Skip to content
2000
Volume 32, Issue 6
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Members of the 14-3-3 protein family are involved in various cellular processes, including migration, angiogenesis, cell cycle, apoptosis, and signal transduction. Nevertheless, the 14-3-3 family possibly plays a fundamental role in the development of diseases and cancer by regulating various biological pathways. MicroRNAs (miRNAs) are mainly transcribed by RNA polymerase II (pol II), with only a few exceptions involving RNA polymerase III (pol III). They can control cell mechanisms through different pathways. miRNAs inhibit or destroy mRNAs by binding to them. They control intracellular mechanisms by binding to molecules such as the 14-3-3ζ protein. miRNAs play a role in regulating this protein, and by inducing or suppressing it, they contribute to either the development or the prevention of the diseases. Therefore, considering the importance of the 14-3-3ζ protein in different pathways within the body, we decided to investigate the relationship between miRNAs and 14-3-3ζ and clarify their interactions, in this review.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665377739250618153852
2025-07-02
2025-11-02
Loading full text...

Full text loading...

References

  1. FanX. CuiL. ZengY. SongW. GaurU. YangM. 14-3-3 proteins are on the crossroads of cancer, aging, and age-related neurodegenerative disease.Int. J. Mol. Sci.20192014351810.3390/ijms2014351831323761
    [Google Scholar]
  2. TrošanováZ. LoušaP. KozelekováA. BromT. GašparikN. TungliJ. WeisováV. ŽupaE. ŽoldákG. HritzJ. Quantitation of human 14-3-3ζ dimerization and the effect of phosphorylation on dimer-monomer equilibria.J. Mol. Biol.2022434716747910.1016/j.jmb.2022.16747935134439
    [Google Scholar]
  3. ChoE. ParkJ.Y. Emerging roles of 14-3-3γ in the brain disorder.BMB Rep.2020531050051110.5483/BMBRep.2020.53.10.15832958119
    [Google Scholar]
  4. CornellB. Toyo-okaK. 14-3-3 proteins in brain development: Neurogenesis, neuronal migration and neuromorphogenesis.Front. Mol. Neurosci.20171031810.3389/fnmol.2017.0031829075177
    [Google Scholar]
  5. KaplanA. OttmannC. FournierA.E. 14-3-3 adaptor protein-protein interactions as therapeutic targets for CNS diseases.Pharmacol. Res.2017125Pt B11412110.1016/j.phrs.2017.09.00728918174
    [Google Scholar]
  6. SluchankoN.N. GusevN.B. Moonlighting chaperone-like activity of the universal regulatory 14-3-3 proteins.FEBS J.201728491279129510.1111/febs.1398627973707
    [Google Scholar]
  7. ZhouR. HuW. MaP.X. LiuC. Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases.Bone Res.20241215810.1038/s41413‑024‑00370‑439406741
    [Google Scholar]
  8. ObšilováV. ŠilhanJ. BouřaE. TeisingerJ. ObšilT. 14-3-3 proteins: A family of versatile molecular regulators.Physiol. Res.200857Suppl. 3S11S2110.33549/physiolres.93159818481918
    [Google Scholar]
  9. BridgesD. MoorheadG.B.G. 14-3-3 proteins: A number of functions for a numbered protein.Sci. STKE20052005296re10re1010.1126/stke.2962005re1016091624
    [Google Scholar]
  10. AseervathamJ. Interactions between 14-3-3 proteins and actin cytoskeleton and its regulation by micrornas and long non-coding RNAs in cancer.Endocrines20223466570210.3390/endocrines3040057
    [Google Scholar]
  11. PozniakT. ShcharbinD. BryszewskaM. Circulating microRNAs in medicine.Int. J. Mol. Sci.2022237399610.3390/ijms2307399635409354
    [Google Scholar]
  12. Dey GhoshR. Guha MajumderS. Circulating long non-coding RNAS could be the potential prognostic biomarker for liquid biopsy for the clinical management of oral squamous cell carcinoma.Cancers20221422559010.3390/cancers1422559036428681
    [Google Scholar]
  13. CalinG.A. DumitruC.D. ShimizuM. BichiR. ZupoS. NochE. AldlerH. RattanS. KeatingM. RaiK. RassentiL. KippsT. NegriniM. BullrichF. CroceC.M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.Proc. Natl. Acad. Sci. USA20029924155241552910.1073/pnas.24260679912434020
    [Google Scholar]
  14. Alkhazaali-AliZ. Sahab-NegahS. BoroumandA.R. Tavakol-AfshariJ. MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease.Biomed. Pharmacother.202417711689910.1016/j.biopha.2024.11689938889636
    [Google Scholar]
  15. SadeghiZ. MalekzadehM. SharifiM. HashemibeniB. The role of miR-16 and miR-34a family in the regulation of cancers: A review.Heliyon20251144273310.1016/j.heliyon.2025.e4273340061926
    [Google Scholar]
  16. NemethK. BayraktarR. FerracinM. CalinG.A. Non-coding RNAs in disease: From mechanisms to therapeutics.Nat. Rev. Genet.202425321123210.1038/s41576‑023‑00662‑137968332
    [Google Scholar]
  17. GareevI. BeylerliO. ZhaoB. MiRNAs as potential therapeutic targets and biomarkers for non-traumatic intracerebral hemorrhage.Biomark. Res.20241211710.1186/s40364‑024‑00568‑y38308370
    [Google Scholar]
  18. LugliG. CohenA.M. BennettD.A. ShahR.C. FieldsC.J. HernandezA.G. SmalheiserN.R. Plasma exosomal miRNAs in persons with and without Alzheimer disease: Altered expression and prospects for biomarkers.PLoS One20151010013923310.1371/journal.pone.013923326426747
    [Google Scholar]
  19. ZhiM.L. LiuZ.J. YiX.Y. ZhangL.J. BaoY.X. Diagnostic performance of microRNA-29a for colorectal cancer: A meta-analysis.Genet. Mol. Res.2015144180181802510.4238/2015.December.22.2826782449
    [Google Scholar]
  20. SchmitzM. EbertE. StoeckK. KarchA. CollinsS. CaleroM. SklaviadisT. LaplancheJ.L. GolanskaE. BaldeirasI. SatohK. Sanchez-ValleR. LadoganaA. SkinningsrudA. HammarinA.L. MitrovaE. LlorensF. KimY.S. GreenA. ZerrI. Validation of 14-3-3 protein as a marker in sporadic Creutzfeldt-Jakob disease diagnostic.Mol. Neurobiol.20165342189219910.1007/s12035‑015‑9167‑525947081
    [Google Scholar]
  21. MorrisonD.K. The 14-3-3 proteins: Integrators of diverse signaling cues that impact cell fate and cancer development.Trends Cell Biol.2009191162310.1016/j.tcb.2008.10.00319027299
    [Google Scholar]
  22. MugaboY. ZhaoC. TanJ.J. GhoshA. CampbellS.A. FadzeyevaE. ParéF. PanS.S. GalipeauM. AstJ. BroichhagenJ. HodsonD.J. MulvihillE.E. PetropoulosS. LimG.E. 14-3-3ζ Constrains insulin secretion by regulating mitochondrial function in pancreatic β cells.JCI Insight20227815637810.1172/jci.insight.15637835298439
    [Google Scholar]
  23. MattaA. SiuK.W.M. RalhanR. 14-3-3 zeta as novel molecular target for cancer therapy.Expert Opin. Ther. Targets201216551552310.1517/14728222.2012.66818522512284
    [Google Scholar]
  24. SunS. WongE.W.P. LiM.W.M. LeeW.M. ChengC.Y. 14-3-3 and its binding partners are regulators of protein–protein interactions during spermatogenesis.J. Endocrinol.2009202332733610.1677/JOE‑09‑004119366886
    [Google Scholar]
  25. UchidaS. KuboA. KizuR. NakagamaH. MatsunagaT. IshizakaY. YamashitaK. Amino acids C-terminal to the 14-3-3 binding motif in CDC25B affect the efficiency of 14-3-3 binding.J. Biochem.2006139476176910.1093/jb/mvj07916672277
    [Google Scholar]
  26. SuzukiH. ItohF. ToyotaM. KikuchiT. KakiuchiH. ImaiK. Inactivation of the 14-3-3 σ gene is associated with 5′ CpG island hypermethylation in human cancers.Cancer Res.200060164353435710969776
    [Google Scholar]
  27. AbdrabouA. BrandweinD. WangZ. Differential subcellular distribution and translocation of seven 14-3-3 isoforms in response to EGF and during the cell cycle.Int. J. Mol. Sci.202021131810.3390/ijms2101031831906564
    [Google Scholar]
  28. NealC.L. YaoJ. YangW. ZhouX. NguyenN.T. LuJ. DanesC.G. GuoH. LanK.H. EnsorJ. HittelmanW. HungM.C. YuD. 14-3-3ζ overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival.Cancer Res.20096983425343210.1158/0008‑5472.CAN‑08‑276519318578
    [Google Scholar]
  29. KimJ. ChunK. McGowanJ. ZhangY. CzernikP.J. MellB. JoeB. ChattopadhyayS. HoloshitzJ. ChakravartiR. 14-3-3ζ: A suppressor of inflammatory arthritis.Proc. Natl. Acad. Sci. USA202111834202525711810.1073/pnas.202525711834408018
    [Google Scholar]
  30. WeiL. HuN. YeM. XiZ. WangZ. XiongL. YangN. ShenY. Overexpression of 14-3-3ζ primes disease recurrence, metastasis and resistance to chemotherapy by inducing epithelial-mesenchymal transition in NSCLC.Aging (Albany NY)202214145838585410.18632/aging.20418835876652
    [Google Scholar]
  31. PowellD.W. RaneM.J. ChenQ. SinghS. McLeishK.R. Identification of 14-3-3ζ as a protein kinase B/Akt substrate.J. Biol. Chem.200227724216392164210.1074/jbc.M20316720011956222
    [Google Scholar]
  32. LuJ. GuoH. TreekitkarnmongkolW. LiP. ZhangJ. ShiB. LingC. ZhouX. ChenT. ChiaoP.J. FengX. SeewaldtV.L. MullerW.J. SahinA. HungM.C. YuD. 14-3-3ζ Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition.Cancer Cell200916319520710.1016/j.ccr.2009.08.01019732720
    [Google Scholar]
  33. LimG.E. AlbrechtT. PiskeM. SaraiK. LeeJ.T.C. RamshawH.S. SinhaS. GuthridgeM.A. Acker-PalmerA. LopezA.F. CleeS.M. NislowC. JohnsonJ.D. 14-3-3ζ coordinates adipogenesis of visceral fat.Nat. Commun.201561767110.1038/ncomms867126220403
    [Google Scholar]
  34. LimG.E. PiskeM. LuloJ.E. RamshawH.S. LopezA.F. JohnsonJ.D. Ywhaz/14-3-3ζ deletion improves glucose tolerance through a GLP-1-dependent mechanism.Endocrinology201615772649265910.1210/en.2016‑101627167773
    [Google Scholar]
  35. VercellinoI. SazanovL.A. The assembly, regulation and function of the mitochondrial respiratory chain.Nat. Rev. Mol. Cell Biol.202223214116110.1038/s41580‑021‑00415‑034621061
    [Google Scholar]
  36. NealC.L. XuJ. LiP. MoriS. YangJ. NealN.N. ZhouX. WyszomierskiS.L. YuD. Overexpression of 14-3-3ζ in cancer cells activates PI3K via binding the p85 regulatory subunit.Oncogene201231789790610.1038/onc.2011.28421743495
    [Google Scholar]
  37. DanesC.G. WyszomierskiS.L. LuJ. NealC.L. YangW. YuD. 14-3-3 ζ down-regulates p53 in mammary epithelial cells and confers luminal filling.Cancer Res.20086861760176710.1158/0008‑5472.CAN‑07‑317718339856
    [Google Scholar]
  38. YangH-Y. WenY-Y. LinY. PhamL. SuC-H. YangH. ChenJ. LeeM-H. Roles for negative cell regulator 14-3-3σ in control of MDM2 activities.Oncogene200726527355736210.1038/sj.onc.121054017546054
    [Google Scholar]
  39. ObsilovaV. ObsilT. The 14-3-3 proteins as important allosteric regulators of protein kinases.Int. J. Mol. Sci.20202122882410.3390/ijms2122882433233473
    [Google Scholar]
  40. TateJ. COSMIC: The catalogue of somatic mutations in cancer.Nucleic Acids Res.20103816430371878
    [Google Scholar]
  41. TateJ.G. BamfordS. JubbH.C. SondkaZ. BeareD.M. BindalN. BoutselakisH. ColeC.G. CreatoreC. DawsonE. FishP. HarshaB. HathawayC. JupeS.C. KokC.Y. NobleK. PontingL. RamshawC.C. RyeC.E. SpeedyH.E. StefancsikR. ThompsonS.L. WangS. WardS. CampbellP.J. ForbesS.A. COSMIC: The catalogue of somatic mutations in cancer.Nucleic Acids Res.201947D1D941D94710.1093/nar/gky101530371878
    [Google Scholar]
  42. ObsilovaV. ObsilT. Structural insights into the functional roles of 14-3-3 proteins.Front. Mol. Biosci.20229101607110.3389/fmolb.2022.101607136188227
    [Google Scholar]
  43. ZhouJ. ShaoZ. KerkelaR. IchijoH. MuslinA.J. PomboC. ForceT. Serine 58 of 14-3-3zeta is a molecular switch regulating ASK1 and oxidant stress-induced cell death.Mol. Cell. Biol.200929154167417610.1128/MCB.01067‑0819451227
    [Google Scholar]
  44. XuJ. AcharyaS. SahinO. ZhangQ. SaitoY. YaoJ. WangH. LiP. ZhangL. LoweryF.J. KuoW.L. XiaoY. EnsorJ. SahinA.A. ZhangX.H.F. HungM.C. ZhangJ.D. YuD. 14-3-3ζ turns TGF-β’s function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2.Cancer Cell201527217719210.1016/j.ccell.2014.11.02525670079
    [Google Scholar]
  45. LuJ. GuoH. TreekitkarnmongkolW. LiP. ZhangJ. ShiB. LingC. ZhouX. ChenT. ChiaoP.J. FengX. SeewaldtV.L. MullerW.J. SahinA. HungM.C. YuD. 14-3-3zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition.Cancer Cell200916319520710.1016/j.ccr.2009.08.01019732720
    [Google Scholar]
  46. LebrunJ-J. The dual role of TGFβ in human cancer: From tumor suppression to cancer metastasis.ISRN Mol. Biol.20122012138142827340590
    [Google Scholar]
  47. BhatiaN. ThiyagarajanS. ElchevaI. SaleemM. DlugoszA. MukhtarH. SpiegelmanV.S. Gli2 is targeted for ubiquitination and degradation by beta-TrCP ubiquitin ligase.J. Biol. Chem.200628128193201932610.1074/jbc.M51320320016651270
    [Google Scholar]
  48. PairF.S. YacoubianT.A. 14-3-3 proteins: Novel pharmacological targets in neurodegenerative diseases.Trends Pharmacol. Sci.202142422623810.1016/j.tips.2021.01.00133518287
    [Google Scholar]
  49. SunayamaJ. TsurutaF. MasuyamaN. GotohY. JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3.J. Cell Biol.2005170229530410.1083/jcb.20040911716009721
    [Google Scholar]
  50. MamaloA.S. AlivirdilooV. SadeghnejadA. HajiabbasiM. GargariM.K. ValiloM. Potential roles of the exosome/microRNA axis in breast cancer.Pathol. Res. Pract.202325115484510.1016/j.prp.2023.15484537839359
    [Google Scholar]
  51. AmiriR. NabiP.N. FazilatA. RoshaniF. NouhiK.A. Hemmati-DinarvandM. ValiloM. Crosstalk between miRNAs and signaling pathways in the development of drug resistance in breast cancer.Horm. Mol. Biol. Clin. Investig.20241810.1515/hmbci‑2024‑006639665256
    [Google Scholar]
  52. BilliM. De MarinisE. GentileM. NerviC. GrignaniF. Nuclear miRNAs: Gene regulation activities.Int. J. Mol. Sci.20242511606610.3390/ijms2511606638892257
    [Google Scholar]
  53. ReddyK.B. MicroRNA (miRNA) in cancer.Cancer Cell Int.20151513810.1186/s12935‑015‑0185‑125960691
    [Google Scholar]
  54. HillM. TranN. miRNA interplay: Mechanisms and consequences in cancer.Dis. Model. Mech.2021144dmm04766210.1242/dmm.04766233973623
    [Google Scholar]
  55. DasguptaI. ChatterjeeA. Recent advances in miRNA delivery systems.Methods Protoc.2021411010.3390/mps401001033498244
    [Google Scholar]
  56. CuiY. QiY. DingL. DingS. HanZ. WangY. DuP. miRNA dosage control in development and human disease.Trends Cell Biol.2023341314710.1016/j.tcb.2023.05.00937419737
    [Google Scholar]
  57. HeY. LiaoK. PengH. ZouX. GuoZ. Advances in MiRNAs involved in endometrial carcinoma.Comb. Chem. High Throughput Screen.202528131110.2174/011386207329944424030814572538504572
    [Google Scholar]
  58. WangH. JiangY. PengH. ChenY. ZhuP. HuangY. Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors.Adv. Drug Deliv. Rev.20158114216010.1016/j.addr.2014.10.03125450259
    [Google Scholar]
  59. TangL. ChenH.Y. HaoN.B. TangB. GuoH. YongX. DongH. YangS.M. microRNA inhibitors: Natural and artificial sequestration of microRNA.Cancer Lett.201740713914710.1016/j.canlet.2017.05.02528602827
    [Google Scholar]
  60. ChengC.J. BahalR. BabarI.A. PincusZ. BarreraF. LiuC. SvoronosA. BraddockD.T. GlazerP.M. EngelmanD.M. SaltzmanW.M. SlackF.J. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment.Nature2015518753710711010.1038/nature1390525409146
    [Google Scholar]
  61. GambariR. BrognaraE. SpandidosD.A. FabbriE. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review).Int. J. Oncol.201649153210.3892/ijo.2016.350327175518
    [Google Scholar]
  62. PecotC.V. CalinG.A. ColemanR.L. Lopez-BeresteinG. SoodA.K. RNA interference in the clinic: Challenges and future directions.Nat. Rev. Cancer2011111596710.1038/nrc296621160526
    [Google Scholar]
  63. MahnR. HeukampL. C. RogenhoferS. von RueckerA. MüllerS. C. EllingerJ. Circulating microRNAs (miRNA) in serum of patients with prostate cancer.Urology2011775e1269
    [Google Scholar]
  64. ZakariS. NielsN.K. OlagunjuG.V. NnajiP.C. OgunniyiO. TebamiforM. IsraelE.N. AtawodiS.E. OgunlanaO.O. Emerging biomarkers for non-invasive diagnosis and treatment of cancer: A systematic review.Front. Oncol.202414140526710.3389/fonc.2024.140526739132504
    [Google Scholar]
  65. ZhangZ. LiuT. DongM. AhamedM.A. GuanW. Sample-to-answer salivary miRNA testing: New frontiers in point-of-care diagnostic technologies.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2024163196910.1002/wnan.196938783564
    [Google Scholar]
  66. RehmanS.K. LiS.H. WyszomierskiS.L. WangQ. LiP. SahinO. XiaoY. ZhangS. XiongY. YangJ. WangH. GuoH. ZhangJ.D. MedinaD. MullerW.J. YuD. 14-3-3ζ orchestrates mammary tumor onset and progression via miR-221-mediated cell proliferation.Cancer Res.201474136337310.1158/0008‑5472.CAN‑13‑201624197133
    [Google Scholar]
  67. NishimuraY. KomatsuS. IchikawaD. NagataH. HirajimaS. TakeshitaH. KawaguchiT. AritaT. KonishiH. KashimotoK. ShiozakiA. FujiwaraH. OkamotoK. TsudaH. OtsujiE. Overexpression of YWHAZ relates to tumor cell proliferation and malignant outcome of gastric carcinoma.Br. J. Cancer201310861324133110.1038/bjc.2013.6523422756
    [Google Scholar]
  68. XueD. YangY. LiuY. WangP. DaiY. LiuQ. ChenL. ShenJ. JuH. LiY. TanZ. MicroRNA-206 attenuates the growth and angiogenesis in non-small cell lung cancer cells by blocking the 14-3-3ζ/STAT3/HIF-1α/VEGF signaling.Oncotarget2016748798057981310.18632/oncotarget.1297227806334
    [Google Scholar]
  69. MengH. WuJ. HuangQ. RenJ. HuangJ. YuanW. HeX. WangY. CuiC. XuS. ShenR. The effects of miR-375 expression in NSCLC via the 14-3-3ζ/ERK/MYC pathway.Oncol. Transl. Med.20184519620210.1007/s10330‑018‑0290‑0
    [Google Scholar]
  70. TsukamotoY. NakadaC. NoguchiT. TanigawaM. NguyenL.T. UchidaT. HijiyaN. MatsuuraK. FujiokaT. SetoM. MoriyamaM. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3ζ.Cancer Res.20107062339234910.1158/0008‑5472.CAN‑09‑277720215506
    [Google Scholar]
  71. JungH.M. PhillipsB.L. ChanE.K.L. miR-375 activates p21 and suppresses telomerase activity by coordinately regulating HPV E6/E7, E6AP, CIP2A, and 14-3-3ζ.Mol. Cancer20141318010.1186/1476‑4598‑13‑8024708873
    [Google Scholar]
  72. YangJ. JoshiS. WangQ. LiP. WangH. XiongY. XiaoY. WangJ. Parker-ThornburgJ. BehringerR.R. YuD. 14-3-3ζ loss leads to neonatal lethality by microRNA-126 downregulation-mediated developmental defects in lung vasculature.Cell Biosci.2017715810.1186/s13578‑017‑0186‑y
    [Google Scholar]
  73. YuD. dos SantosC.O. ZhaoG. JiangJ. AmigoJ.D. KhandrosE. DoreL.C. YaoY. D’SouzaJ. ZhangZ. GhaffariS. ChoiJ. FriendS. TongW. OrangeJ.S. PawB.H. WeissM.J. miR-451 protects against erythroid oxidant stress by repressing 14-3-3ζ.Genes Dev.201024151620163310.1101/gad.194211020679398
    [Google Scholar]
  74. BergamaschiA. KatzenellenbogenB.S. Tamoxifen downregulation of miR-451 increases 14-3-3ζ and promotes breast cancer cell survival and endocrine resistance.Oncogene2012311394710.1038/onc.2011.22321666713
    [Google Scholar]
  75. LiuZ.R. SongY. WanL.H. ZhangY.Y. ZhouL.M. Over-expression of miR-451a can enhance the sensitivity of breast cancer cells to tamoxifen by regulating 14-3-3ζ, estrogen receptor α, and autophagy.Life Sci.201614910411310.1016/j.lfs.2016.02.05926896688
    [Google Scholar]
  76. ChakrabortyS. BasuA. miR-451a regulates neuronal apoptosis by modulating 14-3-3ζ-JNK axis upon flaviviral infection.MSphere202274e00208-2210.1128/msphere.00208‑2235727063
    [Google Scholar]
  77. PatrickD.M. ZhangC.C. TaoY. YaoH. QiX. SchwartzR.J. Jun-Shen HuangL. OlsonE.N. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3ζ.Genes Dev.201024151614161910.1101/gad.194281020679397
    [Google Scholar]
  78. YanS. ChenY. YangM. ZhangQ. MaJ. LiuB. YangL. LiX. hsa-MicroRNA-28-5p inhibits diffuse large b-cell lymphoma cell proliferation by downregulating 14-3-3ζ expression.Evid. Based Complement. Alternat. Med.20222022460532910.1155/2022/4605329
    [Google Scholar]
  79. WangX. HongY. WuL. DuanX. HuY. SunY. WeiY. DongZ. WuC. YuD. XuJ. Deletion of microRNA-144/451 cluster aggravated brain injury in intracerebral hemorrhage mice by targeting 14-3-3ζ.Front. Neurol.20211155141110.3389/fneur.2020.55141133510702
    [Google Scholar]
  80. ZhaoR. HeH. ZhuY. WanJ. LiY. GaoS. ZhangC. MiR-204/14-3-3ζ axis regulates osteosarcoma cell proliferation through SATA3 pathway.Pharmazie2017721059359829441884
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665377739250618153852
Loading
/content/journals/ppl/10.2174/0109298665377739250618153852
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): 14-3-3ζ protein; apoptosis; cancer, intracellular mechanisms; migration; miRNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test