ShenZ. PatelN. TaiY. ChauhanD. MitsiadesC. PrabhalaR. RajeN. AndersonK.C. StoverD.R. MunshiN.C. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma.Blood2009114237137910.1182/blood‑2008‑11‑19157719417213
    [Google Scholar]
  43. PozziS. FulcinitiM. YanH. ValletS. EdaH. PatelK. SantoL. CirsteaD. HideshimaT. SchirtzingeL. KuhstossS. AndersonK.C. MunshiN. ScaddenD. KronenbergH.M. RajeN. In vivo and in vitro effects of a novel anti-Dkk1 neutralizing antibody in multiple myeloma.Bone201353248749610.1016/j.bone.2013.01.01223333523
    [Google Scholar]
  44. IyerS.P. BeckJ.T. StewartA.K. ShahJ. KellyK.R. IsaacsR. BilicS. SenS. MunshiN.C. A Phase IB multicentre dose-determination study of BHQ 880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events.Br. J. Haematol.2014167336637510.1111/bjh.1305625139740
    [Google Scholar]
  45. KyvernitakisI. RachnerT.D. UrbschatA. HarsO. HofbauerL.C. HadjiP. Effect of aromatase inhibition on serum levels of sclerostin and dickkopf-1, bone turnover markers and bone mineral density in women with breast cancer.J. Cancer Res. Clin. Oncol.2014140101671168010.1007/s00432‑014‑1726‑z24903965
    [Google Scholar]
  46. TangB. DuanR. FanZ. YanX. LiS. ZhouL. LiJ. XuH. MaoL. LianB. WangX. BaiX. WeiX. LiC. CuiC. SiL. ChiZ. GuoJ. ShengX. Natural history of bone-only metastasis in renal cell carcinoma.Urol. Oncol.2024424119.e17119.e2210.1016/j.urolonc.2024.01.03038383241
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665357331250416081850
Loading
/content/journals/ppl/10.2174/0109298665357331250416081850
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test