Skip to content
2000
image of The Interaction between miRNAs and 14-3-3ζ Protein in Different Diseases

Abstract

Members of the 14-3-3 protein family are involved in various cellular processes, including migration, angiogenesis, cell cycle, apoptosis, and signal transduction. Nevertheless, the 14-3-3 family possibly plays a fundamental role in the development of diseases and cancer by regulating various biological pathways. MicroRNAs (miRNAs) are mainly transcribed by RNA polymerase II (pol II), with only a few exceptions involving RNA polymerase III (pol III). They can control cell mechanisms through different pathways. miRNAs inhibit or destroy mRNAs by binding to them. They control intracellular mechanisms by binding to molecules such as the 14-3-3ζ protein. miRNAs play a role in regulating this protein, and by inducing or suppressing it, they contribute to either the development or the prevention of the diseases. Therefore, considering the importance of the 14-3-3ζ protein in different pathways within the body, we decided to investigate the relationship between miRNAs and 14-3-3ζ and clarify their interactions, in this review.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665377739250618153852
2025-07-02
2025-09-13
Loading full text...

Full text loading...

References

  1. Fan X. Cui L. Zeng Y. Song W. Gaur U. Yang M. 14-3-3 proteins are on the crossroads of cancer, aging, and age-related neurodegenerative disease. Int. J. Mol. Sci. 2019 20 14 3518 10.3390/ijms20143518 31323761
    [Google Scholar]
  2. Trošanová Z. Louša P. Kozeleková A. Brom T. Gašparik N. Tungli J. Weisová V. Župa E. Žoldák G. Hritz J. Quantitation of human 14-3-3ζ dimerization and the effect of phosphorylation on dimer-monomer equilibria. J. Mol. Biol. 2022 434 7 167479 10.1016/j.jmb.2022.167479 35134439
    [Google Scholar]
  3. Cho E. Park J.Y. Emerging roles of 14-3-3γ in the brain disorder. BMB Rep. 2020 53 10 500 511 10.5483/BMBRep.2020.53.10.158 32958119
    [Google Scholar]
  4. Cornell B. Toyo-oka K. 14-3-3 proteins in brain development: Neurogenesis, neuronal migration and neuromorphogenesis. Front. Mol. Neurosci. 2017 10 318 10.3389/fnmol.2017.00318 29075177
    [Google Scholar]
  5. Kaplan A. Ottmann C. Fournier A.E. 14-3-3 adaptor protein-protein interactions as therapeutic targets for CNS diseases. Pharmacol. Res. 2017 125 Pt B 114 121 10.1016/j.phrs.2017.09.007 28918174
    [Google Scholar]
  6. Sluchanko N.N. Gusev N.B. Moonlighting chaperone-like activity of the universal regulatory 14-3-3 proteins. FEBS J. 2017 284 9 1279 1295 10.1111/febs.13986 27973707
    [Google Scholar]
  7. Zhou R. Hu W. Ma P.X. Liu C. Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases. Bone Res. 2024 12 1 58 10.1038/s41413‑024‑00370‑4 39406741
    [Google Scholar]
  8. Obšilová V. Šilhan J. Bouřa E. Teisinger J. Obšil T. 14-3-3 proteins: A family of versatile molecular regulators. Physiol. Res. 2008 57 Suppl. 3 S11 S21 10.33549/physiolres.931598 18481918
    [Google Scholar]
  9. Bridges D. Moorhead G.B.G. 14-3-3 proteins: A number of functions for a numbered protein. Sci. STKE 2005 2005 296 re10 re10 10.1126/stke.2962005re10 16091624
    [Google Scholar]
  10. Aseervatham J. Interactions between 14-3-3 proteins and actin cytoskeleton and its regulation by micrornas and long non-coding RNAs in cancer. Endocrines 2022 3 4 665 702 10.3390/endocrines3040057
    [Google Scholar]
  11. Pozniak T. Shcharbin D. Bryszewska M. Circulating microRNAs in medicine. Int. J. Mol. Sci. 2022 23 7 3996 10.3390/ijms23073996 35409354
    [Google Scholar]
  12. Dey Ghosh R. Guha Majumder S. Circulating long non-coding RNAS could be the potential prognostic biomarker for liquid biopsy for the clinical management of oral squamous cell carcinoma. Cancers 2022 14 22 5590 10.3390/cancers14225590 36428681
    [Google Scholar]
  13. Calin G.A. Dumitru C.D. Shimizu M. Bichi R. Zupo S. Noch E. Aldler H. Rattan S. Keating M. Rai K. Rassenti L. Kipps T. Negrini M. Bullrich F. Croce C.M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 2002 99 24 15524 15529 10.1073/pnas.242606799 12434020
    [Google Scholar]
  14. Alkhazaali-Ali Z. Sahab-Negah S. Boroumand A.R. Tavakol-Afshari J. MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease. Biomed. Pharmacother. 2024 177 116899 10.1016/j.biopha.2024.116899 38889636
    [Google Scholar]
  15. Sadeghi Z. Malekzadeh M. Sharifi M. Hashemibeni B. The role of miR-16 and miR-34a family in the regulation of cancers: A review. Heliyon 2025 11 4 42733 10.1016/j.heliyon.2025.e42733 40061926
    [Google Scholar]
  16. Nemeth K. Bayraktar R. Ferracin M. Calin G.A. Non-coding RNAs in disease: From mechanisms to therapeutics. Nat. Rev. Genet. 2024 25 3 211 232 10.1038/s41576‑023‑00662‑1 37968332
    [Google Scholar]
  17. Gareev I. Beylerli O. Zhao B. MiRNAs as potential therapeutic targets and biomarkers for non-traumatic intracerebral hemorrhage. Biomark. Res. 2024 12 1 17 10.1186/s40364‑024‑00568‑y 38308370
    [Google Scholar]
  18. Lugli G. Cohen A.M. Bennett D.A. Shah R.C. Fields C.J. Hernandez A.G. Smalheiser N.R. Plasma exosomal miRNAs in persons with and without Alzheimer disease: Altered expression and prospects for biomarkers. PLoS One 2015 10 10 0139233 10.1371/journal.pone.0139233 26426747
    [Google Scholar]
  19. Zhi M.L. Liu Z.J. Yi X.Y. Zhang L.J. Bao Y.X. Diagnostic performance of microRNA-29a for colorectal cancer: A meta-analysis. Genet. Mol. Res. 2015 14 4 18018 18025 10.4238/2015.December.22.28 26782449
    [Google Scholar]
  20. Schmitz M. Ebert E. Stoeck K. Karch A. Collins S. Calero M. Sklaviadis T. Laplanche J.L. Golanska E. Baldeiras I. Satoh K. Sanchez-Valle R. Ladogana A. Skinningsrud A. Hammarin A.L. Mitrova E. Llorens F. Kim Y.S. Green A. Zerr I. Validation of 14-3-3 protein as a marker in sporadic Creutzfeldt-Jakob disease diagnostic. Mol. Neurobiol. 2016 53 4 2189 2199 10.1007/s12035‑015‑9167‑5 25947081
    [Google Scholar]
  21. Morrison D.K. The 14-3-3 proteins: Integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 2009 19 1 16 23 10.1016/j.tcb.2008.10.003 19027299
    [Google Scholar]
  22. Mugabo Y. Zhao C. Tan J.J. Ghosh A. Campbell S.A. Fadzeyeva E. Paré F. Pan S.S. Galipeau M. Ast J. Broichhagen J. Hodson D.J. Mulvihill E.E. Petropoulos S. Lim G.E. 14-3-3ζ Constrains insulin secretion by regulating mitochondrial function in pancreatic β cells. JCI Insight 2022 7 8 156378 10.1172/jci.insight.156378 35298439
    [Google Scholar]
  23. Matta A. Siu K.W.M. Ralhan R. 14-3-3 zeta as novel molecular target for cancer therapy. Expert Opin. Ther. Targets 2012 16 5 515 523 10.1517/14728222.2012.668185 22512284
    [Google Scholar]
  24. Sun S. Wong E.W.P. Li M.W.M. Lee W.M. Cheng C.Y. 14-3-3 and its binding partners are regulators of protein–protein interactions during spermatogenesis. J. Endocrinol. 2009 202 3 327 336 10.1677/JOE‑09‑0041 19366886
    [Google Scholar]
  25. Uchida S. Kubo A. Kizu R. Nakagama H. Matsunaga T. Ishizaka Y. Yamashita K. Amino acids C-terminal to the 14-3-3 binding motif in CDC25B affect the efficiency of 14-3-3 binding. J. Biochem. 2006 139 4 761 769 10.1093/jb/mvj079 16672277
    [Google Scholar]
  26. Suzuki H. Itoh F. Toyota M. Kikuchi T. Kakiuchi H. Imai K. Inactivation of the 14-3-3 σ gene is associated with 5′ CpG island hypermethylation in human cancers. Cancer Res. 2000 60 16 4353 4357 10969776
    [Google Scholar]
  27. Abdrabou A. Brandwein D. Wang Z. Differential subcellular distribution and translocation of seven 14-3-3 isoforms in response to EGF and during the cell cycle. Int. J. Mol. Sci. 2020 21 1 318 10.3390/ijms21010318 31906564
    [Google Scholar]
  28. Neal C.L. Yao J. Yang W. Zhou X. Nguyen N.T. Lu J. Danes C.G. Guo H. Lan K.H. Ensor J. Hittelman W. Hung M.C. Yu D. 14-3-3ζ overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival. Cancer Res. 2009 69 8 3425 3432 10.1158/0008‑5472.CAN‑08‑2765 19318578
    [Google Scholar]
  29. Kim J. Chun K. McGowan J. Zhang Y. Czernik P.J. Mell B. Joe B. Chattopadhyay S. Holoshitz J. Chakravarti R. 14-3-3ζ: A suppressor of inflammatory arthritis. Proc. Natl. Acad. Sci. USA 2021 118 34 2025257118 10.1073/pnas.2025257118 34408018
    [Google Scholar]
  30. Wei L. Hu N. Ye M. Xi Z. Wang Z. Xiong L. Yang N. Shen Y. Overexpression of 14-3-3ζ primes disease recurrence, metastasis and resistance to chemotherapy by inducing epithelial-mesenchymal transition in NSCLC. Aging (Albany NY) 2022 14 14 5838 5854 10.18632/aging.204188 35876652
    [Google Scholar]
  31. Powell D.W. Rane M.J. Chen Q. Singh S. McLeish K.R. Identification of 14-3-3ζ as a protein kinase B/Akt substrate. J. Biol. Chem. 2002 277 24 21639 21642 10.1074/jbc.M203167200 11956222
    [Google Scholar]
  32. Lu J. Guo H. Treekitkarnmongkol W. Li P. Zhang J. Shi B. Ling C. Zhou X. Chen T. Chiao P.J. Feng X. Seewaldt V.L. Muller W.J. Sahin A. Hung M.C. Yu D. 14-3-3ζ Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition. Cancer Cell 2009 16 3 195 207 10.1016/j.ccr.2009.08.010 19732720
    [Google Scholar]
  33. Lim G.E. Albrecht T. Piske M. Sarai K. Lee J.T.C. Ramshaw H.S. Sinha S. Guthridge M.A. Acker-Palmer A. Lopez A.F. Clee S.M. Nislow C. Johnson J.D. 14-3-3ζ coordinates adipogenesis of visceral fat. Nat. Commun. 2015 6 1 7671 10.1038/ncomms8671 26220403
    [Google Scholar]
  34. Lim G.E. Piske M. Lulo J.E. Ramshaw H.S. Lopez A.F. Johnson J.D. Ywhaz/14-3-3ζ deletion improves glucose tolerance through a GLP-1-dependent mechanism. Endocrinology 2016 157 7 2649 2659 10.1210/en.2016‑1016 27167773
    [Google Scholar]
  35. Vercellino I. Sazanov L.A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol. 2022 23 2 141 161 10.1038/s41580‑021‑00415‑0 34621061
    [Google Scholar]
  36. Neal C.L. Xu J. Li P. Mori S. Yang J. Neal N.N. Zhou X. Wyszomierski S.L. Yu D. Overexpression of 14-3-3ζ in cancer cells activates PI3K via binding the p85 regulatory subunit. Oncogene 2012 31 7 897 906 10.1038/onc.2011.284 21743495
    [Google Scholar]
  37. Danes C.G. Wyszomierski S.L. Lu J. Neal C.L. Yang W. Yu D. 14-3-3 ζ down-regulates p53 in mammary epithelial cells and confers luminal filling. Cancer Res. 2008 68 6 1760 1767 10.1158/0008‑5472.CAN‑07‑3177 18339856
    [Google Scholar]
  38. Yang H-Y. Wen Y-Y. Lin Y. Pham L. Su C-H. Yang H. Chen J. Lee M-H. Roles for negative cell regulator 14-3-3σ in control of MDM2 activities. Oncogene 2007 26 52 7355 7362 10.1038/sj.onc.1210540 17546054
    [Google Scholar]
  39. Obsilova V. Obsil T. The 14-3-3 proteins as important allosteric regulators of protein kinases. Int. J. Mol. Sci. 2020 21 22 8824 10.3390/ijms21228824 33233473
    [Google Scholar]
  40. Tate J. COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 2010 38 164 30371878
    [Google Scholar]
  41. Tate J.G. Bamford S. Jubb H.C. Sondka Z. Beare D.M. Bindal N. Boutselakis H. Cole C.G. Creatore C. Dawson E. Fish P. Harsha B. Hathaway C. Jupe S.C. Kok C.Y. Noble K. Ponting L. Ramshaw C.C. Rye C.E. Speedy H.E. Stefancsik R. Thompson S.L. Wang S. Ward S. Campbell P.J. Forbes S.A. COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019 47 D1 D941 D947 10.1093/nar/gky1015 30371878
    [Google Scholar]
  42. Obsilova V. Obsil T. Structural insights into the functional roles of 14-3-3 proteins. Front. Mol. Biosci. 2022 9 1016071 10.3389/fmolb.2022.1016071 36188227
    [Google Scholar]
  43. Zhou J. Shao Z. Kerkela R. Ichijo H. Muslin A.J. Pombo C. Force T. Serine 58 of 14-3-3zeta is a molecular switch regulating ASK1 and oxidant stress-induced cell death. Mol. Cell. Biol. 2009 29 15 4167 4176 10.1128/MCB.01067‑08 19451227
    [Google Scholar]
  44. Xu J. Acharya S. Sahin O. Zhang Q. Saito Y. Yao J. Wang H. Li P. Zhang L. Lowery F.J. Kuo W.L. Xiao Y. Ensor J. Sahin A.A. Zhang X.H.F. Hung M.C. Zhang J.D. Yu D. 14-3-3ζ turns TGF-β’s function from tumor suppressor to metastasis promoter in breast cancer by contextual changes of Smad partners from p53 to Gli2. Cancer Cell 2015 27 2 177 192 10.1016/j.ccell.2014.11.025 25670079
    [Google Scholar]
  45. Lu J. Guo H. Treekitkarnmongkol W. Li P. Zhang J. Shi B. Ling C. Zhou X. Chen T. Chiao P.J. Feng X. Seewaldt V.L. Muller W.J. Sahin A. Hung M.C. Yu D. 14-3-3zeta Cooperates with ErbB2 to promote ductal carcinoma in situ progression to invasive breast cancer by inducing epithelial-mesenchymal transition. Cancer Cell 2009 16 3 195 207 10.1016/j.ccr.2009.08.010 19732720
    [Google Scholar]
  46. Lebrun J-J. The dual role of TGFβ in human cancer: From tumor suppression to cancer metastasis. ISRN Mol. Biol. 2012 2012 1 381428 27340590
    [Google Scholar]
  47. Bhatia N. Thiyagarajan S. Elcheva I. Saleem M. Dlugosz A. Mukhtar H. Spiegelman V.S. Gli2 is targeted for ubiquitination and degradation by beta-TrCP ubiquitin ligase. J. Biol. Chem. 2006 281 28 19320 19326 10.1074/jbc.M513203200 16651270
    [Google Scholar]
  48. Pair F.S. Yacoubian T.A. 14-3-3 proteins: Novel pharmacological targets in neurodegenerative diseases. Trends Pharmacol. Sci. 2021 42 4 226 238 10.1016/j.tips.2021.01.001 33518287
    [Google Scholar]
  49. Sunayama J. Tsuruta F. Masuyama N. Gotoh Y. JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J. Cell Biol. 2005 170 2 295 304 10.1083/jcb.200409117 16009721
    [Google Scholar]
  50. Mamalo A.S. Alivirdiloo V. Sadeghnejad A. Hajiabbasi M. Gargari M.K. Valilo M. Potential roles of the exosome/microRNA axis in breast cancer. Pathol. Res. Pract. 2023 251 154845 10.1016/j.prp.2023.154845 37839359
    [Google Scholar]
  51. Amiri R. Nabi P.N. Fazilat A. Roshani F. Nouhi Kararoudi A. Hemmati-Dinarvand M. Valilo M. Crosstalk between miRNAs and signaling pathways in the development of drug resistance in breast cancer. Horm. Mol. Biol. Clin. Investig. 2024 1 8 10.1515/hmbci‑2024‑0066 39665256
    [Google Scholar]
  52. Billi M. De Marinis E. Gentile M. Nervi C. Grignani F. Nuclear miRNAs: Gene regulation activities. Int. J. Mol. Sci. 2024 25 11 6066 10.3390/ijms25116066 38892257
    [Google Scholar]
  53. Reddy K.B. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015 15 1 38 10.1186/s12935‑015‑0185‑1 25960691
    [Google Scholar]
  54. Hill M. Tran N. miRNA interplay: Mechanisms and consequences in cancer. Dis. Model. Mech. 2021 14 4 dmm047662 10.1242/dmm.047662 33973623
    [Google Scholar]
  55. Dasgupta I. Chatterjee A. Recent advances in miRNA delivery systems. Methods Protoc. 2021 4 1 10 10.3390/mps4010010 33498244
    [Google Scholar]
  56. Cui Y. Qi Y. Ding L. Ding S. Han Z. Wang Y. Du P. miRNA dosage control in development and human disease. Trends Cell Biol. 2023 34 1 31 47 10.1016/j.tcb.2023.05.009 37419737
    [Google Scholar]
  57. He Y. Liao K. Peng H. Zou X. Guo Z. Advances in MiRNAs involved in endometrial carcinoma. Comb. Chem. High Throughput Screen. 2025 28 1 3 11 10.2174/0113862073299444240308145725 38504572
    [Google Scholar]
  58. Wang H. Jiang Y. Peng H. Chen Y. Zhu P. Huang Y. Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv. Drug Deliv. Rev. 2015 81 142 160 10.1016/j.addr.2014.10.031 25450259
    [Google Scholar]
  59. Tang L. Chen H.Y. Hao N.B. Tang B. Guo H. Yong X. Dong H. Yang S.M. microRNA inhibitors: Natural and artificial sequestration of microRNA. Cancer Lett. 2017 407 139 147 10.1016/j.canlet.2017.05.025 28602827
    [Google Scholar]
  60. Cheng C.J. Bahal R. Babar I.A. Pincus Z. Barrera F. Liu C. Svoronos A. Braddock D.T. Glazer P.M. Engelman D.M. Saltzman W.M. Slack F.J. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 2015 518 7537 107 110 10.1038/nature13905 25409146
    [Google Scholar]
  61. Gambari R. Brognara E. Spandidos D.A. Fabbri E. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review). Int. J. Oncol. 2016 49 1 5 32 10.3892/ijo.2016.3503 27175518
    [Google Scholar]
  62. Pecot C.V. Calin G.A. Coleman R.L. Lopez-Berestein G. Sood A.K. RNA interference in the clinic: Challenges and future directions. Nat. Rev. Cancer 2011 11 1 59 67 10.1038/nrc2966 21160526
    [Google Scholar]
  63. Mahn R. Heukamp L. C. Rogenhofer S. von Ruecker A. Müller S. C. Ellinger J. Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology 2011 77 5 e1269
    [Google Scholar]
  64. Zakari S. Niels N.K. Olagunju G.V. Nnaji P.C. Ogunniyi O. Tebamifor M. Israel E.N. Atawodi S.E. Ogunlana O.O. Emerging biomarkers for non-invasive diagnosis and treatment of cancer: A systematic review. Front. Oncol. 2024 14 1405267 10.3389/fonc.2024.1405267 39132504
    [Google Scholar]
  65. Zhang Z. Liu T. Dong M. Ahamed M.A. Guan W. Sample-to-answer salivary miRNA testing: New frontiers in point-of-care diagnostic technologies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024 16 3 1969 10.1002/wnan.1969 38783564
    [Google Scholar]
  66. Rehman S.K. Li S.H. Wyszomierski S.L. Wang Q. Li P. Sahin O. Xiao Y. Zhang S. Xiong Y. Yang J. Wang H. Guo H. Zhang J.D. Medina D. Muller W.J. Yu D. 14-3-3ζ orchestrates mammary tumor onset and progression via miR-221-mediated cell proliferation. Cancer Res. 2014 74 1 363 373 10.1158/0008‑5472.CAN‑13‑2016 24197133
    [Google Scholar]
  67. Nishimura Y. Komatsu S. Ichikawa D. Nagata H. Hirajima S. Takeshita H. Kawaguchi T. Arita T. Konishi H. Kashimoto K. Shiozaki A. Fujiwara H. Okamoto K. Tsuda H. Otsuji E. Overexpression of YWHAZ relates to tumor cell proliferation and malignant outcome of gastric carcinoma. Br. J. Cancer 2013 108 6 1324 1331 10.1038/bjc.2013.65 23422756
    [Google Scholar]
  68. Xue D. Yang Y. Liu Y. Wang P. Dai Y. Liu Q. Chen L. Shen J. Ju H. Li Y. Tan Z. MicroRNA-206 attenuates the growth and angiogenesis in non-small cell lung cancer cells by blocking the 14-3-3ζ/STAT3/HIF-1α/VEGF signaling. Oncotarget 2016 7 48 79805 79813 10.18632/oncotarget.12972 27806334
    [Google Scholar]
  69. Meng H. Wu J. Huang Q. Ren J. Huang J. Yuan W. He X. Wang Y. Cui C. Xu S. Shen R. The effects of miR-375 expression in NSCLC via the 14-3-3ζ/ERK/MYC pathway. Oncol. Transl. Med. 2018 4 5 196 202 10.1007/s10330‑018‑0290‑0
    [Google Scholar]
  70. Tsukamoto Y. Nakada C. Noguchi T. Tanigawa M. Nguyen L.T. Uchida T. Hijiya N. Matsuura K. Fujioka T. Seto M. Moriyama M. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3ζ. Cancer Res. 2010 70 6 2339 2349 10.1158/0008‑5472.CAN‑09‑2777 20215506
    [Google Scholar]
  71. Jung H.M. Phillips B.L. Chan E.K.L. miR-375 activates p21 and suppresses telomerase activity by coordinately regulating HPV E6/E7, E6AP, CIP2A, and 14-3-3ζ. Mol. Cancer 2014 13 1 80 10.1186/1476‑4598‑13‑80 24708873
    [Google Scholar]
  72. Yang J. Joshi S. Wang Q. Li P. Wang H. Xiong Y. Xiao Y. Wang J. Parker-Thornburg J. Behringer R.R. Yu D. 14-3-3ζ loss leads to neonatal lethality by microRNA-126 downregulation-mediated developmental defects in lung vasculature. Cell Biosci. 2017 7 1 58 10.1186/s13578‑017‑0186‑y
    [Google Scholar]
  73. Yu D. dos Santos C.O. Zhao G. Jiang J. Amigo J.D. Khandros E. Dore L.C. Yao Y. D’Souza J. Zhang Z. Ghaffari S. Choi J. Friend S. Tong W. Orange J.S. Paw B.H. Weiss M.J. miR-451 protects against erythroid oxidant stress by repressing 14-3-3ζ. Genes Dev. 2010 24 15 1620 1633 10.1101/gad.1942110 20679398
    [Google Scholar]
  74. Bergamaschi A. Katzenellenbogen B.S. Tamoxifen downregulation of miR-451 increases 14-3-3ζ and promotes breast cancer cell survival and endocrine resistance. Oncogene 2012 31 1 39 47 10.1038/onc.2011.223 21666713
    [Google Scholar]
  75. Liu Z.R. Song Y. Wan L.H. Zhang Y.Y. Zhou L.M. Over-expression of miR-451a can enhance the sensitivity of breast cancer cells to tamoxifen by regulating 14-3-3ζ, estrogen receptor α, and autophagy. Life Sci. 2016 149 104 113 10.1016/j.lfs.2016.02.059 26896688
    [Google Scholar]
  76. Chakraborty S. Basu A. miR-451a regulates neuronal apoptosis by modulating 14-3-3ζ-JNK axis upon flaviviral infection. MSphere 2022 7 4 e00208-22 10.1128/msphere.00208‑22 35727063
    [Google Scholar]
  77. Patrick D.M. Zhang C.C. Tao Y. Yao H. Qi X. Schwartz R.J. Jun-Shen Huang L. Olson E.N. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3ζ. Genes Dev. 2010 24 15 1614 1619 10.1101/gad.1942810 20679397
    [Google Scholar]
  78. Yan S. Chen Y. Yang M. Zhang Q. Ma J. Liu B. Yang L. Li X. hsa-MicroRNA-28-5p inhibits diffuse large b-cell lymphoma cell proliferation by downregulating 14-3-3ζ expression. Evid. Based Complement. Alternat. Med. 2022 2022 4605329 10.1155/2022/4605329
    [Google Scholar]
  79. Wang X. Hong Y. Wu L. Duan X. Hu Y. Sun Y. Wei Y. Dong Z. Wu C. Yu D. Xu J. Deletion of microRNA-144/451 cluster aggravated brain injury in intracerebral hemorrhage mice by targeting 14-3-3ζ. Front. Neurol. 2021 11 551411 10.3389/fneur.2020.551411 33510702
    [Google Scholar]
  80. Zhao R. He H. Zhu Y. Wan J. Li Y. Gao S. Zhang C. MiR-204/14-3-3ζ axis regulates osteosarcoma cell proliferation through SATA3 pathway. Pharmazie 2017 72 10 593 598 29441884
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665377739250618153852
Loading
/content/journals/ppl/10.2174/0109298665377739250618153852
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: migration ; 14-3-3ζ protein ; miRNA ; cancer, intracellular mechanisms ; apoptosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test