Skip to content
2000
image of Purification, Crystallization, and Preliminary X-ray Diffraction Studies on Hemoglobin from the Angora Goat (Capra Aegagrus Hircus)

Abstract

Introduction

Angora goats are a distinct breed that differs significantly from common goats and shares a similar appearance to sheep. In Angora goats, only the level of glutathione (GSH) is elevated during under-stimulated conditions, as well as after the period of hypoxic stress; however, no changes are found in 2,3-diphosphoglycerate (2,3-DPG) levels, which are commonly present in the red blood cells (RBCs) of most mammals. We chose the Angora goat for our investigation because no previous studies have been conducted on the structural and functional aspects of hemoglobin (Hb). In addition, no sequence or structural information is currently available in any database.

Methods

Angora goat Hb was isolated and purified by anion-exchange chromatography, followed by crystallization using various methods. X-ray data collection for Angora goat Hb was performed under a liquid nitrogen cryo-stream using a system.

Results

Good diffracting crystals were obtained using the hanging-drop vapor-diffusion method with polyethylene glycol (PEG) 3350 as the precipitant in water, without the addition of any salt or buffer. The Angora goat Hb diffracted to a resolution of 1.85 Å, and the structure solution was obtained by the molecular replacement method, using the structure of domestic goat Hb as the starting model.

Discussion

The solved structure of Angora goat crystallized in the monoclinic space group P2, consisting of one whole biological molecule in the asymmetric unit, with unit cell dimensions of a = 52.08 Å, b = 76.70 Å, c = 74.08 Å, and β = 91.77 °. The solvent content and Matthews coefficient (Vm) for the Angora goat Hb are 49.05% and 2.41 Å3/Da, respectively, and are within the normal range for protein crystals.

Conclusion

Purification, crystallization, and preliminary X-ray diffraction studies of Angora goat Hb were performed successfully. Structural refinement and biophysical characterization of Angora goat Hb are in progress in the absence and presence of GSH and 2,3-DPG.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665370730250708065019
2025-07-14
2025-09-13
Loading full text...

Full text loading...

References

  1. Perutz M.F. The Croonian Lecture, 1968. The haemoglobin molecule. Proc. R. Soc. Lond. B Biol. Sci. 1969 173 1031 113 140 10.1098/rspb.1969.0043 4389425
    [Google Scholar]
  2. Weissbluth M. Weissbluth M. Hemoglobin: Cooperativity and Electronic Properties. Springer 1974 10.1007/978‑3‑642‑80801‑2
    [Google Scholar]
  3. Poyart C. Wajcman H. Kister J. Molecular adaptation of hemoglobin function in mammals. Respir. Physiol. 1992 90 1 3 17 10.1016/0034‑5687(92)90130‑O 1455096
    [Google Scholar]
  4. Jensen F.B. Fago A. Weber R.E. Hemoglobin Structure and Function. Fish. physiology. Elsevier 1998 1 40
    [Google Scholar]
  5. Monod J. Wyman J. Changeux J.P. On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 1965 12 1 88 118 10.1016/S0022‑2836(65)80285‑6 14343300
    [Google Scholar]
  6. Koshland D.E. Némethy G. Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 1966 5 1 365 385 10.1021/bi00865a047 5938952
    [Google Scholar]
  7. Perutz M.F. Stereochemistry of cooperative effects in haemoglobin. Nature 1970 228 5273 726 734 10.1038/228726a0 5528785
    [Google Scholar]
  8. Perutz M.F. Mechanisms of cooperativity and allosteric regulation in proteins. Q. Rev. Biophys. 1989 22 2 139 237 10.1017/S0033583500003826 2675171
    [Google Scholar]
  9. Wyman J. Gill S.J. Binding and Linkage: Functional Chemistry of Biological Macromolecules. University Science Books 1990
    [Google Scholar]
  10. Mihailescu M.R. Russu I.M. A signature of the T → R transition in human hemoglobin. Proc. Natl. Acad. Sci. USA 2001 98 7 3773 3777 10.1073/pnas.071493598 11259676
    [Google Scholar]
  11. Silva M.M. Rogers P.H. Arnone A. A third quaternary structure of human hemoglobin A at 1.7-A resolution. J. Biol. Chem. 1992 267 24 17248 17256 10.1016/S0021‑9258(18)41919‑9 1512262
    [Google Scholar]
  12. Mueser T.C. Rogers P.H. Arnone A. Interface sliding as illustrated by the multiple quaternary structures of liganded hemoglobin. Biochemistry 2000 39 50 15353 15364 10.1021/bi0012944 11112521
    [Google Scholar]
  13. Safo M.K. Abraham D.J. The X-ray structure determination of bovine carbonmonoxy hemoglobin at 2.1 Å resoultion and its relationship to the quaternary structures of other hemoglobin crystal forms. Protein Sci. 2001 10 6 1091 1099 10.1110/ps.48301 11369847
    [Google Scholar]
  14. Safo M.K. Abraham D.J. The enigma of the liganded hemoglobin end state: a novel quaternary structure of human carbonmonoxy hemoglobin. Biochemistry 2005 44 23 8347 8359 10.1021/bi050412q 15938624
    [Google Scholar]
  15. Rapoport S. Guest G.M. Distribution of acid-soluble phosphorus in the blood cells of various vertebrates. J. Biol. Chem. 1941 138 1 269 282 10.1016/S0021‑9258(18)51432‑0
    [Google Scholar]
  16. Bunn H.F. Differences in the Interaction of 2,3-diphosphoglycerate with certain mammalian hemoglobins. Science 1979 172 3987 1049 10.1126/science.172.3987.1049.
    [Google Scholar]
  17. Bunn H.F. Seal U.S. Scott A.F. The role of 2,3-diphosphoglycerate in mediating hemoglobin function of mammalian red cells. Ann. N. Y. Acad. Sci. 1974 241 1 498 512 10.1111/j.1749‑6632.1974.tb21906.x 4530676
    [Google Scholar]
  18. Bartlett G.R. Phosphate compounds in red cells of reptiles, amphibians and fish. Comp. Biochem. Physiol. A Physiol. 1976 55 3 211 10.1016/0300‑9629(76)90133‑X
    [Google Scholar]
  19. MacDonald R. Red cell 2,3-diphosphoglycerate and oxygen affinity. Anaesthesia 1977 32 6 544 553 10.1111/j.1365‑2044.1977.tb10002.x 327846
    [Google Scholar]
  20. Scott A.F. Bunn H.F. Brush A.H. The phylogenetic distribution of red cell 2,3 diphosphoglycerate and its interaction with mammalian hemoglobins. J. Exp. Zool. 1977 201 2 269 288 10.1002/jez.1402010211 894234
    [Google Scholar]
  21. Bunn H.F. Regulation of hemoglobin function in mammals. Am. Zool. 1980 20 1 199 211 10.1093/icb/20.1.199
    [Google Scholar]
  22. Bunn H.F. Evolution of mammalian hemoglobin function. Blood 1981 58 2 189 7018619
    [Google Scholar]
  23. Moorthy P. Neelagandan K. Balasubramanian M. Ponnusw-amy M. Purification, crystallization and preliminary X-ray diffraction studies on goat (Capra hircus) hemoglobin: A low oxygen affinity species. Protein Pept. Lett. 2009 16 4 454 456 10.2174/092986609787847992 19356147
    [Google Scholar]
  24. Hayes J.L. The Angora Goat: Its Origin, Culture and Products; Press of AA Kingman: Boston 1868 10.5962/bhl.title.42758
    [Google Scholar]
  25. Jaffé E.R. Hereditary hemolytic disorders and enzymatic deficiencies of human erythrocytes. Blood 1970 35 1 116 134 10.1182/blood.V35.1.116.116 4244328
    [Google Scholar]
  26. O’Dea J.D. Agar N.S. Glutathione and 2,3-diphosphoglycerate in the blood of hypoxic ruminants. Res. Vet. Sci. 1980 29 2 153 156 10.1016/S0034‑5288(18)32656‑0 7465990
    [Google Scholar]
  27. Jordaan D. Kirsten J. Investigating alternative governance systems for the South African mohair supply chain. Agrekon 2008 47 2 258 284 10.1080/03031853.2008.9523800
    [Google Scholar]
  28. Pienaar L. Partridge A. Morokong T. The Mohair Industry: Economic Impact of Possible Market Closure. Western Cape Department of Agriculture 2018
    [Google Scholar]
  29. van Rensburg S.J. Reproductive physiology and endocrinology of normal and habitually aborting angora goats. Onderstepoort J. Vet. Res. 1971 38 1 1 62 5170806
    [Google Scholar]
  30. Wentzel D. Viljoen K.S. Botha L.J. Physiological and endocrinological reactions to cold stress in the Angora Goat. Agroanimalia 1979 11 2 19 22
    [Google Scholar]
  31. Snyman M.A. Snyman A.E. The possible role of Ostertagia circumcincta, coccidiosis and dietary protein level in the development of swelling disease in Angora goat kids. J. S. Afr. Vet. Assoc. 2005 76 2 63 68 10.4102/jsava.v76i2.399 16108523
    [Google Scholar]
  32. Snyman M.A. Body weight and growth rate of South African Angora goat kids under different pre- and post-weaning management systems. S. Afr. J. Anim. Sci. 2007 37 2 132 141 10.4314/sajas.v37i2.4037
    [Google Scholar]
  33. Sundaresan S.S. Ramesh P. Sivakumar K. Ponnuswamy M.N. Purification, crystallization and preliminary X-ray analysis of haemoglobin from ostrich (Struthio camelus). Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2009 65 7 681 683 10.1107/S1744309109019009 19574638
    [Google Scholar]
  34. Sundaresan S.S. Ramesh P. Shobana N. Vinuchakkaravarthy T. Yasien S. Ponnuswamy M.N.G. Crystal structure of hemoglobin from mouse (Mus musculus) compared with those from other small animals and humans. Acta Crystallogr. F Struct. Biol. Commun. 2021 77 4 113 120 10.1107/S2053230X2100306X 33830076
    [Google Scholar]
  35. Ramesh P. Sundaresan S.S. Sathya Moorthy P. Balasubramanian M. Ponnuswamy M.N. Structural studies of haemoglobin from pisces species shortfin mako shark (Isurus oxyrinchus) at 1.9 Å resolution. J. Synchrotron Radiat. 2013 20 6 843 847 10.1107/S0909049513021572 24121325
    [Google Scholar]
  36. Ramesh P. Sundaresan S.S. Shobana N. Vinuchakkaravarthy T. Sivakumar K. Yasien S. Ponnuswamy M.N.G. Structural studies of hemoglobin from two flightless birds, ostrich and turkey: Insights into their differing oxygen-binding properties. Acta Crystallogr. D Struct. Biol. 2021 77 5 690 702 10.1107/S2059798321003417 33950023
    [Google Scholar]
  37. Knapp J.E. Oliveira M.A. Xie Q. Ernst S.R. Riggs A.F. Hackert M.L. The structural and functional analysis of the hemoglobin D component from chicken. J. Biol. Chem. 1999 274 10 6411 6420 10.1074/jbc.274.10.6411 10037733
    [Google Scholar]
  38. Lavrik N.L. On the nature of the spectral shift of the soret band of erythrocyte oxyhemoglobin when organic molecules are added to an erythrocyte suspension. Biophysics (Oxf.) 2022 67 1 72 77 10.1134/S0006350922010079
    [Google Scholar]
  39. Sekyonda Z. An R. Goreke U. Man Y. Monchamp K. Bode A. Zhang Q. El-Gammal Y. Kityo C. Kalfa T.A. Akkus O. Gurkan U.A. Rapid measurement of hemoglobin-oxygen dissociation by leveraging Bohr effect and Soret band bathochromic shift. Analyst (Lond.) 2024 149 9 2561 2572 10.1039/D3AN02071A 38501195
    [Google Scholar]
  40. Davis B.J. Disc electrophoresis. II. Method and application to human serum proteins. Ann. N. Y. Acad. Sci. 1964 121 2 404 427 10.1111/j.1749‑6632.1964.tb14213.x 14240539
    [Google Scholar]
  41. PROTEUM4 Version 20214-1 Data Collection Software Which Includes SAINT Version 840B, SADABS-2016/2 and XPREP Version 2014/2 Bruker AXS Inc.,: Madison, Wisconsin 2021
    [Google Scholar]
  42. Sheldrick G.M. Program. for Empirical Absorption Correction of Area Detector Data. Sadabs 1996
    [Google Scholar]
  43. Evans P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 2006 62 1 72 82 10.1107/S0907444905036693 16369096
    [Google Scholar]
  44. Otwinowski Z. Minor W. Denzo and Scalepack. International Tables for Crystallography. Wiley 2006 10.1107/97809553602060000677
    [Google Scholar]
  45. Evans P.R. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. D Biol. Crystallogr. 2011 67 4 282 292 10.1107/S090744491003982X 21460446
    [Google Scholar]
  46. Otwinowski Z. Denzo and Scalepack. International Tables for Crystallography 2012 282 289 10.1107/97809553602060000833
    [Google Scholar]
  47. Matthews B.W. Solvent content of protein crystals. J. Mol. Biol. 1968 33 2 491 497 10.1016/0022‑2836(68)90205‑2 5700707
    [Google Scholar]
  48. Rossmann M.G. The molecular replacement method. Acta Crystallogr. A 1990 46 2 73 82 10.1107/S0108767389009815 2180438
    [Google Scholar]
  49. McCoy A.J. Grosse-Kunstleve R.W. Adams P.D. Winn M.D. Storoni L.C. Read R.J. Phaser crystallographic software. J. Appl. Cryst. 2007 40 4 658 674 10.1107/S0021889807021206 19461840
    [Google Scholar]
  50. Adams P.D. Afonine P.V. Bunkóczi G. Chen V.B. Davis I.W. Echols N. Headd J.J. Hung L.W. Kapral G.J. Grosse-Kunstleve R.W. McCoy A.J. Moriarty N.W. Oeffner R. Read R.J. Richardson D.C. Richardson J.S. Terwilliger T.C. Zwart P.H. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010 66 2 213 221 10.1107/S0907444909052925 20124702
    [Google Scholar]
  51. Kamariah N. Ponnuraj S.M. Moovarkumudalvan B. Ponnuswamy M.N.G. Structural studies on a low oxygen affinity hemoglobin from mammalian species: Sheep (Ovis aries). Biochem. Biophys. Res. Commun. 2014 450 1 36 41 10.1016/j.bbrc.2014.05.062 24858681
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665370730250708065019
Loading
/content/journals/ppl/10.2174/0109298665370730250708065019
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: hypoxic stress ; protein crystals ; oxygen affinity ; Angora goat ; level of glutathione ; hemoglobin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test