Skip to content
2000
Volume 32, Issue 6
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Athletes frequently encounter sleep deprivation due to the demands of high-intensity training and competition, which can significantly impair their physical recovery and athletic performance. α-Lactalbumin (α-LA), a key component of whey protein that is rich in tryptophan, has been shown to promote the synthesis of serotonin and melatonin, thereby regulating sleep cycles. Moreover, α-LA has demonstrated the ability to reduce inflammation and oxidative stress associated with fatigue and stress, further contributing to improved sleep quality. This review provides a critical evaluation of the current evidence supporting the role of α-LA in enhancing sleep quality in athletes through mechanisms such as neurotransmitter regulation, immune function improvement, and enhancement of antioxidant defenses. Additionally, it highlights the necessity for further research into the differential effects of α-LA on sleep across various sports and gender groups, as well as its potential synergistic interactions with other nutrients. These insights are essential for developing optimized nutritional interventions aimed at enhancing athletic performance.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665363873250623103811
2025-07-11
2025-11-05
Loading full text...

Full text loading...

/deliver/fulltext/ppl/32/6/PPL-32-6-02.html?itemId=/content/journals/ppl/10.2174/0109298665363873250623103811&mimeType=html&fmt=ahah

References

  1. LimD.C. NajafiA. AfifiL. BassettiC.L.A. BuysseD.J. HanF. HöglB. MelakuY.A. MorinC.M. PackA.I. PoyaresD. SomersV.K. EastwoodP.R. ZeeP.C. JacksonC.L. The need to promote sleep health in public health agendas across the globe.Lancet Public Health2023810e820e82610.1016/S2468‑2667(23)00182‑237777291
    [Google Scholar]
  2. VitaleK.C. OwensR. HopkinsS.R. MalhotraA. Sleep hygiene for optimizing recovery in athletes: Review and recommendations.Int. J. Sports Med.201940853554310.1055/a‑0905‑310331288293
    [Google Scholar]
  3. CunhaL.A. CostaJ.A. MarquesE.A. BritoJ. LastellaM. FigueiredoP. The impact of sleep interventions on athletic performance: A systematic review.Sports Med. Open2023915810.1186/s40798‑023‑00599‑z37462808
    [Google Scholar]
  4. CharestJ. GrandnerM.A. Sleep and athletic performance: Impacts on physical performance, mental performance, injury risk and recovery, and mental health.Sleep Med. Clin.2020151415710.1016/j.jsmc.2019.11.00532005349
    [Google Scholar]
  5. CharestJ. GrandnerM.A. Sleep and athletic performance.Sleep Med. Clin.202217226328210.1016/j.jsmc.2022.03.00635659079
    [Google Scholar]
  6. FullagarH.H.K. VincentG.E. McCulloughM. HalsonS. FowlerP. Sleep and sport performance.J. Clin. Neurophysiol.202340540841610.1097/WNP.000000000000063836930212
    [Google Scholar]
  7. HalsonS.L. Sleep in elite athletes and nutritional interventions to enhance sleep.Sports Med.2014Suppl. 1S13S2310.1007/s40279‑014‑0147‑0
    [Google Scholar]
  8. PeacockC. MenaM. SandersG. SilverT. KalmanD. AntonioJ. Sleep data, physical performance, and injuries in preparation for professional mixed martial arts.Sports201871110.3390/sports701000130577414
    [Google Scholar]
  9. LindsethG. LindsethP. ThompsonM. Nutritional effects on sleep.West. J. Nurs. Res.201335449751310.1177/019394591141637921816963
    [Google Scholar]
  10. ZhouJ. KimJ.E. ArmstrongC.L.H. ChenN. CampbellW.W. Higher-protein diets improve indexes of sleep in energy-restricted overweight and obese adults: Results from 2 randomized controlled trials.Am. J. Clin. Nutr.2016103376677410.3945/ajcn.115.12466926864362
    [Google Scholar]
  11. DashtiH.S. ScheerF.A.J.L. JacquesP.F. Lamon-FavaS. OrdovásJ.M. Short sleep duration and dietary intake: Epidemiologic evidence, mechanisms, and health implications.Adv. Nutr.20156664865910.3945/an.115.00862326567190
    [Google Scholar]
  12. OikawaS. MacinnisM.J. TrippT.R. McGloryC. BakerS.K. PhillipsS.M. Lactalbumin, not collagen, augments muscle protein synthesis with aerobic exercise.Med. Sci. Sports Exerc.20205261394140310.1249/MSS.000000000000225331895298
    [Google Scholar]
  13. KaidaK. MoriI. KiharaK. KaidaN. The function of REM and NREM sleep on memory distortion and consolidation.Neurobiol. Learn. Mem.202320410781110.1016/j.nlm.2023.10781137567411
    [Google Scholar]
  14. RakowskaM. AbdellahiM.E.A. BagrowskaP. NavarreteM. LewisP.A. Long term effects of cueing procedural memory reactivation during NREM sleep.Neuroimage202124411857310.1016/j.neuroimage.2021.11857334537384
    [Google Scholar]
  15. KumarD. KoyanagiI. Carrier-RuizA. VergaraP. SrinivasanS. SugayaY. KasuyaM. YuT.S. VogtK.E. MurataniM. OhnishiT. SinghS. TeixeiraC.M. ChérasseY. NaoiT. WangS.H. NondhaleeP. OsmanB.A.H. KanekoN. SawamotoK. KernieS.G. SakuraiT. McHughT.J. KanoM. YanagisawaM. SakaguchiM. Sparse activity of hippocampal adult-born neurons during rem sleep is necessary for memory consolidation.Neuron20201073552565.e1010.1016/j.neuron.2020.05.00832502462
    [Google Scholar]
  16. PavlovaK.M. Latreille, V. Sleep disorders.Am. J. Med.2019132329229910.1016/j.amjmed.2018.09.02130292731
    [Google Scholar]
  17. DayC. NishinoN. TsukaharaY. Sleep in the athlete.Clin. Sports Med.20244319310610.1016/j.csm.2023.06.00737949516
    [Google Scholar]
  18. SurdaP. PutalaM. SiarnikP. WalkerA. De RomeK. AminN. SanghaM.S. FokkensW. Sleep in elite swimmers: Prevalence of sleepiness, obstructive sleep apnoea and poor sleep quality.BMJ Open Sport Exerc. Med.20195100067310.1136/bmjsem‑2019‑00067332095263
    [Google Scholar]
  19. PujalteG.G.A. BenjaminH.J. Sleep and the Athlete.Curr. Sports Med. Rep.201817410911010.1249/JSR.000000000000046829629966
    [Google Scholar]
  20. LastellaM. RoachG.D. HalsonS.L. MartinD.T. WestN.P. SargentC. Sleep/wake behaviour of endurance cyclists before and during competition.J. Sports Sci.201533329329910.1080/02640414.2014.94269025105558
    [Google Scholar]
  21. PearsonA.G. HindK. MacnaughtonL.S. The impact of dietary protein supplementation on recovery from resistance exercise-induced muscle damage: A systematic review with meta-analysis.Eur. J. Clin. Nutr.202377876778310.1038/s41430‑022‑01250‑y36513777
    [Google Scholar]
  22. Torre-VillalvazoI. Alemán-EscondrillasG. Valle-RíosR. NoriegaL.G. Protein intake and amino acid supplementation regulate exercise recovery and performance through the modulation of mTOR, AMPK, FGF21, and immunity.Nutr. Res.20197211710.1016/j.nutres.2019.06.00631672317
    [Google Scholar]
  23. TanakaE. YatsuyaH. UemuraM. MurataC. OtsukaR. ToyoshimaH. TamakoshiK. SasakiS. KawaguchiL. AoyamaA. Associations of protein, fat, and carbohydrate intakes with insomnia symptoms among middle-aged Japanese workers.J. Epidemiol.201323213213810.2188/jea.JE2012010123419282
    [Google Scholar]
  24. KimH.J. KimJ. LeeS. KimB. KwonE. LeeJ.E. ChunM.Y. LeeC.Y. BoulierA. OhS. LeeH.W. A double-blind, randomized, placebo-controlled crossover clinical study of the effects of alpha-s1 casein hydrolysate on sleep disturbance.Nutrients2019117146610.3390/nu1107146631252661
    [Google Scholar]
  25. SaidiO. RochetteE. DoréÉ. MasoF. RaouxJ. AndrieuxF. FantiniM.L. MerlinE. PereiraB. WalrandS. DuchéP. Randomized double-blind controlled trial on the effect of proteins with different tryptophan/large neutral amino acid ratios on sleep in adolescents: The protmorpheus study.Nutrients2020126188510.3390/nu1206188532599773
    [Google Scholar]
  26. LaymanD.K. LönnerdalB. FernstromJ.D. Applications for α-lactalbumin in human nutrition.Nutr. Rev.201876644446010.1093/nutrit/nuy00429617841
    [Google Scholar]
  27. MilesK.H. ClarkB. FowlerP.M. GratwickeM.J. MartinK. WelvaertM. MillerJ. PumpaK.L. ɑ-Lactalbumin improves sleep and recovery after simulated evening competition in female athletes.Med. Sci. Sports Exerc.202153122618262710.1249/MSS.000000000000274334649262
    [Google Scholar]
  28. YiğitA. BielskaP. Cais-SokolińskaD. SamurG. Whey proteins as a functional food: Health effects, functional properties, and applications in food.J. Am. Nutr. Assoc.202342875876810.1080/27697061.2023.216920836725371
    [Google Scholar]
  29. GiblinL. YalcinA.S. BicimG. KramerA.C. ChenZ. CallananM.J. Whey proteins: Targets of oxidation, or mediators of redox protection.Free Radic Res201953(sup1)1136115210.1080/10715762.2019.1632445
    [Google Scholar]
  30. KwonD.H. LeeH. ParkC. HongS.H. HongS.H. KimG.Y. ChaH.J. KimS. KimH.S. HwangH.J. ChoiY.H. Glutathione induced immune-stimulatory activity by promoting m1-like macrophages polarization via potential ROS scavenging capacity.Antioxidants20198941310.3390/antiox809041331540482
    [Google Scholar]
  31. RusuD. DrouinR. PouliotY. GauthierS. PoubelleP.E. A bovine whey protein extract stimulates human neutrophils to generate bioactive IL-1Ra through a NF-kappaB- and MAPK-dependent mechanism.J. Nutr.2010140238239110.3945/jn.109.10964520032479
    [Google Scholar]
  32. HattoriH. ImaiH. FuruhamaK. SatoO. NakagawaY. Induction of phospholipid hydroperoxide glutathione peroxidase in human polymorphonuclear neutrophils and HL60 cells stimulated with TNF-α.Biochem. Biophys. Res. Commun.2005337246447310.1016/j.bbrc.2005.09.07616223606
    [Google Scholar]
  33. GratwickeM. MilesK. ClarkB. PumpaK. The effect of α-lactalbumin consumption on sleep quality and quantity in female rugby union athletes: A field-based study.Biol. Sport202340244945510.5114/biolsport.2023.11600237077794
    [Google Scholar]
  34. MarkusC.R. JonkmanL.M. LammersJ.H.C.M. DeutzN.E.P. MesserM.H. RigteringN. Evening intake of α-lactalbumin increases plasma tryptophan availability and improves morning alertness and brain measures of attention.Am. J. Clin. Nutr.20058151026103310.1093/ajcn/81.5.102615883425
    [Google Scholar]
  35. MarkusC.R. OlivierB. PanhuysenG.E.M. Van der GugtenJ. AllesM.S. TuitenA. WestenbergH.G.M. FekkesD. KoppeschaarH.F. de HaanE.E.H.F. The bovine protein α-lactalbumin increases the plasma ratio of tryptophan to the other large neutral amino acids, and in vulnerable subjects raises brain serotonin activity, reduces cortisol concentration, and improves mood under stress.Am. J. Clin. Nutr.20007161536154410.1093/ajcn/71.6.153610837296
    [Google Scholar]
  36. OngJ.N. HackettD.A. ChowC.M. Sleep quality and duration following evening intake of alpha-lactalbumin: A pilot study.Biol. Rhythm Res.201748450751710.1080/09291016.2016.1275398
    [Google Scholar]
  37. YajimaK. SeyaT. IwayamaK. HibiM. HariS. NakashimaY. OgataH. OmiN. SatohM. TokuyamaK. Effects of nutrient composition of dinner on sleep architecture and energy metabolism during sleep.J. Nutr. Sci. Vitaminol. (Tokyo)201460211412110.3177/jnsv.60.11424975221
    [Google Scholar]
  38. HalsonS.L. ShawG. VerseyN. MillerD.J. SargentC. RoachG.D. NymanL. CarterJ.M. BaarK. Optimisation and validation of a nutritional intervention to enhance sleep quality and quantity.Nutrients2020129257910.3390/nu1209257932854375
    [Google Scholar]
  39. MacInnisM.J. DziedzicC.E. WoodE. OikawaS.Y. PhillipsS.M. Presleep α-lactalbumin consumption does not improve sleep quality or time-trial performance in cyclists.Int. J. Sport Nutr. Exerc. Metab.202030319720210.1123/ijsnem.2020‑000932698123
    [Google Scholar]
  40. FergusonC. AisbettB. LastellaM. RobertsS. CondoD. Evening whey protein intake, rich in tryptophan, and sleep in elite male australian rules football players on training and nontraining days.Int. J. Sport Nutr. Exerc. Metab.2022322828810.1123/ijsnem.2021‑014534875624
    [Google Scholar]
  41. BarnardJ. RobertsS. LastellaM. CallahanD.L. AisbettB. CondoD. Evening alpha-lactalbumin supplementation alters sleep architecture and reduces morning reaction time in an athletically trained population with sleep difficulties.Int. J. Sport Nutr. Exerc. Metab.202535311010.1123/ijsnem.2024‑009439832504
    [Google Scholar]
  42. HeineW. RadkeM. WutzkeK.D. PetersE. KundtG. α‐Lactalbumin‐enriched low‐protein infant formulas: A comparison to breast milk feeding.Acta Paediatr.19968591024102810.1111/j.1651‑2227.1996.tb14210.x8888911
    [Google Scholar]
  43. Minet-RinguetJ. Le RuyetP.M. ToméD. EvenP.C. A tryptophan-rich protein diet efficiently restores sleep after food deprivation in the rat.Behav. Brain Res.2004152233534010.1016/j.bbr.2003.10.01815196801
    [Google Scholar]
  44. SutantoC.N. LohW.W. KimJ.E. The impact of tryptophan supplementation on sleep quality: A systematic review, meta-analysis, and meta-regression.Nutr. Rev.202280230631610.1093/nutrit/nuab02733942088
    [Google Scholar]
  45. Kałużna-CzaplińskaJ. GątarekP. ChirumboloS. ChartrandM.S. BjørklundG. How important is tryptophan in human health?Crit. Rev. Food Sci. Nutr.2019591728810.1080/10408398.2017.135753428799778
    [Google Scholar]
  46. PozaJ.J. PujolM. Ortega-AlbásJ.J. RomeroO. Melatonin in sleep disorders.Neurología202237757558510.1016/j.nrleng.2018.08.004
    [Google Scholar]
  47. MontiJ.M. The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep.Sleep Med. Rev.201014531932710.1016/j.smrv.2009.10.00320153670
    [Google Scholar]
  48. SutantoC.N. XiaX. HengC.W. TanY.S. LeeD.P.S. FamJ. KimJ.E. The impact of 5-hydroxytryptophan supplementation on sleep quality and gut microbiota composition in older adults: A randomized controlled trial.Clin. Nutr.202443359360210.1016/j.clnu.2024.01.01038309227
    [Google Scholar]
  49. LinZ. JiangT. ChenM. JiX. WangY. Gut microbiota and sleep: Interaction mechanisms and therapeutic prospects.Open Life Sci.20241912022091010.1515/biol‑2022‑091039035457
    [Google Scholar]
  50. FungT.C. VuongH.E. LunaC.D.G. PronovostG.N. AleksandrovaA.A. RileyN.G. VavilinaA. McGinnJ. RendonT. ForrestL.R. HsiaoE.Y. Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut.Nat. Microbiol.20194122064207310.1038/s41564‑019‑0540‑431477894
    [Google Scholar]
  51. NakataniY. Sato-SuzukiI. TsujinoN. NakasatoA. SekiY. FumotoM. AritaH. Augmented brain 5‐HT crosses the blood-brain barrier through the 5‐HT transporter in rat.Eur. J. Neurosci.20082792466247210.1111/j.1460‑9568.2008.06201.x18445233
    [Google Scholar]
  52. VoogL. ErikssonT. Is rat brain content of large neutral amino acids (LNAAs) a reflection of plasma LNAA concentrations?J. Neural Transm.199287213314310.1007/BF012450151558742
    [Google Scholar]
  53. MarkusC.R. OlivierB. de HaanE.H.F. Whey protein rich in α-lactalbumin increases the ratio of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects.Am. J. Clin. Nutr.20027561051105610.1093/ajcn/75.6.105112036812
    [Google Scholar]
  54. MarkusC.R. Klöpping-KetelaarsW.I. PasmanW. KlarenbeekB. van den BergH. Dose-dependent effect of α-lactalbumin in combination with two different doses of glucose on the plasma Trp/LNAA ratio.Nutr. Neurosci.20003534535510.1080/1028415X.2000.1174733227414133
    [Google Scholar]
  55. MoriyaT. YoshinobuY. IkedaM. YokotaS. AkiyamaM. ShibataS. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters.Br. J. Pharmacol.199812561281128710.1038/sj.bjp.07021769863658
    [Google Scholar]
  56. VarcoeT.J. KennawayD.J. VoultsiosA. Activation of 5-HT2C receptors acutely induces Per gene expression in the rat suprachiasmatic nucleus at night.Brain Res. Mol. Brain Res.2003119219220010.1016/j.molbrainres.2003.09.01014625086
    [Google Scholar]
  57. GusevaD. WirthA. PonimaskinE. Cellular mechanisms of the 5-HT 7 receptor-mediated signaling.Front. Behav. Neurosci.2014830610.3389/fnbeh.2014.0030625324743
    [Google Scholar]
  58. HedlundP.B. Huitron-ResendizS. HenriksenS.J. SutcliffeJ.G. 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern.Biol. Psychiatry2005581083183710.1016/j.biopsych.2005.05.01216018977
    [Google Scholar]
  59. MontiJ.M. Serotonin control of sleep-wake behavior.Sleep Med. Rev.201115426928110.1016/j.smrv.2010.11.00321459634
    [Google Scholar]
  60. BoutrelB. MonacaC. HenR. HamonM. AdrienJ. Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: Studies in 5-HT1A knock-out mice.J. Neurosci.200222114686469210.1523/JNEUROSCI.22‑11‑04686.200212040075
    [Google Scholar]
  61. BoutrelB. FrancB. HenR. HamonM. AdrienJ. Key role of 5-HT1B receptors in the regulation of paradoxical sleep as evidenced in 5-HT1B knock-out mice.J. Neurosci.19991983204321210.1523/JNEUROSCI.19‑08‑03204.199910191333
    [Google Scholar]
  62. PopaD. LénaC. FabreV. PrenatC. GingrichJ. EscourrouP. HamonM. AdrienJ. Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors.J. Neurosci.20052549112311123810.1523/JNEUROSCI.1724‑05.200516339018
    [Google Scholar]
  63. LyS. PishdariB. LokL.L. HajosM. KocsisB. Activation of 5-HT6 receptors modulates sleep-wake activity and hippocampal theta oscillation.ACS Chem. Neurosci.20134119119910.1021/cn300184t23336058
    [Google Scholar]
  64. BelliveauS. KangW. BovairdS. HamadjidaA. BédardD. DancauseN. StrohT. HuotP. Stereological investigation of 5-HT3 receptors in the substantia nigra and dorsal raphe nucleus in the rat.J. Chem. Neuroanat.202111110188110.1016/j.jchemneu.2020.10188133160048
    [Google Scholar]
  65. St-OngeM.P. Cherta-MurilloA. DarimontC. MantantzisK. MartinF.P. OwenL. The interrelationship between sleep, diet, and glucose metabolism.Sleep Med. Rev.20236910178810.1016/j.smrv.2023.10178837156196
    [Google Scholar]
  66. Cruz-SanabriaF. CarmassiC. BrunoS. BazzaniA. CarliM. ScarselliM. FaragunaU. Melatonin as a chronobiotic with sleep-promoting properties.Curr. Neuropharmacol.202321495198710.2174/1570159X2066622021715261735176989
    [Google Scholar]
  67. ParyabN. TaheriM. H’Mida, C.; Irandoust, K.; Mirmoezzi, M.; Trabelsi, K.; Ammar, A.; Chtourou, H. Melatonin supplementation improves psychomotor and physical performance in collegiate student-athletes following a sleep deprivation night.Chronobiol. Int.202138575376110.1080/07420528.2021.188957833845710
    [Google Scholar]
  68. CheikhM. HammoudaO. GaamouriN. DrissT. ChamariK. CheikhR.B. DoguiM. SouissiN. Melatonin ingestion after exhaustive late-evening exercise improves sleep quality and quantity, and short-term performances in teenage athletes.Chronobiol. Int.20183591281129310.1080/07420528.2018.147489129846091
    [Google Scholar]
  69. KrukJ. Aboul-EneinB.H. DuchnikE. Exercise-induced oxidative stress and melatonin supplementation: Current evidence.J. Physiol. Sci.20217112710.1186/s12576‑021‑00812‑234470608
    [Google Scholar]
  70. LiuJ. CloughS.J. HutchinsonA.J. Adamah-BiassiE.B. Popovska-GorevskiM. DubocovichM.L. MT 1 and MT 2 melatonin receptors: A therapeutic perspective.Annu. Rev. Pharmacol. Toxicol.201656136138310.1146/annurev‑pharmtox‑010814‑12474226514204
    [Google Scholar]
  71. ComaiS. Ochoa-SanchezR. GobbiG. Sleep-wake characterization of double MT1/MT2 receptor knockout mice and comparison with MT1 and MT2 receptor knockout mice.Behav. Brain Res.201324323123810.1016/j.bbr.2013.01.00823333399
    [Google Scholar]
  72. Ochoa-SanchezR. ComaiS. LacosteB. BambicoF.R. Dominguez-LopezS. SpadoniG. RivaraS. BediniA. AngeloniD. FraschiniF. MorM. TarziaG. DescarriesL. GobbiG. Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand.J. Neurosci.20113150184391845210.1523/JNEUROSCI.2676‑11.201122171046
    [Google Scholar]
  73. Ochoa-SanchezR. ComaiS. SpadoniG. BediniA. TarziaG. GobbiG. Melatonin, selective and non-selective MT1/MT2 receptors agonists: Differential effects on the 24-h vigilance states.Neurosci. Lett.201456115616110.1016/j.neulet.2013.12.06924406151
    [Google Scholar]
  74. FisherS.P. SugdenD. Sleep-promoting action of IIK7, a selective MT2 melatonin receptor agonist in the rat.Neurosci. Lett.20094572939610.1016/j.neulet.2009.04.00519429170
    [Google Scholar]
  75. ParkS. KangI. EddenR.A.E. NamgungE. KimJ. KimJ. Shorter sleep duration is associated with lower GABA levels in the anterior cingulate cortex.Sleep Med.2020711710.1016/j.sleep.2020.02.01832447224
    [Google Scholar]
  76. BuscemiN. VandermeerB. HootonN. PandyaR. TjosvoldL. HartlingL. BakerG. KlassenT.P. VohraS. The efficacy and safety of exogenous melatonin for primary sleep disorders a meta-analysis.J. Gen. Intern. Med.200520121151115810.1111/j.1525‑1497.2005.0243.x16423108
    [Google Scholar]
  77. Ferracioli-OdaE. QawasmiA. BlochM.H. Meta-analysis: Melatonin for the treatment of primary sleep disorders.PLoS One2013856377310.1371/journal.pone.006377323691095
    [Google Scholar]
  78. YuX. LiW. MaY. TossellK. HarrisJ.J. HardingE.C. BaW. MiraccaG. WangD. LiL. GuoJ. ChenM. LiY. YustosR. VyssotskiA.L. BurdakovD. YangQ. DongH. FranksN.P. WisdenW. GABA and glutamate neurons in the VTA regulate sleep and wakefulness.Nat. Neurosci.201922110611910.1038/s41593‑018‑0288‑930559475
    [Google Scholar]
  79. XuJ. LiY. LvY. BianC. YouX. EndohD. TeraokaH. ShiQ. Molecular evolution of tryptophan hydroxylases in vertebrates: A comparative genomic survey.Genes201910320310.3390/genes1003020330857219
    [Google Scholar]
  80. XiaT.J. JinS.W. LiuY.G. ZhangS.S. WangZ. LiuX.M. PanR.L. JiangN. LiaoY.H. YanM.Z. ChangQ. ShenY. extract exerts a hypnotic effect via the tryptophan/5-hydroxytryptamine/melatonin pathway in mice.J. Ethnopharmacol.202432611799210.1016/j.jep.2024.11799238428654
    [Google Scholar]
  81. MorantaD. BarcelóP. AparicioS. GarauC. SarubboF. RamisM. NicolauC. EstebanS. Intake of melatonin increases tryptophan hydroxylase type 1 activity in aged rats: Preliminary study.Exp. Gerontol.2014491410.1016/j.exger.2013.10.01224189046
    [Google Scholar]
  82. UrsinR. Serotonin and sleep.Sleep Med. Rev.200261556710.1053/smrv.2001.017412531142
    [Google Scholar]
  83. RogandoA.C. WeberK.M. XingJ. XueX. YohannesT. MorackR. QiQ. ClishC. BullockK. GustafsonD. AnastosK. SharmaA. BurgessH.J. FrenchA.L. The IDOze study: The link between sleep disruption and tryptophan-kynurenine pathway activation in women with human immunodeficiency virus.J. Infect. Dis.202222681451146010.1093/infdis/jiac28735801535
    [Google Scholar]
  84. BhatA. PiresA.S. TanV. BabuC.S. GuilleminG.J. Effects of sleep deprivation on the tryptophan metabolism.Int. J. Tryptophan Res.202013117864692097090210.1177/117864692097090233281456
    [Google Scholar]
  85. XieD. ShenY. SuE. DuL. XieJ. WeiD. The effects of angiotensin I-converting enzyme inhibitory peptide VGINYW and the hydrolysate of α-lactalbumin on blood pressure, oxidative stress and gut microbiota of spontaneously hypertensive rats.Food Funct.20221352743275510.1039/D1FO03570C35171185
    [Google Scholar]
  86. AtroozF. SalimS. Sleep deprivation, oxidative stress and inflammation.Adv. Protein Chem. Struct. Biol.202011930933610.1016/bs.apcsb.2019.03.00131997771
    [Google Scholar]
  87. SangD. LinK. YangY. RanG. LiB. ChenC. LiQ. MaY. LuL. CuiX.Y. LiuZ. LvS.Q. LuoM. LiuQ. LiY. ZhangE.E. Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals.Cell20231862555005516.e2110.1016/j.cell.2023.10.02538016470
    [Google Scholar]
  88. LavalleS. MasielloE. IannellaG. MagliuloG. PaceA. LechienJ.R. Calvo-HenriquezC. CocuzzaS. ParisiF.M. FavierV. BahgatA.Y. CammarotoG. La ViaL. GaglianoC. CarantiA. ViciniC. ManiaciA. Unraveling the complexities of oxidative stress and inflammation biomarkers in obstructive sleep apnea syndrome: A comprehensive review.Life202414442510.3390/life1404042538672697
    [Google Scholar]
  89. XueR. WanY. SunX. ZhangX. GaoW. WuW. Nicotinic mitigation of neuroinflammation and oxidative stress after chronic sleep deprivation.Front. Immunol.201910254610.3389/fimmu.2019.0254631736967
    [Google Scholar]
  90. IrwinM.R. Sleep and inflammation: Partners in sickness and in health.Nat. Rev. Immunol.2019191170271510.1038/s41577‑019‑0190‑z31289370
    [Google Scholar]
  91. IrwinM.R. OppM.R. Sleep health: Reciprocal regulation of sleep and innate immunity.Neuropsychopharmacology201742112915510.1038/npp.2016.14827510422
    [Google Scholar]
  92. DumaineJ.E. AshleyN.T. Acute sleep fragmentation induces tissue-specific changes in cytokine gene expression and increases serum corticosterone concentration.Am. J. Physiol. Regul. Integr. Comp. Physiol.201530812R1062R106910.1152/ajpregu.00049.201525876653
    [Google Scholar]
  93. LianxuC. HongtiJ. ChanglongY. NF-κBp65-specific siRNA inhibits expression of genes of COX-2, NOS-2 and MMP-9 in rat IL-1β-induced and TNF-α-induced chondrocytes.Osteoarthritis Cartilage200614436737610.1016/j.joca.2005.10.00916376111
    [Google Scholar]
  94. CardinaleV. LeporeE. BascianiS. ArtaleS. NordioM. BizzarriM. UnferV. Positive effects of α-lactalbumin in the management of symptoms of polycystic ovary syndrome.Nutrients20221415322010.3390/nu1415322035956395
    [Google Scholar]
  95. GaoJ. GuoK. DuM. MaoX. Bovine α-lactalbumin-derived peptides attenuate TNF-α-induced insulin resistance and inflammation in 3T3-L1 adipocytes through inhibiting JNK and NF-κB signaling.Food Funct.20221342323233510.1039/D1FO01217G35142310
    [Google Scholar]
  96. ChenH. SunY. ZhaoH. QiX. CuiH. LiQ. MaY. α-Lactalbumin peptide Asp-Gln-Trp alleviates hepatic insulin resistance and modulates gut microbiota dysbiosis in high-fat diet-induced NAFLD mice.Food Funct.202213199878989210.1039/D2FO01343F36052713
    [Google Scholar]
  97. YamaguchiM. YoshidaK. UchidaM. Novel functions of bovine milk-derived alpha-lactalbumin: Anti-nociceptive and anti-inflammatory activity caused by inhibiting cyclooxygenase-2 and phospholipase A2.Biol. Pharm. Bull.200932336637110.1248/bpb.32.36619252279
    [Google Scholar]
  98. YamaguchiM. TakaiS. Chronic administration of bovine milk-derived α-lactalbumin improves glucose tolerance via enhancement of adiponectin in Goto-Kakizaki rats with type 2 diabetes.Biol. Pharm. Bull.201437340440810.1248/bpb.b13‑0076224583859
    [Google Scholar]
  99. UshidaY. ShimokawaY. ToidaT. MatsuiH. TakaseM. Bovine alpha-lactalbumin stimulates mucus metabolism in gastric mucosa.J. Dairy Sci.200790254154610.3168/jds.S0022‑0302(07)71537‑017235130
    [Google Scholar]
  100. LeiX. XuZ. ChenW. Association of oxidative balance score with sleep quality: NHANES 2007-2014.J. Affect. Disord.202333943544210.1016/j.jad.2023.07.04037442450
    [Google Scholar]
  101. RahimpourP. NasehiM. ZarrindastM.R. KhalifehS. Dose-dependent manner of luteolin in the modulation of spatial memory with respect to the hippocampal level of HSP70 and HSP90 in sleep-deprived rats.Gene202385214704610.1016/j.gene.2022.14704636379383
    [Google Scholar]
  102. HahadO. SchmidtF.P. HübnerJ. FoosP. Al-KindiS. SchmittV.H. HobohmL. KellerK. Große-DresselhausC. SchmeißerJ. Koppe-SchmeißerF. VosselerM. GilanD. SchulzA. ChalabiJ. WildP.S. DaiberA. HerzogJ. MünzelT. Acute exposure to simulated nocturnal traffic noise and cardiovascular complications and sleep disturbance—results from a pooled analysis of human field studies.Clin. Res. Cardiol.2023112111690169810.1007/s00392‑023‑02297‑y37695527
    [Google Scholar]
  103. ChenH. MaY. QiX. TianJ. MaY. NiuT. α‐Lactalbumin peptide asp‐gln‐trp ameliorates hepatic steatosis and oxidative stress in free fatty acids‐treated hepg2 cells and high‐fat diet‐induced NAFLD mice by activating the PPARA pathway.Mol. Nutr. Food Res.20236716220049910.1002/mnfr.20220049937354055
    [Google Scholar]
  104. ChenH. QiX. GuanK. WangR. LiQ. MaY. Tandem mass tag-based quantitative proteomics analysis reveals the effects of the α-lactalbumin peptides GINY and DQW on lipid deposition and oxidative stress in HepG2 cells.J. Dairy Sci.202310642271228810.3168/jds.2022‑2251136797178
    [Google Scholar]
  105. Mackay-PhillipsK. OrssattoL.B.R. PolmanR. Van der PolsJ.C. TrajanoG.S. Effects of α-lactalbumin on strength, fatigue and psychological parameters: A randomised double-blind cross-over study.Eur. J. Appl. Physiol.2023123238139310.1007/s00421‑022‑05103‑136443490
    [Google Scholar]
  106. JungH. JungD. LeeJ. KiW. LeeJ.M. KimE.M. NamM.S. KimK.K. Bioactive peptides in the pancreatin-hydrolysates of whey protein support cell proliferation and scavenge reactive oxygen species.Anim. Cells Syst.202226523224210.1080/19768354.2022.213042536275446
    [Google Scholar]
  107. MarshallK. Therapeutic applications of whey protein.Altern. Med. Rev.200492136156[PMID: 15253675
    [Google Scholar]
  108. MariottiF. SimbelieK.L. Makarios-LahhamL. HuneauJ.F. ToméD. EvenP.C. LaplaizeB. Acute ingestion of dietary proteins improves post-exercise liver glutathione in rats in a dose-dependent relationship with their cysteine content.J. Nutr.2004134112813110.1093/jn/134.1.12814704304
    [Google Scholar]
  109. LiW. YangX. Effect of WPI on immune function and antioxidant capacity during specific training period before competition in elite track and field athletes.Nat. Sci. Educ.20154303172177
    [Google Scholar]
  110. KritikosS. PapanikolaouK. DraganidisD. PouliosA. GeorgakouliK. TsimeasP. TzatzakisT. BatsilasD. BatrakoulisA. DeliC.K. ChatzinikolaouA. MohrM. JamurtasA.Z. FatourosI.G. Effect of whey vs. soy protein supplementation on recovery kinetics following speed endurance training in competitive male soccer players: A randomized controlled trial.J. Int. Soc. Sports Nutr.20211812310.1186/s12970‑021‑00420‑w33726784
    [Google Scholar]
  111. ZhangW XiangL LuoP XieD Bovine-derived alpha-lactalbumin exhibits cardiovascular protection against aging by ameliorating the inflammatory process in mice.Int. Immunopharmacol,2022113(PT A)10929110.1016/j.intimp.2022.109291
    [Google Scholar]
  112. OroscoM. RouchC. BeslotF. FeurteS. RegnaultA. DaugeV. Alpha-lactalbumin-enriched diets enhance serotonin release and induce anxiolytic and rewarding effects in the rat.Behav. Brain Res.20041481-211010.1016/S0166‑4328(03)00153‑014684242
    [Google Scholar]
  113. HöglundE. ØverliØ. WinbergS. Tryptophan metabolic pathways and brain serotonergic activity: A comparative review.Front. Endocrinol.20191015810.3389/fendo.2019.0015831024440
    [Google Scholar]
  114. ZhuY. MaJ. LiY. GuM. FengX. ShaoY. TanL. LouH. SunL. LiuY. ZengL. QiuZ. LiX. DuanS. YuY. Adenosine‐dependent arousal induced by astrocytes in a brainstem circuit.Adv. Sci.20241148240770610.1002/advs.20240770639494592
    [Google Scholar]
  115. PetersenN. McCannK.E. StavaracheM.A. KimL.Y. WeinshenkerD. WinderD.G. Adenosine A2A receptors link astrocytic α1-adrenergic signaling to wake-promoting dopamine neurons.Biol. Psychiatry202497991592810.1016/j.biopsych.2024.09.03039419462
    [Google Scholar]
  116. MerensW. BooijL. MarkusR. ZitmanF.G. OnkenhoutW. Van der DoesA.J.W. The effects of a diet enriched with α-lactalbumin on mood and cortisol response in unmedicated recovered depressed subjects and controls.Br. J. Nutr.200594341542210.1079/BJN2005149216176613
    [Google Scholar]
  117. KalinchukA.V. McCarleyR.W. StenbergD. Porkka-HeiskanenT. BasheerR. The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep: Lessons from 192 IgG-saporin lesions.Neuroscience2008157123825310.1016/j.neuroscience.2008.08.04018805464
    [Google Scholar]
  118. Del Angel MezaA. GonzálezI.G.A. TorresJ.S. GonzálezR.M. BurgosI.G. ZárateC.B. Cerebral cholinergic neurotransmission in protein and tryptophan-restricted adult rats.Adv. Exp. Med. Biol.200352741542110.1007/978‑1‑4615‑0135‑0_4915206759
    [Google Scholar]
  119. BianX. WangQ. WangY. LouS. The function of previously unappreciated exerkines secreted by muscle in regulation of neurodegenerative diseases.Front. Mol. Neurosci.202416130520810.3389/fnmol.2023.130520838249295
    [Google Scholar]
  120. RodgersG.P. CollinsF.S. Precision nutrition—the answer to “what to eat to stay healthy”.JAMA2020324873573610.1001/jama.2020.1360132766768
    [Google Scholar]
  121. AsgharW. KhalidN. Nutrigenetics and nutrigenomics, and precision nutrition.Nutr. Health202329216917010.1177/0260106023116722836991546
    [Google Scholar]
  122. LeVatteM. KeshteliA.H. ZareiP. WishartD.S. Applications of metabolomics to precision nutrition.Lifestyle Genomics20221511910.1159/00051848934518463
    [Google Scholar]
  123. VorugantiV.S Precision nutrition: Recent advances in obesityPhysiology202338118
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665363873250623103811
Loading
/content/journals/ppl/10.2174/0109298665363873250623103811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test