Skip to content
2000
image of Optimizing Sleep in Athletes: The Potential of α-Lactalbumin in Nutrition Intervention

Abstract

Athletes frequently encounter sleep deprivation due to the demands of high-intensity training and competition, which can significantly impair their physical recovery and athletic performance. α-Lactalbumin (α-LA), a key component of whey protein that is rich in tryptophan, has been shown to promote the synthesis of serotonin and melatonin, thereby regulating sleep cycles. Moreover, α-LA has demonstrated the ability to reduce inflammation and oxidative stress associated with fatigue and stress, further contributing to improved sleep quality. This review provides a critical evaluation of the current evidence supporting the role of α-LA in enhancing sleep quality in athletes through mechanisms such as neurotransmitter regulation, immune function improvement, and enhancement of antioxidant defenses. Additionally, it highlights the necessity for further research into the differential effects of α-LA on sleep across various sports and gender groups, as well as its potential synergistic interactions with other nutrients. These insights are essential for developing optimized nutritional interventions aimed at enhancing athletic performance.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665363873250623103811
2025-07-11
2025-09-13
Loading full text...

Full text loading...

/deliver/fulltext/ppl/10.2174/0109298665363873250623103811/BMS-PPL-2024-226.html?itemId=/content/journals/ppl/10.2174/0109298665363873250623103811&mimeType=html&fmt=ahah

References

  1. Lim D.C. Najafi A. Afifi L. Bassetti C.L.A. Buysse D.J. Han F. Högl B. Melaku Y.A. Morin C.M. Pack A.I. Poyares D. Somers V.K. Eastwood P.R. Zee P.C. Jackson C.L. The need to promote sleep health in public health agendas across the globe. Lancet Public Health 2023 8 10 e820 e826 10.1016/S2468‑2667(23)00182‑2 37777291
    [Google Scholar]
  2. Vitale K.C. Owens R. Hopkins S.R. Malhotra A. Sleep hygiene for optimizing recovery in athletes: Review and recommendations. Int. J. Sports Med. 2019 40 8 535 543 10.1055/a‑0905‑3103 31288293
    [Google Scholar]
  3. Cunha L.A. Costa J.A. Marques E.A. Brito J. Lastella M. Figueiredo P. The impact of sleep interventions on athletic performance: A systematic review. Sports Med. Open 2023 9 1 58 10.1186/s40798‑023‑00599‑z 37462808
    [Google Scholar]
  4. Charest J. Grandner M.A. Sleep and athletic performance: Impacts on physical performance, mental performance, injury risk and recovery, and mental health. Sleep Med. Clin. 2020 15 1 41 57 10.1016/j.jsmc.2019.11.005 32005349
    [Google Scholar]
  5. Charest J. Grandner M.A. Sleep and athletic performance. Sleep Med. Clin. 2022 17 2 263 282 10.1016/j.jsmc.2022.03.006 35659079
    [Google Scholar]
  6. Fullagar H.H.K. Vincent G.E. McCullough M. Halson S. Fowler P. Sleep and sport performance. J. Clin. Neurophysiol. 2023 40 5 408 416 10.1097/WNP.0000000000000638 36930212
    [Google Scholar]
  7. Halson S.L. Sleep in elite athletes and nutritional interventions to enhance sleep. Sports Med. 2014 Suppl. 1 S13 S23 10.1007/s40279‑014‑0147‑0
    [Google Scholar]
  8. Peacock C. Mena M. Sanders G. Silver T. Kalman D. Antonio J. Sleep data, physical performance, and injuries in preparation for professional mixed martial arts. Sports 2018 7 1 1 10.3390/sports7010001 30577414
    [Google Scholar]
  9. Lindseth G. Lindseth P. Thompson M. Nutritional effects on sleep. West. J. Nurs. Res. 2013 35 4 497 513 10.1177/0193945911416379 21816963
    [Google Scholar]
  10. Zhou J. Kim J.E. Armstrong C.L.H. Chen N. Campbell W.W. Higher-protein diets improve indexes of sleep in energy-restricted overweight and obese adults: Results from 2 randomized controlled trials. Am. J. Clin. Nutr. 2016 103 3 766 774 10.3945/ajcn.115.124669 26864362
    [Google Scholar]
  11. Dashti H.S. Scheer F.A.J.L. Jacques P.F. Lamon-Fava S. Ordovás J.M. Short sleep duration and dietary intake: Epidemiologic evidence, mechanisms, and health implications. Adv. Nutr. 2015 6 6 648 659 10.3945/an.115.008623 26567190
    [Google Scholar]
  12. Oikawa S. Macinnis M.J. Tripp T.R. McGlory C. Baker S.K. Phillips S.M. Lactalbumin, not collagen, augments muscle protein synthesis with aerobic exercise. Med. Sci. Sports Exerc. 2020 52 6 1394 1403 10.1249/MSS.0000000000002253 31895298
    [Google Scholar]
  13. Kaida K. Mori I. Kihara K. Kaida N. The function of REM and NREM sleep on memory distortion and consolidation. Neurobiol. Learn. Mem. 2023 204 107811 10.1016/j.nlm.2023.107811 37567411
    [Google Scholar]
  14. Rakowska M. Abdellahi M.E.A. Bagrowska P. Navarrete M. Lewis P.A. Long term effects of cueing procedural memory reactivation during NREM sleep. Neuroimage 2021 244 118573 10.1016/j.neuroimage.2021.118573 34537384
    [Google Scholar]
  15. Kumar D. Koyanagi I. Carrier-Ruiz A. Vergara P. Srinivasan S. Sugaya Y. Kasuya M. Yu T.S. Vogt K.E. Muratani M. Ohnishi T. Singh S. Teixeira C.M. Chérasse Y. Naoi T. Wang S.H. Nondhalee P. Osman B.A.H. Kaneko N. Sawamoto K. Kernie S.G. Sakurai T. McHugh T.J. Kano M. Yanagisawa M. Sakaguchi M. Sparse activity of hippocampal adult-born neurons during rem sleep is necessary for memory consolidation. Neuron 2020 107 3 552 565.e10 10.1016/j.neuron.2020.05.008 32502462
    [Google Scholar]
  16. K Pavlova M. Latreille, V. Sleep disorders. Am. J. Med. 2019 132 3 292 299 10.1016/j.amjmed.2018.09.021 30292731
    [Google Scholar]
  17. Day C. Nishino N. Tsukahara Y. Sleep in the athlete. Clin. Sports Med. 2024 43 1 93 106 10.1016/j.csm.2023.06.007 37949516
    [Google Scholar]
  18. Surda P. Putala M. Siarnik P. Walker A. De Rome K. Amin N. Sangha M.S. Fokkens W. Sleep in elite swimmers: Prevalence of sleepiness, obstructive sleep apnoea and poor sleep quality. BMJ Open Sport Exerc. Med. 2019 5 1 000673 10.1136/bmjsem‑2019‑000673 32095263
    [Google Scholar]
  19. Pujalte G.G.A. Benjamin H.J. Sleep and the Athlete. Curr. Sports Med. Rep. 2018 17 4 109 110 10.1249/JSR.0000000000000468 29629966
    [Google Scholar]
  20. Lastella M. Roach G.D. Halson S.L. Martin D.T. West N.P. Sargent C. Sleep/wake behaviour of endurance cyclists before and during competition. J. Sports Sci. 2015 33 3 293 299 10.1080/02640414.2014.942690 25105558
    [Google Scholar]
  21. Pearson A.G. Hind K. Macnaughton L.S. The impact of dietary protein supplementation on recovery from resistance exercise-induced muscle damage: A systematic review with meta-analysis. Eur. J. Clin. Nutr. 2023 77 8 767 783 10.1038/s41430‑022‑01250‑y 36513777
    [Google Scholar]
  22. Torre-Villalvazo I. Alemán-Escondrillas G. Valle-Ríos R. Noriega L.G. Protein intake and amino acid supplementation regulate exercise recovery and performance through the modulation of mTOR, AMPK, FGF21, and immunity. Nutr. Res. 2019 72 1 17 10.1016/j.nutres.2019.06.006 31672317
    [Google Scholar]
  23. Tanaka E. Yatsuya H. Uemura M. Murata C. Otsuka R. Toyoshima H. Tamakoshi K. Sasaki S. Kawaguchi L. Aoyama A. Associations of protein, fat, and carbohydrate intakes with insomnia symptoms among middle-aged Japanese workers. J. Epidemiol. 2013 23 2 132 138 10.2188/jea.JE20120101 23419282
    [Google Scholar]
  24. Kim H.J. Kim J. Lee S. Kim B. Kwon E. Lee J.E. Chun M.Y. Lee C.Y. Boulier A. Oh S. Lee H.W. A double-blind, randomized, placebo-controlled crossover clinical study of the effects of alpha-s1 casein hydrolysate on sleep disturbance. Nutrients 2019 11 7 1466 10.3390/nu11071466 31252661
    [Google Scholar]
  25. Saidi O. Rochette E. Doré É. Maso F. Raoux J. Andrieux F. Fantini M.L. Merlin E. Pereira B. Walrand S. Duché P. Randomized double-blind controlled trial on the effect of proteins with different tryptophan/large neutral amino acid ratios on sleep in adolescents: The protmorpheus study. Nutrients 2020 12 6 1885 10.3390/nu12061885 32599773
    [Google Scholar]
  26. Layman D.K. Lönnerdal B. Fernstrom J.D. Applications for α-lactalbumin in human nutrition. Nutr. Rev. 2018 76 6 444 460 10.1093/nutrit/nuy004 29617841
    [Google Scholar]
  27. Miles K.H. Clark B. Fowler P.M. Gratwicke M.J. Martin K. Welvaert M. Miller J. Pumpa K.L. ɑ-Lactalbumin improves sleep and recovery after simulated evening competition in female athletes. Med. Sci. Sports Exerc. 2021 53 12 2618 2627 10.1249/MSS.0000000000002743 34649262
    [Google Scholar]
  28. Yiğit A. Bielska P. Cais-Sokolińska D. Samur G. Whey proteins as a functional food: Health effects, functional properties, and applications in food. J. Am Nutr. Assoc 2023 42 8 758 768 10.1080/27697061.2023.2169208 36725371
    [Google Scholar]
  29. Giblin L Yalcin AS Bicim G Kramer AC Chen Z Callanan, MJ Whey proteins: Targets of oxidation, or mediators of redox protection. Free Radic Res. 2019 53 sup1 1136 1152 10.1080/10715762.2019.1632445
    [Google Scholar]
  30. Kwon D.H. Lee H. Park C. Hong S.H. Hong S.H. Kim G.Y. Cha H.J. Kim S. Kim H.S. Hwang H.J. Choi Y.H. Glutathione induced immune-stimulatory activity by promoting m1-like macrophages polarization via potential ROS scavenging capacity. Antioxidants 2019 8 9 413 10.3390/antiox8090413 31540482
    [Google Scholar]
  31. Rusu D. Drouin R. Pouliot Y. Gauthier S. Poubelle P.E. A bovine whey protein extract stimulates human neutrophils to generate bioactive IL-1Ra through a NF-kappaB- and MAPK-dependent mechanism. J. Nutr. 2010 140 2 382 391 10.3945/jn.109.109645 20032479
    [Google Scholar]
  32. Hattori H. Imai H. Furuhama K. Sato O. Nakagawa Y. Induction of phospholipid hydroperoxide glutathione peroxidase in human polymorphonuclear neutrophils and HL60 cells stimulated with TNF-α. Biochem. Biophys. Res. Commun. 2005 337 2 464 473 10.1016/j.bbrc.2005.09.076 16223606
    [Google Scholar]
  33. Gratwicke M. Miles K. Clark B. Pumpa K. The effect of α-lactalbumin consumption on sleep quality and quantity in female rugby union athletes: A field-based study. Biol. Sport 2023 40 2 449 455 10.5114/biolsport.2023.116002 37077794
    [Google Scholar]
  34. Markus C.R. Jonkman L.M. Lammers J.H.C.M. Deutz N.E.P. Messer M.H. Rigtering N. Evening intake of α-lactalbumin increases plasma tryptophan availability and improves morning alertness and brain measures of attention. Am. J. Clin. Nutr. 2005 81 5 1026 1033 10.1093/ajcn/81.5.1026 15883425
    [Google Scholar]
  35. Markus C.R. Olivier B. Panhuysen G.E.M. Van der Gugten J. Alles M.S. Tuiten A. Westenberg H.G.M. Fekkes D. Koppeschaar H.F. de Haan E.E.H.F. The bovine protein α-lactalbumin increases the plasma ratio of tryptophan to the other large neutral amino acids, and in vulnerable subjects raises brain serotonin activity, reduces cortisol concentration, and improves mood under stress. Am. J. Clin. Nutr. 2000 71 6 1536 1544 10.1093/ajcn/71.6.1536 10837296
    [Google Scholar]
  36. Ong J.N. Hackett D.A. Chow C.M. Sleep quality and duration following evening intake of alpha-lactalbumin: A pilot study. Biol. Rhythm Res. 2017 48 4 507 517 10.1080/09291016.2016.1275398
    [Google Scholar]
  37. Yajima K. Seya T. Iwayama K. Hibi M. Hari S. Nakashima Y. Ogata H. Omi N. Satoh M. Tokuyama K. Effects of nutrient composition of dinner on sleep architecture and energy metabolism during sleep. J. Nutr. Sci. Vitaminol. 2014 60 2 114 121 10.3177/jnsv.60.114 24975221
    [Google Scholar]
  38. Halson S.L. Shaw G. Versey N. Miller D.J. Sargent C. Roach G.D. Nyman L. Carter J.M. Baar K. Optimisation and validation of a nutritional intervention to enhance sleep quality and quantity. Nutrients 2020 12 9 2579 10.3390/nu12092579 32854375
    [Google Scholar]
  39. MacInnis M.J. Dziedzic C.E. Wood E. Oikawa S.Y. Phillips S.M. Presleep α-lactalbumin consumption does not improve sleep quality or time-trial performance in cyclists. Int. J. Sport Nutr. Exerc. Metab. 2020 30 3 197 202 10.1123/ijsnem.2020‑0009 32698123
    [Google Scholar]
  40. Ferguson C. Aisbett B. Lastella M. Roberts S. Condo D. Evening whey protein intake, rich in tryptophan, and sleep in elite male australian rules football players on training and nontraining days. Int. J. Sport Nutr. Exerc. Metab. 2022 32 2 82 88 10.1123/ijsnem.2021‑0145 34875624
    [Google Scholar]
  41. Barnard J. Roberts S. Lastella M. Callahan D.L. Aisbett B. Condo D. Evening alpha-lactalbumin supplementation alters sleep architecture and reduces morning reaction time in an athletically trained population with sleep difficulties. Int. J. Sport Nutr. Exerc. Metab. 2025 35 3 1 10 10.1123/ijsnem.2024‑0094 39832504
    [Google Scholar]
  42. Heine W. Radke M. Wutzke K.D. Peters E. Kundt G. α‐Lactalbumin‐enriched low‐protein infant formulas: A comparison to breast milk feeding. Acta Paediatr. 1996 85 9 1024 1028 10.1111/j.1651‑2227.1996.tb14210.x 8888911
    [Google Scholar]
  43. Minet-Ringuet J. Le Ruyet P.M. Tomé D. Even P.C. A tryptophan-rich protein diet efficiently restores sleep after food deprivation in the rat. Behav. Brain Res. 2004 152 2 335 340 10.1016/j.bbr.2003.10.018 15196801
    [Google Scholar]
  44. Sutanto C.N. Loh W.W. Kim J.E. The impact of tryptophan supplementation on sleep quality: A systematic review, meta-analysis, and meta-regression. Nutr. Rev. 2022 80 2 306 316 10.1093/nutrit/nuab027 33942088
    [Google Scholar]
  45. Kałużna-Czaplińska J. Gątarek P. Chirumbolo S. Chartrand M.S. Bjørklund G. How important is tryptophan in human health? Crit. Rev. Food Sci. Nutr. 2019 59 1 72 88 10.1080/10408398.2017.1357534 28799778
    [Google Scholar]
  46. Poza J.J. Pujol M. Ortega-Albás J.J. Romero O. Melatonin in sleep disorders. Neurologia 2022 37 7 575 585 10.1016/j.nrleng.2018.08.004
    [Google Scholar]
  47. Monti J.M. The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep. Sleep Med. Rev. 2010 14 5 319 327 10.1016/j.smrv.2009.10.003 20153670
    [Google Scholar]
  48. Sutanto C.N. Xia X. Heng C.W. Tan Y.S. Lee D.P.S. Fam J. Kim J.E. The impact of 5-hydroxytryptophan supplementation on sleep quality and gut microbiota composition in older adults: A randomized controlled trial. Clin. Nutr. 2024 43 3 593 602 10.1016/j.clnu.2024.01.010 38309227
    [Google Scholar]
  49. Lin Z. Jiang T. Chen M. Ji X. Wang Y. Gut microbiota and sleep: Interaction mechanisms and therapeutic prospects. Open Life Sci. 2024 19 1 20220910 10.1515/biol‑2022‑0910 39035457
    [Google Scholar]
  50. Fung T.C. Vuong H.E. Luna C.D.G. Pronovost G.N. Aleksandrova A.A. Riley N.G. Vavilina A. McGinn J. Rendon T. Forrest L.R. Hsiao E.Y. Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut. Nat. Microbiol. 2019 4 12 2064 2073 10.1038/s41564‑019‑0540‑4 31477894
    [Google Scholar]
  51. Nakatani Y. Sato-Suzuki I. Tsujino N. Nakasato A. Seki Y. Fumoto M. Arita H. Augmented brain 5‐HT crosses the blood-brain barrier through the 5‐HT transporter in rat. Eur. J. Neurosci. 2008 27 9 2466 2472 10.1111/j.1460‑9568.2008.06201.x 18445233
    [Google Scholar]
  52. Voog L. Eriksson T. Is rat brain content of large neutral amino acids (LNAAs) a reflection of plasma LNAA concentrations? J. Neural Transm. 1992 87 2 133 143 10.1007/BF01245015 1558742
    [Google Scholar]
  53. Markus C.R. Olivier B. de Haan E.H.F. Whey protein rich in α-lactalbumin increases the ratio of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects. Am. J. Clin. Nutr. 2002 75 6 1051 1056 10.1093/ajcn/75.6.1051 12036812
    [Google Scholar]
  54. Markus C.R. Klöpping-Ketelaars W.I. Pasman W. Klarenbeek B. van den Berg H. Dose-dependent effect of α-lactalbumin in combination with two different doses of glucose on the plasma Trp/LNAA ratio. Nutr. Neurosci. 2000 3 5 345 355 10.1080/1028415X.2000.11747332 27414133
    [Google Scholar]
  55. Moriya T. Yoshinobu Y. Ikeda M. Yokota S. Akiyama M. Shibata S. Potentiating action of MKC‐242, a selective 5‐HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters. Br. J. Pharmacol. 1998 125 6 1281 1287 10.1038/sj.bjp.0702176 9863658
    [Google Scholar]
  56. Varcoe T.J. Kennaway D.J. Voultsios A. Activation of 5-HT2C receptors acutely induces Per gene expression in the rat suprachiasmatic nucleus at night. Brain Res. Mol. Brain Res. 2003 119 2 192 200 10.1016/j.molbrainres.2003.09.010 14625086
    [Google Scholar]
  57. Guseva D. Wirth A. Ponimaskin E. Cellular mechanisms of the 5-HT 7 receptor-mediated signaling. Front. Behav. Neurosci. 2014 8 306 10.3389/fnbeh.2014.00306 25324743
    [Google Scholar]
  58. Hedlund P.B. Huitron-Resendiz S. Henriksen S.J. Sutcliffe J.G. 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Biol. Psychiatry 2005 58 10 831 837 10.1016/j.biopsych.2005.05.012 16018977
    [Google Scholar]
  59. Monti J.M. Serotonin control of sleep-wake behavior. Sleep Med. Rev. 2011 15 4 269 281 10.1016/j.smrv.2010.11.003 21459634
    [Google Scholar]
  60. Boutrel B. Monaca C. Hen R. Hamon M. Adrien J. Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: Studies in 5-HT1A knock-out mice. J. Neurosci. 2002 22 11 4686 4692 10.1523/JNEUROSCI.22‑11‑04686.2002 12040075
    [Google Scholar]
  61. Boutrel B. Franc B. Hen R. Hamon M. Adrien J. Key role of 5-HT1B receptors in the regulation of paradoxical sleep as evidenced in 5-HT1B knock-out mice. J. Neurosci. 1999 19 8 3204 3212 10.1523/JNEUROSCI.19‑08‑03204.1999 10191333
    [Google Scholar]
  62. Popa D. Léna C. Fabre V. Prenat C. Gingrich J. Escourrou P. Hamon M. Adrien J. Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors. J. Neurosci. 2005 25 49 11231 11238 10.1523/JNEUROSCI.1724‑05.2005 16339018
    [Google Scholar]
  63. Ly S. Pishdari B. Lok L.L. Hajos M. Kocsis B. Activation of 5-HT6 receptors modulates sleep-wake activity and hippocampal theta oscillation. ACS Chem. Neurosci. 2013 4 1 191 199 10.1021/cn300184t 23336058
    [Google Scholar]
  64. Belliveau S. Kang W. Bovaird S. Hamadjida A. Bédard D. Dancause N. Stroh T. Huot P. Stereological investigation of 5-HT3 receptors in the substantia nigra and dorsal raphe nucleus in the rat. J. Chem. Neuroanat. 2021 111 101881 10.1016/j.jchemneu.2020.101881 33160048
    [Google Scholar]
  65. St-Onge M.P. Cherta-Murillo A. Darimont C. Mantantzis K. Martin F.P. Owen L. The interrelationship between sleep, diet, and glucose metabolism. Sleep Med. Rev. 2023 69 101788 10.1016/j.smrv.2023.101788 37156196
    [Google Scholar]
  66. Cruz-Sanabria F. Carmassi C. Bruno S. Bazzani A. Carli M. Scarselli M. Faraguna U. Melatonin as a chronobiotic with sleep-promoting properties. Curr. Neuropharmacol. 2023 21 4 951 987 10.2174/1570159X20666220217152617 35176989
    [Google Scholar]
  67. Paryab N. Taheri M. H’Mida, C.; Irandoust, K.; Mirmoezzi, M.; Trabelsi, K.; Ammar, A.; Chtourou, H. Melatonin supplementation improves psychomotor and physical performance in collegiate student-athletes following a sleep deprivation night. Chronobiol. Int. 2021 38 5 753 761 10.1080/07420528.2021.1889578 33845710
    [Google Scholar]
  68. Cheikh M. Hammouda O. Gaamouri N. Driss T. Chamari K. Cheikh R.B. Dogui M. Souissi N. Melatonin ingestion after exhaustive late-evening exercise improves sleep quality and quantity, and short-term performances in teenage athletes. Chronobiol. Int. 2018 35 9 1281 1293 10.1080/07420528.2018.1474891 29846091
    [Google Scholar]
  69. Kruk J. Aboul-Enein B.H. Duchnik E. Exercise-induced oxidative stress and melatonin supplementation: Current evidence. J. Physiol. Sci. 2021 71 1 27 10.1186/s12576‑021‑00812‑2 34470608
    [Google Scholar]
  70. Liu J. Clough S.J. Hutchinson A.J. Adamah-Biassi E.B. Popovska-Gorevski M. Dubocovich M.L. MT 1 and MT 2 melatonin receptors: A therapeutic perspective. Annu. Rev. Pharmacol. Toxicol. 2016 56 1 361 383 10.1146/annurev‑pharmtox‑010814‑124742 26514204
    [Google Scholar]
  71. Comai S. Ochoa-Sanchez R. Gobbi G. Sleep-wake characterization of double MT1/MT2 receptor knockout mice and comparison with MT1 and MT2 receptor knockout mice. Behav. Brain Res. 2013 243 231 238 10.1016/j.bbr.2013.01.008 23333399
    [Google Scholar]
  72. Ochoa-Sanchez R. Comai S. Lacoste B. Bambico F.R. Dominguez-Lopez S. Spadoni G. Rivara S. Bedini A. Angeloni D. Fraschini F. Mor M. Tarzia G. Descarries L. Gobbi G. Promotion of non-rapid eye movement sleep and activation of reticular thalamic neurons by a novel MT2 melatonin receptor ligand. J. Neurosci. 2011 31 50 18439 18452 10.1523/JNEUROSCI.2676‑11.2011 22171046
    [Google Scholar]
  73. Ochoa-Sanchez R. Comai S. Spadoni G. Bedini A. Tarzia G. Gobbi G. Melatonin, selective and non-selective MT1/MT2 receptors agonists: Differential effects on the 24-h vigilance states. Neurosci. Lett. 2014 561 156 161 10.1016/j.neulet.2013.12.069 24406151
    [Google Scholar]
  74. Fisher S.P. Sugden D. Sleep-promoting action of IIK7, a selective MT2 melatonin receptor agonist in the rat. Neurosci. Lett. 2009 457 2 93 96 10.1016/j.neulet.2009.04.005 19429170
    [Google Scholar]
  75. Park S. Kang I. Edden R.A.E. Namgung E. Kim J. Kim J. Shorter sleep duration is associated with lower GABA levels in the anterior cingulate cortex. Sleep Med. 2020 71 1 7 10.1016/j.sleep.2020.02.018 32447224
    [Google Scholar]
  76. Buscemi N. Vandermeer B. Hooton N. Pandya R. Tjosvold L. Hartling L. Baker G. Klassen T.P. Vohra S. The efficacy and safety of exogenous melatonin for primary sleep disorders a meta-analysis. J. Gen. Intern. Med. 2005 20 12 1151 1158 10.1111/j.1525‑1497.2005.0243.x 16423108
    [Google Scholar]
  77. Ferracioli-Oda E. Qawasmi A. Bloch M.H. Meta-analysis: Melatonin for the treatment of primary sleep disorders. PLoS One 2013 8 5 63773 10.1371/journal.pone.0063773 23691095
    [Google Scholar]
  78. Yu X. Li W. Ma Y. Tossell K. Harris J.J. Harding E.C. Ba W. Miracca G. Wang D. Li L. Guo J. Chen M. Li Y. Yustos R. Vyssotski A.L. Burdakov D. Yang Q. Dong H. Franks N.P. Wisden W. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat. Neurosci. 2019 22 1 106 119 10.1038/s41593‑018‑0288‑9 30559475
    [Google Scholar]
  79. Xu J. Li Y. Lv Y. Bian C. You X. Endoh D. Teraoka H. Shi Q. Molecular evolution of tryptophan hydroxylases in vertebrates: A comparative genomic survey. Genes 2019 10 3 203 10.3390/genes10030203 30857219
    [Google Scholar]
  80. Xia T.J. Jin S.W. Liu Y.G. Zhang S.S. Wang Z. Liu X.M. Pan R.L. Jiang N. Liao Y.H. Yan M.Z. Chang Q. Shen Yuan extract exerts a hypnotic effect via the tryptophan/5-hydroxytryptamine/melatonin pathway in mice. J. Ethnopharmacol. 2024 326 117992 10.1016/j.jep.2024.117992 38428654
    [Google Scholar]
  81. Moranta D. Barceló P. Aparicio S. Garau C. Sarubbo F. Ramis M. Nicolau C. Esteban S. Intake of melatonin increases tryptophan hydroxylase type 1 activity in aged rats: Preliminary study. Exp. Gerontol. 2014 49 1 4 10.1016/j.exger.2013.10.012 24189046
    [Google Scholar]
  82. Ursin R. Serotonin and sleep. Sleep Med. Rev. 2002 6 1 55 67 10.1053/smrv.2001.0174 12531142
    [Google Scholar]
  83. Rogando A.C. Weber K.M. Xing J. Xue X. Yohannes T. Morack R. Qi Q. Clish C. Bullock K. Gustafson D. Anastos K. Sharma A. Burgess H.J. French A.L. The IDOze study: The link between sleep disruption and tryptophan-kynurenine pathway activation in women with human immunodeficiency virus. J. Infect. Dis. 2022 226 8 1451 1460 10.1093/infdis/jiac287 35801535
    [Google Scholar]
  84. Bhat A. Pires A.S. Tan V. Babu Chidambaram S. Guillemin G.J. Effects of sleep deprivation on the tryptophan metabolism. Int. J. Tryptophan Res. 2020 13 1178646920970902 10.1177/1178646920970902 33281456
    [Google Scholar]
  85. Xie D. Shen Y. Su E. Du L. Xie J. Wei D. The effects of angiotensin I-converting enzyme inhibitory peptide VGINYW and the hydrolysate of α-lactalbumin on blood pressure, oxidative stress and gut microbiota of spontaneously hypertensive rats. Food Funct. 2022 13 5 2743 2755 10.1039/D1FO03570C 35171185
    [Google Scholar]
  86. Atrooz F. Salim S. Sleep deprivation, oxidative stress and inflammation. Adv. Protein Chem. Struct. Biol. 2020 119 309 336 10.1016/bs.apcsb.2019.03.001 31997771
    [Google Scholar]
  87. Sang D. Lin K. Yang Y. Ran G. Li B. Chen C. Li Q. Ma Y. Lu L. Cui X.Y. Liu Z. Lv S.Q. Luo M. Liu Q. Li Y. Zhang E.E. Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals. Cell 2023 186 25 5500 5516.e21 10.1016/j.cell.2023.10.025 38016470
    [Google Scholar]
  88. Lavalle S. Masiello E. Iannella G. Magliulo G. Pace A. Lechien J.R. Calvo-Henriquez C. Cocuzza S. Parisi F.M. Favier V. Bahgat A.Y. Cammaroto G. La Via L. Gagliano C. Caranti A. Vicini C. Maniaci A. Unraveling the complexities of oxidative stress and inflammation biomarkers in obstructive sleep apnea syndrome: A comprehensive review. Life 2024 14 4 425 10.3390/life14040425 38672697
    [Google Scholar]
  89. Xue R. Wan Y. Sun X. Zhang X. Gao W. Wu W. Nicotinic mitigation of neuroinflammation and oxidative stress after chronic sleep deprivation. Front. Immunol. 2019 10 2546 10.3389/fimmu.2019.02546 31736967
    [Google Scholar]
  90. Irwin M.R. Sleep and inflammation: Partners in sickness and in health. Nat. Rev. Immunol. 2019 19 11 702 715 10.1038/s41577‑019‑0190‑z 31289370
    [Google Scholar]
  91. Irwin M.R. Opp M.R. Sleep health: Reciprocal regulation of sleep and innate immunity. Neuropsychopharmacology 2017 42 1 129 155 10.1038/npp.2016.148 27510422
    [Google Scholar]
  92. Dumaine J.E. Ashley N.T. Acute sleep fragmentation induces tissue-specific changes in cytokine gene expression and increases serum corticosterone concentration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015 308 12 R1062 R1069 10.1152/ajpregu.00049.2015 25876653
    [Google Scholar]
  93. Lianxu C. Hongti J. Changlong Y. NF-κBp65-specific siRNA inhibits expression of genes of COX-2, NOS-2 and MMP-9 in rat IL-1β-induced and TNF-α-induced chondrocytes. Osteoarth Cartil. 2006 14 4 367 376 10.1016/j.joca.2005.10.009 16376111
    [Google Scholar]
  94. Cardinale V. Lepore E. Basciani S. Artale S. Nordio M. Bizzarri M. Unfer V. Positive effects of α-lactalbumin in the management of symptoms of polycystic ovary syndrome. Nutrients 2022 14 15 3220 10.3390/nu14153220 35956395
    [Google Scholar]
  95. Gao J. Guo K. Du M. Mao X. Bovine α-lactalbumin-derived peptides attenuate TNF-α-induced insulin resistance and inflammation in 3T3-L1 adipocytes through inhibiting JNK and NF-κB signaling. Food Funct. 2022 13 4 2323 2335 10.1039/D1FO01217G 35142310
    [Google Scholar]
  96. Chen H. Sun Y. Zhao H. Qi X. Cui H. Li Q. Ma Y. α-Lactalbumin peptide Asp-Gln-Trp alleviates hepatic insulin resistance and modulates gut microbiota dysbiosis in high-fat diet-induced NAFLD mice. Food Funct. 2022 13 19 9878 9892 10.1039/D2FO01343F 36052713
    [Google Scholar]
  97. Yamaguchi M. Yoshida K. Uchida M. Novel functions of bovine milk-derived alpha-lactalbumin: Anti-nociceptive and anti-inflammatory activity caused by inhibiting cyclooxygenase-2 and phospholipase A2. Biol. Pharm. Bull. 2009 32 3 366 371 10.1248/bpb.32.366 19252279
    [Google Scholar]
  98. Yamaguchi M. Takai S. Chronic administration of bovine milk-derived α-lactalbumin improves glucose tolerance via enhancement of adiponectin in Goto-Kakizaki rats with type 2 diabetes. Biol. Pharm. Bull. 2014 37 3 404 408 10.1248/bpb.b13‑00762 24583859
    [Google Scholar]
  99. Ushida Y. Shimokawa Y. Toida T. Matsui H. Takase M. Bovine alpha-lactalbumin stimulates mucus metabolism in gastric mucosa. J. Dairy Sci. 2007 90 2 541 546 10.3168/jds.S0022‑0302(07)71537‑0 17235130
    [Google Scholar]
  100. Lei X. Xu Z. Chen W. Association of oxidative balance score with sleep quality: NHANES 2007-2014. J. Affect. Disord. 2023 339 435 442 10.1016/j.jad.2023.07.040 37442450
    [Google Scholar]
  101. Rahimpour P. Nasehi M. Zarrindast M.R. Khalifeh S. Dose-dependent manner of luteolin in the modulation of spatial memory with respect to the hippocampal level of HSP70 and HSP90 in sleep-deprived rats. Gene 2023 852 147046 10.1016/j.gene.2022.147046 36379383
    [Google Scholar]
  102. Hahad O. Schmidt F.P. Hübner J. Foos P. Al-Kindi S. Schmitt V.H. Hobohm L. Keller K. Große-Dresselhaus C. Schmeißer J. Koppe-Schmeißer F. Vosseler M. Gilan D. Schulz A. Chalabi J. Wild P.S. Daiber A. Herzog J. Münzel T. Acute exposure to simulated nocturnal traffic noise and cardiovascular complications and sleep disturbance—results from a pooled analysis of human field studies. Clin. Res. Cardiol. 2023 112 11 1690 1698 10.1007/s00392‑023‑02297‑y 37695527
    [Google Scholar]
  103. Chen H. Ma Y. Qi X. Tian J. Ma Y. Niu T. α‐Lactalbumin peptide asp‐gln‐trp ameliorates hepatic steatosis and oxidative stress in free fatty acids‐treated hepg2 cells and high‐fat diet‐induced NAFLD mice by activating the PPARA pathway. Mol. Nutr. Food Res. 2023 67 16 2200499 10.1002/mnfr.202200499 37354055
    [Google Scholar]
  104. Chen H. Qi X. Guan K. Wang R. Li Q. Ma Y. Tandem mass tag-based quantitative proteomics analysis reveals the effects of the α-lactalbumin peptides GINY and DQW on lipid deposition and oxidative stress in HepG2 cells. J. Dairy Sci. 2023 106 4 2271 2288 10.3168/jds.2022‑22511 36797178
    [Google Scholar]
  105. Mackay-Phillips K. Orssatto L.B.R. Polman R. Van der Pols J.C. Trajano G.S. Effects of α-lactalbumin on strength, fatigue and psychological parameters: A randomised double-blind cross-over study. Eur. J. Appl. Physiol. 2023 123 2 381 393 10.1007/s00421‑022‑05103‑1 36443490
    [Google Scholar]
  106. Jung H. Jung D. Lee J. Ki W. Lee J.M. Kim E.M. Nam M.S. Kim K.K. Bioactive peptides in the pancreatin-hydrolysates of whey protein support cell proliferation and scavenge reactive oxygen species. Anim. Cells Syst. 2022 26 5 232 242 10.1080/19768354.2022.2130425 36275446
    [Google Scholar]
  107. Marshall K. Therapeutic applications of whey protein. Altern. Med. Rev. 2004 9 2 136 156 15253675
    [Google Scholar]
  108. Mariotti F. Simbelie K.L. Makarios-Lahham L. Huneau J.F. Tomé D. Even P.C. Laplaize B. Acute ingestion of dietary proteins improves post-exercise liver glutathione in rats in a dose-dependent relationship with their cysteine content. J. Nutr. 2004 134 1 128 131 10.1093/jn/134.1.128 14704304
    [Google Scholar]
  109. Li W. Yang X. Effect of WPI on immune function and antioxidant capacity during specific training period before competition in elite track and field athletes. Nat. Sci. Educ. 2015 43 03 172 177
    [Google Scholar]
  110. Kritikos S. Papanikolaou K. Draganidis D. Poulios A. Georgakouli K. Tsimeas P. Tzatzakis T. Batsilas D. Batrakoulis A. Deli C.K. Chatzinikolaou A. Mohr M. Jamurtas A.Z. Fatouros I.G. Effect of whey vs. soy protein supplementation on recovery kinetics following speed endurance training in competitive male soccer players: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2021 18 1 23 10.1186/s12970‑021‑00420‑w 33726784
    [Google Scholar]
  111. Zhang W Xiang L Luo P Xie D Bovine-derived alpha-lactalbumin exhibits cardiovascular protection against aging by ameliorating the inflammatory process in mice. Int. Immunopharmacol 113 Pt A 109291. 10.1016/j.intimp.2022.109291 2022
    [Google Scholar]
  112. Orosco M. Rouch C. Beslot F. Feurte S. Regnault A. Dauge V. Alpha-lactalbumin-enriched diets enhance serotonin release and induce anxiolytic and rewarding effects in the rat. Behav. Brain Res. 2004 148 1-2 1 10 10.1016/S0166‑4328(03)00153‑0 14684242
    [Google Scholar]
  113. Höglund E. Øverli Ø. Winberg S. Tryptophan metabolic pathways and brain serotonergic activity: A comparative review. Front. Endocrinol. 2019 10 158 10.3389/fendo.2019.00158 31024440
    [Google Scholar]
  114. Zhu Y. Ma J. Li Y. Gu M. Feng X. Shao Y. Tan L. Lou H. Sun L. Liu Y. Zeng L. Qiu Z. Li X. Duan S. Yu Y. Adenosine‐dependent arousal induced by astrocytes in a brainstem circuit. Adv. Sci. 2024 11 48 2407706 10.1002/advs.202407706 39494592
    [Google Scholar]
  115. Petersen N. McCann K.E. Stavarache M.A. Kim L.Y. Weinshenker D. Winder D.G. Adenosine A2A receptors link astrocytic α1-adrenergic signaling to wake-promoting dopamine neurons. Biol. Psychiatry 2024 97 9 915 928 10.1016/j.biopsych.2024.09.030 39419462
    [Google Scholar]
  116. Merens W. Booij L. Markus R. Zitman F.G. Onkenhout W. Van der Does A.J.W. The effects of a diet enriched with α-lactalbumin on mood and cortisol response in unmedicated recovered depressed subjects and controls. Br. J. Nutr. 2005 94 3 415 422 10.1079/BJN20051492 16176613
    [Google Scholar]
  117. Kalinchuk A.V. McCarley R.W. Stenberg D. Porkka-Heiskanen T. Basheer R. The role of cholinergic basal forebrain neurons in adenosine-mediated homeostatic control of sleep: Lessons from 192 IgG-saporin lesions. Neuroscience 2008 157 1 238 253 10.1016/j.neuroscience.2008.08.040 18805464
    [Google Scholar]
  118. Del Angel Meza A. González I.G.A. Torres J.S. González R.M. Burgos I.G. Zárate C.B. Cerebral cholinergic neurotransmission in protein and tryptophan-restricted adult rats. Adv. Exp. Med. Biol. 2003 527 415 421 10.1007/978‑1‑4615‑0135‑0_49 15206759
    [Google Scholar]
  119. Bian X. Wang Q. Wang Y. Lou S. The function of previously unappreciated exerkines secreted by muscle in regulation of neurodegenerative diseases. Front. Mol. Neurosci. 2024 16 1305208 10.3389/fnmol.2023.1305208 38249295
    [Google Scholar]
  120. Rodgers G.P. Collins F.S. Precision nutrition—the answer to “what to eat to stay healthy”. JAMA 2020 324 8 735 736 10.1001/jama.2020.13601 32766768
    [Google Scholar]
  121. Asghar W. Khalid N. Nutrigenetics and nutrigenomics, and precision nutrition. Nutr. Health 2023 29 2 169 170 10.1177/02601060231167228 36991546
    [Google Scholar]
  122. LeVatte M. Keshteli A.H. Zarei P. Wishart D.S. Applications of metabolomics to precision nutrition. Lifestyle Genomics 2022 15 1 1 9 10.1159/000518489 34518463
    [Google Scholar]
  123. Voruganti V.S. Precision nutrition: Recent advances in obesity. Physiology 2023 38 1 1 8
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665363873250623103811
Loading
/content/journals/ppl/10.2174/0109298665363873250623103811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test