Skip to content
2000
Volume 32, Issue 7
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Introduction

Angora goats are a distinct breed that differs significantly from common goats and shares a similar appearance to sheep. In Angora goats, only the level of glutathione (GSH) is elevated during under-stimulated conditions, as well as after the period of hypoxic stress; however, no changes are found in 2,3-diphosphoglycerate (2,3-DPG) levels, which are commonly present in the red blood cells (RBCs) of most mammals. We chose the Angora goat for our investigation because no previous studies have been conducted on the structural and functional aspects of hemoglobin (Hb). In addition, no sequence or structural information is currently available in any database.

Methods

Angora goat Hb was isolated and purified by anion-exchange chromatography, followed by crystallization using various methods. X-ray data collection for Angora goat Hb was performed under a liquid nitrogen cryo-stream using a system.

Results

Good diffracting crystals were obtained using the hanging-drop vapor-diffusion method with polyethylene glycol (PEG) 3350 as the precipitant in water, without the addition of any salt or buffer. The Angora goat Hb diffracted to a resolution of 1.85 Å, and the structure solution was obtained by the molecular replacement method, using the structure of domestic goat Hb as the starting model.

Discussion

The solved structure of Angora goat crystallized in the monoclinic space group P2, consisting of one whole biological molecule in the asymmetric unit, with unit cell dimensions of a = 52.08 Å, b = 76.70 Å, c = 74.08 Å, and β = 91.77 °. The solvent content and Matthews coefficient (Vm) for the Angora goat Hb are 49.05% and 2.41 Å3/Da, respectively, and are within the normal range for protein crystals.

Conclusion

Purification, crystallization, and preliminary X-ray diffraction studies of Angora goat Hb were performed successfully. Structural refinement and biophysical characterization of Angora goat Hb are in progress in the absence and presence of GSH and 2,3-DPG.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665370730250708065019
2025-07-14
2025-11-03
Loading full text...

Full text loading...

References

  1. PerutzM.F. The Croonian Lecture, 1968. The haemoglobin molecule.Proc. R Soc. Lond. B. Biol. Sci.1969173103111314010.1098/rspb.1969.00434389425
    [Google Scholar]
  2. WeissbluthM. WeissbluthM. Hemoglobin: Cooperativity and Electronic Properties.Springer197410.1007/978‑3‑642‑80801‑2
    [Google Scholar]
  3. PoyartC. WajcmanH. KisterJ. Molecular adaptation of hemoglobin function in mammals.Respir. Physiol.199290131710.1016/0034‑5687(92)90130‑O1455096
    [Google Scholar]
  4. JensenF.B. FagoA. WeberR.E. Hemoglobin Structure and Function.Fish. physiology.Elsevier1998140
    [Google Scholar]
  5. MonodJ. WymanJ. ChangeuxJ.P. On the nature of allosteric transitions: A plausible model.J. Mol. Biol.19651218811810.1016/S0022‑2836(65)80285‑614343300
    [Google Scholar]
  6. KoshlandD.E. NémethyG. FilmerD. Comparison of experimental binding data and theoretical models in proteins containing subunits.Biochemistry19665136538510.1021/bi00865a0475938952
    [Google Scholar]
  7. PerutzM.F. Stereochemistry of cooperative effects in haemoglobin.Nature1970228527372673410.1038/228726a05528785
    [Google Scholar]
  8. PerutzM.F. Mechanisms of cooperativity and allosteric regulation in proteins.Q Rev. Biophys.198922213923710.1017/S00335835000038262675171
    [Google Scholar]
  9. WymanJ. GillS.J. Binding and Linkage: Functional Chemistry of Biological Macromolecules.University Science Books1990
    [Google Scholar]
  10. MihailescuM.R. RussuI.M. A signature of the T → R transition in human hemoglobin.Proc. Natl. Acad. Sci. USA20019873773377710.1073/pnas.07149359811259676
    [Google Scholar]
  11. SilvaM.M. RogersP.H. ArnoneA. A third quaternary structure of human hemoglobin A at 1.7-A resolution.J. Biol. Chem.199226724172481725610.1016/S0021‑9258(18)41919‑91512262
    [Google Scholar]
  12. MueserT.C. RogersP.H. ArnoneA. Interface sliding as illustrated by the multiple quaternary structures of liganded hemoglobin.Biochemistry20003950153531536410.1021/bi001294411112521
    [Google Scholar]
  13. SafoM.K. AbrahamD.J. The X‐ray structure determination of bovine carbonmonoxy hemoglobin at 2.1 Å resoultion and its relationship to the quaternary structures of other hemoglobin crystal forms.Protein Sci.20011061091109910.1110/ps.4830111369847
    [Google Scholar]
  14. SafoM.K. AbrahamD.J. The enigma of the liganded hemoglobin end state: a novel quaternary structure of human carbonmonoxy hemoglobin.Biochemistry200544238347835910.1021/bi050412q15938624
    [Google Scholar]
  15. RapoportS. GuestG.M. Distribution of acid-soluble phosphorus in the blood cells of various vertebrates.J. Biol. Chem.1941138126928210.1016/S0021‑9258(18)51432‑0
    [Google Scholar]
  16. BunnH.F. Differences in the Interaction of 2,3-diphosphoglycerate with certain mammalian hemoglobins.Science19791723987104910.1126/science.172.3987.1049.
    [Google Scholar]
  17. BunnH.F. SealU.S. ScottA.F. The role of 2,3-diphosphoglycerate in mediating hemoglobin function of mammalian red cells.Ann. N.Y. Acad. Sci.1974241149851210.1111/j.1749‑6632.1974.tb21906.x4530676
    [Google Scholar]
  18. BartlettG.R. Phosphate compounds in red cells of reptiles, amphibians and fish. Comp. Biochem. Physiol. A Physiol.197655321110.1016/0300‑9629(76)90133‑X
    [Google Scholar]
  19. MacDonaldR. Red cell 2,3‐diphosphoglycerate and oxygen affinity.Anaesthesia197732654455310.1111/j.1365‑2044.1977.tb10002.x327846
    [Google Scholar]
  20. ScottA.F. BunnH.F. BrushA.H. The phylogenetic distribution of red cell 2,3 diphosphoglycerate and its interaction with mammalian hemoglobins.J. Exp. Zool.1977201226928810.1002/jez.1402010211894234
    [Google Scholar]
  21. BunnH.F. Regulation of hemoglobin function in mammals.Am. Zool.198020119921110.1093/icb/20.1.199
    [Google Scholar]
  22. BunnH.F. Evolution of mammalian hemoglobin function.Blood19815821897018619
    [Google Scholar]
  23. MoorthyP. NeelagandanK. BalasubramanianM. PonnuswamyM. Purification, crystallization and preliminary X-ray diffraction studies on goat (Capra hircus) hemoglobin: A low oxygen affinity species.Protein Pept. Lett.200916445445610.2174/09298660978784799219356147
    [Google Scholar]
  24. HayesJ.L. The Angora Goat: Its Origin, Culture and ProductsBostonPress of AA Kingman186810.5962/bhl.title.42758
    [Google Scholar]
  25. JafféE.R. Hereditary hemolytic disorders and enzymatic deficiencies of human erythrocytes.Blood197035111613410.1182/blood.V35.1.116.1164244328
    [Google Scholar]
  26. O’DeaJ.D. AgarN.S. Glutathione and 2,3-diphosphoglycerate in the blood of hypoxic ruminants.Res. Vet. Sci.198029215315610.1016/S0034‑5288(18)32656‑07465990
    [Google Scholar]
  27. JordaanD. KirstenJ. Investigating alternative governance systems for the South African mohair supply chain.Agrekon200847225828410.1080/03031853.2008.9523800
    [Google Scholar]
  28. PienaarL. PartridgeA. MorokongT. The Mohair Industry: Economic Impact of Possible Market Closure.Western Cape Department of Agriculture2018
    [Google Scholar]
  29. van RensburgS.J. Reproductive physiology and endocrinology of normal and habitually aborting angora goats.Onderstepoort J. Vet. Res.19713811625170806
    [Google Scholar]
  30. WentzelD. ViljoenK.S. BothaL.J. Physiological and endocrinological reactions to cold stress in the Angora Goat.Agroanimalia19791121922
    [Google Scholar]
  31. SnymanM.A. SnymanA.E. The possible role of Ostertagia circumcincta, coccidiosis and dietary protein level in the development of swelling disease in Angora goat kids.J. S. Afr. Vet. Assoc.2005762636810.4102/jsava.v76i2.39916108523
    [Google Scholar]
  32. SnymanM.A. Body weight and growth rate of South African Angora goat kids under different pre- and post-weaning management systems.S. Afr. J. Anim. Sci.200737213214110.4314/sajas.v37i2.4037
    [Google Scholar]
  33. SundaresanS.S. RameshP. SivakumarK. PonnuswamyM.N. Purification, crystallization and preliminary X-ray analysis of haemoglobin from ostrich ( Struthio camelus ).Acta. Crystallogr. Sect. F Struct. Biol. Cryst. Commun.200965768168310.1107/S174430910901900919574638
    [Google Scholar]
  34. SundaresanS.S. RameshP. ShobanaN. VinuchakkaravarthyT. YasienS. PonnuswamyM.N.G. Crystal structure of hemoglobin from mouse ( Mus musculus ) compared with those from other small animals and humans.Acta Crystallogr. F Struct. Biol. Commun.202177411312010.1107/S2053230X2100306X33830076
    [Google Scholar]
  35. RameshP. SundaresanS.S. Sathya MoorthyP. BalasubramanianM. PonnuswamyM.N. Structural studies of haemoglobin from pisces species shortfin mako shark ( Isurus oxyrinchus) at 1.9 Å resolution.J. Synchrotron Radiat.201320684384710.1107/S090904951302157224121325
    [Google Scholar]
  36. RameshP. SundaresanS.S. ShobanaN. VinuchakkaravarthyT. SivakumarK. YasienS. PonnuswamyM.N.G. Structural studies of hemoglobin from two flightless birds, ostrich and turkey: Insights into their differing oxygen-binding properties.Acta. Crystallogr. D Struct. Biol.202177569070210.1107/S205979832100341733950023
    [Google Scholar]
  37. KnappJ.E. OliveiraM.A. XieQ. ErnstS.R. RiggsA.F. HackertM.L. The structural and functional analysis of the hemoglobin D component from chicken.J. Biol. Chem.1999274106411642010.1074/jbc.274.10.641110037733
    [Google Scholar]
  38. LavrikN.L. On the nature of the spectral shift of the soret band of erythrocyte oxyhemoglobin when organic molecules are added to an erythrocyte suspension.Biophysics (Oxf.)2022671727710.1134/S0006350922010079
    [Google Scholar]
  39. SekyondaZ. AnR. GorekeU. ManY. MonchampK. BodeA. ZhangQ. El-GammalY. KityoC. KalfaT.A. AkkusO. GurkanU.A. Rapid measurement of hemoglobin-oxygen dissociation by leveraging Bohr effect and Soret band bathochromic shift.Analyst (Lond.)202414992561257210.1039/D3AN02071A38501195
    [Google Scholar]
  40. DavisB.J. Disc electrophoresis. II. Method and application to human serum proteins.Ann. N. Y. Acad. Sci.1964121240442710.1111/j.1749‑6632.1964.tb14213.x14240539
    [Google Scholar]
  41. PROTEUM4 Version 2021.4-1 Data Collection Software Which Includes SAINT Version 8.40B, SADABS-2016/2 and XPREP Version 2014/2.Bruker AXS Inc.,Madison, Wisconsin2021
    [Google Scholar]
  42. SheldrickG.M. Program. for Empirical Absorption Correction of Area Detector Data.Sadabs1996
    [Google Scholar]
  43. EvansP. Scaling and assessment of data quality.Acta. Crystallogr. D Biol. Crystallogr.2006621728210.1107/S090744490503669316369096
    [Google Scholar]
  44. OtwinowskiZ. MinorW. Denzo and Scalepack.International Tables for Crystallography.Wiley200610.1107/97809553602060000677
    [Google Scholar]
  45. EvansP.R. An introduction to data reduction: space-group determination, scaling and intensity statistics.Acta Crystallogr. D Biol. Crystallogr.201167428229210.1107/S090744491003982X21460446
    [Google Scholar]
  46. OtwinowskiZ. Denzo and Scalepack.International Tables for Crystallography.201228228910.1107/97809553602060000833
    [Google Scholar]
  47. MatthewsB.W. Solvent content of protein crystals.J. Mol. Biol.196833249149710.1016/0022‑2836(68)90205‑25700707
    [Google Scholar]
  48. RossmannM.G. The molecular replacement method.Acta Crystallogr. A1990462738210.1107/S01087673890098152180438
    [Google Scholar]
  49. McCoyA.J. Grosse-KunstleveR.W. AdamsP.D. WinnM.D. StoroniL.C. ReadR.J. Phaser crystallographic software.J. Appl. Cryst.200740465867410.1107/S002188980702120619461840
    [Google Scholar]
  50. AdamsP.D. AfonineP.V. BunkócziG. ChenV.B. DavisI.W. EcholsN. HeaddJ.J. HungL.W. KapralG.J. Grosse-KunstleveR.W. McCoyA.J. MoriartyN.W. OeffnerR. ReadR.J. RichardsonD.C. RichardsonJ.S. TerwilligerT.C. ZwartP.H. PHENIX : A comprehensive Python-based system for macromolecular structure solution.Acta. Crystallogr. D. Biol. Crystallogr.201066221322110.1107/S090744490905292520124702
    [Google Scholar]
  51. KamariahN. PonnurajS.M. MoovarkumudalvanB. PonnuswamyM.N.G. Structural studies on a low oxygen affinity hemoglobin from mammalian species: Sheep (Ovis aries). Biochem. Biophys. Res. Commun.20144501364110.1016/j.bbrc.2014.05.06224858681
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665370730250708065019
Loading
/content/journals/ppl/10.2174/0109298665370730250708065019
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test