Skip to content
2000
Volume 32, Issue 6
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Bacteriophages, or phages, have emerged as powerful platforms in synthetic biology, offering innovative solutions for therapeutic and environmental challenges through advanced genome redesign strategies. This review explores a wide range of phage engineering techniques, including CRISPR (clustered regularly-interspaced short palindromic repeats)-Cas systems, phage display, random and site-directed mutagenesis, retrons, and rebooting approaches, highlighting their potential to create phages with tailored functionalities. CRISPR-Cas systems enable precise genome editing, allowing the development of phages with expanded host ranges, biofilm degradation capabilities, and targeted antimicrobial activity. Phage display facilitates the presentation of peptides on phage surfaces, enabling applications in targeted drug delivery, tumor imaging, and bioremediation. Beyond these, techniques like retron-mediated recombination and homologous recombination offer additional avenues for precise phage genome modification. In the therapeutic realm, engineered phages show promise in combating drug-resistant infections, modulating the microbiome, and delivering targeted therapies for cancer and other diseases. Environmentally, phage-based strategies, such as the use of phage-displayed metal-binding peptides, provide innovative solutions for bioremediation and reducing exposure to toxic heavy metals. This review also addresses challenges, such as phage resistance, immune responses, and the limitations of current engineering methods, while exploring future directions, including the development of improved CRISPR systems, phage-based biosensors, and high-throughput screening platforms. By integrating cutting-edge genome redesign strategies with diverse applications, this review underscores the transformative potential of engineered bacteriophages in addressing global healthcare and environmental sustainability challenges.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665372719250616085616
2025-07-02
2025-10-24
Loading full text...

Full text loading...

References

  1. GhoshD. KohliA.G. MoserF. EndyD. BelcherA.M. Refactored M13 bacteriophage as a platform for tumor cell imaging and drug delivery.ACS Synth. Biol.201211257658210.1021/sb300052u23656279
    [Google Scholar]
  2. JaroszewiczW. Morcinek-OrłowskaJ. PierzynowskaK. GaffkeL. WęgrzynG. Phage display and other peptide display technologies.FEMS Microbiol. Rev.2022462fuab05234673942
    [Google Scholar]
  3. PaczesnyJ. BielecK. Application of bacteriophages in nanotechnology.Nanomaterials20201010194433003494
    [Google Scholar]
  4. KarimiM. MirshekariH. MoosaviB.S.M. BahramiS. MoghoofeiM. HamblinM.R. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos.Adv. Drug Deliv. Rev.2016106Pt A456210.1016/j.addr.2016.03.00326994592
    [Google Scholar]
  5. XuH. CaoB. LiY. MaoC. Phage nanofibers in nanomedicine: Biopanning for early diagnosis, targeted therapy, and proteomics analysis.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2020124162332147974
    [Google Scholar]
  6. RakonjacJ. BennettN.J. SpagnuoloJ. GagicD. RusselM. Filamentous bacteriophage: Biology, phage display and nanotechnology applications.Curr. Issues Mol. Biol.2011132517621502666
    [Google Scholar]
  7. GhoshD. BarryM.A. Selection of muscle-binding peptides from context-specific peptide-presenting phage libraries for adenoviral vector targeting.J. Virol.20057921136671367210.1128/JVI.79.21.13667‑13672.200516227286
    [Google Scholar]
  8. KilcherS. LoessnerM.J. Engineering bacteriophages as versatile biologics.Trends Microbiol.201927435536710.1016/j.tim.2018.09.00630322741
    [Google Scholar]
  9. YosefI. GorenM.G. GlobusR. Molshanski-MorS. QimronU. Extending the host range of bacteriophage particles for DNA transduction.Mol. Cell.201766572172810.1016/j.molcel.2017.04.025
    [Google Scholar]
  10. TinocoJ.M. ButtaroB. ZhangH. LissN. SassoneL. StevensR. Effect of a genetically engineered bacteriophage on Enterococcus faecalis biofilms.Arch. Oral Biol.201671808610.1016/j.archoralbio.2016.07.00127448990
    [Google Scholar]
  11. AndoH. LemireS. PiresD.P. LuT.K. Engineering modular viral scaffolds for targeted bacterial population editing.Cell Syst.20151318719610.1016/j.cels.2015.08.01326973885
    [Google Scholar]
  12. ZhangH. FoutsD. DePewJ. StevensR. Genetic modifications to temperate Enterococcus faecalis phage ϕEf11 that abolish the establishment of lysogeny and sensitivity to repressor, and increase host range and productivity of lytic infection.Microbiology2013159Pt 61023103510.1099/mic.0.067116‑0
    [Google Scholar]
  13. YosefI. ManorM. KiroR. QimronU. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria.Proc. Natl. Acad. Sci. USA2015112237267727210.1073/pnas.150010711226060300
    [Google Scholar]
  14. Hatoum-AslanA. Phage genetic engineering using CRISPR–Cas systems.Viruses201810633510.3390/v1006033529921752
    [Google Scholar]
  15. ChenY. BatraH. DongJ. ChenC. RaoV.B. TaoP. Genetic engineering of bacteriophages against infectious diseases.Front. Microbiol.20191095410.3389/fmicb.2019.0095431130936
    [Google Scholar]
  16. KiroR. ShitritD. QimronU. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.RNA Biol.2014111424410.4161/rna.2776624457913
    [Google Scholar]
  17. Ramirez-ChamorroL. BoulangerP. RossierO. Strategies for bacteriophage T5 mutagenesis: Expanding the toolbox for phage genome engineering.Front. Microbiol.20211266733210.3389/fmicb.2021.66733233981295
    [Google Scholar]
  18. HupfeldM. TrasanidouD. RamazziniL. KlumppJ. LoessnerM.J. KilcherS. A functional type II-A CRISPR–Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage.Nucleic Acids Res.201846136920693310.1093/nar/gky54430053228
    [Google Scholar]
  19. Møller-OlsenC. HoS.F.S. ShuklaR.D. FeherT. SagonaA.P. Engineered K1F bacteriophages kill intracellular Escherichia coli K1 in human epithelial cells.Sci. Rep.2018811755910.1038/s41598‑018‑35859‑630510202
    [Google Scholar]
  20. BariS.M.N. WalkerF.C. CaterK. AslanB. Hatoum-AslanA. Strategies for editing virulent staphylococcal phages using CRISPR-Cas10.ACS Synth. Biol.20176122316232510.1021/acssynbio.7b0024028885820
    [Google Scholar]
  21. BoxA.M. McGuffieM.J. O’HaraB.J. SeedK.D. Functional analysis of bacteriophage immunity through a type IE CRISPR-Cas system in Vibrio cholerae and its application in bacteriophage genome engineering.J. Bacteriol.2015198357859026598368
    [Google Scholar]
  22. MarinelliL.J. PiuriM. SwigoňováZ. BalachandranA. OldfieldL.M. van KesselJ.C. HatfullG.F. BRED: A simple and powerful tool for constructing mutant and recombinant bacteriophage genomes.PLoS One2008312395710.1371/journal.pone.000395719088849
    [Google Scholar]
  23. WetzelK.S. Guerrero-BustamanteC.A. DedrickR.M. KoC-C. FreemanK.G. AullH.G. DivensA.M. RockJ.M. ZackK.M. HatfullG.F. CRISPY-BRED and CRISPY-BRIP: Efficient bacteriophage engineering.Sci. Rep.2021111679633762639
    [Google Scholar]
  24. PengH. ChenI.A. QimronU. Engineering phages to fight multidrug-resistant bacteria.Chem. Rev.2025125293397110.1021/acs.chemrev.4c0068139680919
    [Google Scholar]
  25. van HouteS. BucklingA. WestraE.R. Evolutionary ecology of prokaryotic immune mechanisms.Microbiol. Mol. Biol. Rev.201680374576310.1128/MMBR.00011‑1627412881
    [Google Scholar]
  26. DrakeJ.W. BaltzR.H. The biochemistry of mutagenesis.Annu. Rev. Biochem.1976451113710.1146/annurev.bi.45.070176.000303786147
    [Google Scholar]
  27. FavorA.H. LlanosC.D. YoungblutM.D. BardalesJ.A. Optimizing bacteriophage engineering through an accelerated evolution platform.Sci. Rep.20201011398110.1038/s41598‑020‑70841‑132814789
    [Google Scholar]
  28. VölkerT.A. ShoweM.K. Induction of mutations in specific genes of bacteriophage T4 using cloned restriction fragments and marker rescue.Mol. Gen. Genet.1980177344745210.1007/BF002714836990202
    [Google Scholar]
  29. SambrookJ. FritschE.F. ManiatisT. Molecular cloning: A laboratory manual.ChamCold spring harbor laboratory press198916
    [Google Scholar]
  30. KunkelT.A. Rapid and efficient site-specific mutagenesis without phenotypic selection.Proc. Natl. Acad. Sci. USA198582248849210.1073/pnas.82.2.4883881765
    [Google Scholar]
  31. SimonA.J. EllingtonA.D. FinkelsteinI.J. Retrons and their applications in genome engineering.Nucleic Acids Res.20194721110071101910.1093/nar/gkz86531598685
    [Google Scholar]
  32. FarzadfardF. LuT.K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations.Science20143466211125627210.1126/science.125627225395541
    [Google Scholar]
  33. SimonA.J. MorrowB.R. EllingtonA.D. Retroelement-based genome editing and evolution.ACS Synth. Biol.20187112600261110.1021/acssynbio.8b0027330256621
    [Google Scholar]
  34. MaloyS. HughesK. Brenner’s encyclopedia of genetics.United StatesAcademic Press2013
    [Google Scholar]
  35. NamuraM. HijikataT. MiyanagaK. TanjiY. Detection of Escherichia coli with fluorescent labeled phages that have a broad host range to E. coli in sewage water.Biotechnol. Prog.200824248148610.1021/bp070326c18225914
    [Google Scholar]
  36. ShitritD. HacklT. LaurenceauR. RahoN. CarlsonM.C.G. SabehiG. SchwartzD.A. ChisholmS.W. LindellD. Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages.ISME J.202216248849910.1038/s41396‑021‑01085‑834429521
    [Google Scholar]
  37. YehlK. LemireS. YangA.C. AndoH. MimeeM. TorresM.D.T. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis.Cell2019179245946910.1016/j.cell.2019.09.015
    [Google Scholar]
  38. WangT. D’SouzaG.G.M. BediD. FagbohunO.A. PotturiL.P. Papahadjopoulos-SternbergB. PetrenkoV.A. TorchilinV.P. Enhanced binding and killing of target tumor cells by drug-loaded liposomes modified with tumor-specific phage fusion coat protein.Nanomedicine20105456357410.2217/nnm.10.3020528452
    [Google Scholar]
  39. FrenkelD. SolomonB. Filamentous phage as vector-mediated antibody delivery to the brain.Proc. Natl. Acad. Sci. USA20029985675567910.1073/pnas.07202719911960022
    [Google Scholar]
  40. ManriqueP. BolducB. WalkS.T. van der OostJ. de VosW.M. YoungM.J. Healthy human gut phageome.Proc. Natl. Acad. Sci. USA201611337104001040510.1073/pnas.160106011327573828
    [Google Scholar]
  41. ArapW. KoloninM.G. TrepelM. LahdenrantaJ. Cardó-VilaM. GiordanoR.J. MintzP.J. ArdeltP.U. YaoV.J. VidalC.I. ChenL. FlammA. ValtanenH. WeavindL.M. HicksM.E. PollockR.E. BotzG.H. BucanaC.D. KoivunenE. CahillD. TroncosoP. BaggerlyK.A. PentzR.D. DoK.A. LogothetisC.J. PasqualiniR. Steps toward mapping the human vasculature by phage display.Nat. Med.20028212112710.1038/nm0202‑12111821895
    [Google Scholar]
  42. WangJ. WangL. YangM. ZhuY. TomsiaA. MaoC. Untangling the effects of peptide sequences and nanotopographies in a biomimetic niche for directed differentiation of iPSCs by assemblies of genetically engineered viral nanofibers.Nano Lett.201414126850685610.1021/nl504358j25456151
    [Google Scholar]
  43. ZeriA.C. MeslehM.F. NevzorovA.A. OpellaS.J. Structure of the coat protein in fd filamentous bacteriophage particles determined by solid-state NMR spectroscopy.Proc. Natl. Acad. Sci. USA2003100116458646310.1073/pnas.113205910012750469
    [Google Scholar]
  44. LiY. QuX. CaoB. YangT. BaoQ. YueH. ZhangL. ZhangG. WangL. QiuP. ZhouN. YangM. MaoC. Selectively suppressing tumor angiogenesis for targeted breast cancer therapy by genetically engineered phage.Adv. Mater.20203229200126010.1002/adma.20200126032495365
    [Google Scholar]
  45. MahlerM. CostaA.R. van BeljouwS.P.B. FineranP.C. BrounsS.J.J. Approaches for bacteriophage genome engineering.Trends Biotechnol.202341566968510.1016/j.tibtech.2022.08.00836117025
    [Google Scholar]
  46. CarrP.A. ChurchG.M. Genome engineering.Nat. Biotechnol.200927121151116210.1038/nbt.159020010598
    [Google Scholar]
  47. GibsonD.G. YoungL. ChuangR.Y. VenterJ.C. HutchisonC.A.III SmithH.O. Enzymatic assembly of DNA molecules up to several hundred kilobases.Nat. Methods20096534334510.1038/nmeth.131819363495
    [Google Scholar]
  48. LennemanB.R. FernbachJ. LoessnerM.J. LuT.K. KilcherS. Enhancing phage therapy through synthetic biology and genome engineering.Curr. Opin. Biotechnol.20216815115910.1016/j.copbio.2020.11.00333310655
    [Google Scholar]
  49. ChanL.Y. KosuriS. EndyD. Refactoring bacteriophage T7.Mol. Syst. Biol.200512005.001810.1038/msb4100025
    [Google Scholar]
  50. KodumalS.J. PatelK.G. ReidR. MenzellaH.G. WelchM. SantiD.V. Total synthesis of long DNA sequences: Synthesis of a contiguous 32-kb polyketide synthase gene cluster.Proc. Natl. Acad. Sci. USA200410144155731557810.1073/pnas.040691110115496466
    [Google Scholar]
  51. HsuB.B. WayJ.C. SilverP.A. Stable neutralization of a virulence factor in bacteria using temperate phage in the mammalian gut.mSystems20205110.1128/msystems.00013-2010.1128/msystems.00013‑2031992629
    [Google Scholar]
  52. MeileS. DuJ. DunneM. KilcherS. LoessnerM.J. Engineering therapeutic phages for enhanced antibacterial efficacy.Curr. Opin. Virol.20225218219110.1016/j.coviro.2021.12.00334952266
    [Google Scholar]
  53. LiuM.Y. LiuX. WangC.Y. WanQ.Q. TianY.F. LiuS.L. PangD.W. WangZ.G. Inhalable polymeric microparticles for phage and photothermal synergistic therapy of methicillin-resistant Staphylococcus aureus pneumonia.Nano Lett.202424288752876210.1021/acs.nanolett.4c0231838953881
    [Google Scholar]
  54. KhambhatiK. BhattacharjeeG. GohilN. DhanoaG.K. SagonaA.P. ManiI. BuiN.L. ChuD.T. KarapurkarJ.K. JangS.H. ChungH.Y. MauryaR. AlzahraniK.J. RamakrishnaS. SinghV. Phage engineering and phage-assisted CRISPR-Cas delivery to combat multidrug-resistant pathogens.Bioeng. Transl. Med.2023821038110.1002/btm2.1038136925687
    [Google Scholar]
  55. DarbandiN. KomijaniM. TajianiZ. New findings about comparing the effects of antibiotic therapy and phage therapy on memory and hippocampal pyramidal cells in rats.J. Clin. Lab. Anal.20233711-122494210.1002/jcla.2494237455445
    [Google Scholar]
  56. Ghaznavi-RadE. KomijaniM. MoradabadiA. RezaeiM. Shaykh-BayglooN. Isolation of a lytic bacteriophage against extensively drug-resistant Acinetobacter baumannii infections and its dramatic effect in rat model of burn infection.J. Clin. Lab. Anal.20223672449710.1002/jcla.2449735708005
    [Google Scholar]
  57. Barazandeh, M.; Shahin, K.; Hedayatkhah, A.; Komijani, M.; Mansoorianfar, M. Characterization of a novel bullet-shaped lytic bacteriophage against extensively drug-resistant Pseudomonas aeruginosa isolated from human and domestic sources. In Veterinary Research Forum, 2021, 12, 401.
  58. WangJ. ZhaoS. ChenJ. LiuX. ChenH. LuT. XuM. GuoX. ShenX. LiuC. LiC. Phage-Ce6-Manganese dioxide nanocomposite-mediated photodynamic, photothermal, and chemodynamic therapies to eliminate biofilms and improve wound healing.ACS Appl. Mater. Interfaces20231518219042191610.1021/acsami.3c0176237115597
    [Google Scholar]
  59. SelleK. FletcherJ.R. TusonH. SchmittD.S. McMillanL. VridhambalG.S. RiveraA.J. MontgomeryS.A. FortierL.C. BarrangouR. TheriotC.M. OusteroutD.G. In vivo targeting of Clostridioides difficile using phage-delivered CRISPR-Cas3 antimicrobials.MBio2020112e00019-2010.1128/mBio.00019‑2032156803
    [Google Scholar]
  60. KovacsC.J. RappE.M. McKenzieS.M. MazurM.Z. MchaleR.P. BraskoB. MinM.Y. BurpoF.J. BarnhillJ.C. Disruption of biofilm by bacteriophages in clinically relevant settings.Mil. Med.20241895-6e1294e130210.1093/milmed/usad38537847552
    [Google Scholar]
  61. PeiR. Lamas-SamanamudG.R. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes.Appl. Environ. Microbiol.201480175340534810.1128/AEM.01434‑1424951790
    [Google Scholar]
  62. TsedevU. Engineering M13 Bacteriophage Nanoplatforms for Diagnostic and Therapeutic ApplicationsUnited StatesMassachusetts Institute of Technology2021
    [Google Scholar]
  63. van HoutenN.E. HenryK.A. SmithG.P. ScottJ.K. Engineering filamentous phage carriers to improve focusing of antibody responses against peptides.Vaccine201028102174218510.1016/j.vaccine.2009.12.05920056188
    [Google Scholar]
  64. PengH. BorgR.E. DowL.P. PruittB.L. ChenI.A. Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages.Proc. Natl. Acad. Sci. USA202011741951196110.1073/pnas.191323411731932441
    [Google Scholar]
  65. DongX. PanP. ZhengD.-W. BaoP. ZengX. ZhangX.-Z. Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer.Sci. Adv.2020620eaba159010.1126/sciadv.aba1590
    [Google Scholar]
  66. LiangJ. ZhangH. TanY.L. ZhaoH. AngE.L. Directed evolution of replication-competent double-stranded DNA bacteriophage toward new host specificity.ACS Synth. Biol.202211263464310.1021/acssynbio.1c0031935090114
    [Google Scholar]
  67. XuH. BaoX. WangY. XuY. DengB. LuY. HouJ. Engineering T7 bacteriophage as a potential DNA vaccine targeting delivery vector.Virol. J.20181514910.1186/s12985‑018‑0955‑129558962
    [Google Scholar]
  68. DongJ. ChenC. LiuY. ZhuJ. LiM. RaoV.B. TaoP. Engineering T4 bacteriophage for in vivo display by type V CRISPR-Cas genome editing.ACS Synth. Biol.202110102639264834546037
    [Google Scholar]
  69. WilliamsJ. KervenJ. ChenY. SagonaA.P. Genetic engineering of bacteriophage K1F with human epidermal growth factor to enhance killing of intracellular E. coli K1.ACS Synth. Biol.20231272094210637318278
    [Google Scholar]
  70. ZhaoM. TanX. LiuZ-q. DouL. LiuD. PanY-j. MaY-f. YuJ-l. Engineered phage with cell-penetrating peptides for intracellular bacterial infections.mSystems202385006462310.1128/msystems.00646‑2337594262
    [Google Scholar]
  71. DedrickR.M. Guerrero-BustamanteC.A. GarlenaR.A. RussellD.A. FordK. HarrisK. GilmourK.C. SoothillJ. Jacobs-SeraD. SchooleyR.T. HatfullG.F. SpencerH. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus.Nat. Med.201925573073331068712
    [Google Scholar]
  72. Román-AzconaM. TrigüisS. CaballeroS. MichajluckJ. SoteloP. Generation of a cadmium-binding filamentous phage through cysteine-rich peptide display on PVIII.2019Available from: https://nopr.niscpr.res.in/bitstream/123456789/49664/3/IJBT%2018%282%29%20132-138.pdf
  73. KorkmazN. HimawanS. UsmanM. BaikS. KimM. Bacteriophage engineering for improved copper ion binding.Macromol. Biosci.2024244230035437985183
    [Google Scholar]
  74. BeitleR.R. AtaaiM.M. One-step purification of a model periplasmic protein from inclusion bodies by its fusion to an effective metal-binding peptide.Biotechnol. Prog.19939164697763412
    [Google Scholar]
  75. SatohM. KarakiE. KakehashiM. OkazakiE. GotohT. OyamaY. Heavy-metal induced changes in nonproteinaceous thiol levels and heavy-metal binding peptide in Tetraselmis tetrathele (Prasinophyceae).J. Phycol.1999355989994
    [Google Scholar]
  76. DeSilvaT.M. VegliaG. PorcelliF. PrantnerA.M. OpellaS.J. Selectivity in heavy metal- binding to peptides and proteins.Biopolymers200264418919712115136
    [Google Scholar]
  77. MatzapetakisM. FarrerB.T. WengT.-C. HemmingsenL. Penner-HahnJ.E. PecoraroV.L. Comparison of the binding of cadmium (II), mercury (II), and arsenic (III) to the de novo designed peptides TRI L12C and TRI L16C.J. Am. Chem. Soc.200224278042805410.1021/ja017520u
    [Google Scholar]
  78. MatsubaraT. HiuraY. KawahitoO. YasuzawaM. KawashiroK. Selection of novel structural zinc sites from a random peptide library.FEBS Lett.2003555231732114644435
    [Google Scholar]
  79. KotrbaP. DolečkováL. PavlíkM. RumlT. Rapid screening of peptides for heavy metal binding.Biotechnol. Tech.199610773778
    [Google Scholar]
  80. FlynnC.E. MaoC. HayhurstA. WilliamsJ.L. GeorgiouG. IversonB. Synthesis and organization of nanoscale II–VI semiconductor materials using evolved peptide specificity and viral capsid assembly.J. Mater. Chem.2003131024142421
    [Google Scholar]
  81. SousaC. KotrbaP. RumlT. CebollaA. De LorenzoV. Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB.J. Bacteriol.19981809228022849573175
    [Google Scholar]
  82. SamuelsonP. WernérusH. SvedbergM. StåhlS. Staphylococcal surface display of metal-binding polyhistidyl peptides.Appl. Environ. Microbiol.20006631243124810.1128/AEM.66.3.1243‑1248.200010698802
    [Google Scholar]
  83. WangR. LiH.D. CaoY. WangZ.Y. YangT. WangJ.H. M13 phage: A versatile building block for a highly specific analysis platform.Anal. Bioanal. Chem.2023415183927394410.1007/s00216‑023‑04606‑w36867197
    [Google Scholar]
  84. DayJ.W. KimC.H. SmiderV.V. SchultzP.G. Identification of metal ion binding peptides containing unnatural amino acids by phage display.Bioorg. Med. Chem. Lett.20132392598260023541674
    [Google Scholar]
  85. NianR. KimD.S. NguyenT. TanL. KimC.W. YooI.K. ChoeW.S. Chromatographic biopanning for the selection of peptides with high specificity to Pb2+ from phage displayed peptide library.J. Chromatogr. A20101217385940594910.1016/j.chroma.2010.07.04820709321
    [Google Scholar]
  86. YangT. ZhangX.Y. ZhangX.X. ChenM.L. WangJ.H. Chromium (III) binding phage screening for the selective adsorption of Cr (III) and chromium speciation.ACS Appl. Mater. Interfaces2015738212872129410.1021/acsami.5b0560626346061
    [Google Scholar]
  87. YangT. ZhangX.X. YangJ.Y. WangY.T. ChenM.L. Screening arsenic(III)-binding peptide for colorimetric detection of arsenic(III) based on the peptide induced aggregation of gold nanoparticles.Talanta201817721221610.1016/j.talanta.2017.07.00529108578
    [Google Scholar]
  88. ManivannanS. SeoY. KangD.K. KimK. Colorimetric and optical Hg(ii) ion sensor developed with conjugates of M13-bacteriophage and silver nanoparticles.New J. Chem.20184224200072001410.1039/C8NJ04496A
    [Google Scholar]
  89. KorkmazN. KimM. Phage display selection of a Pb(II) specific peptide and its application as a biorecognition unit for colorimetric detection of Pb(II) ions.Biotechnol. J.2024191230048210.1002/biot.20230048238009643
    [Google Scholar]
  90. MatysS. SchönbergerN. LedererF.L. PollmannK. Characterization of specifically metal-binding phage clones for selective recovery of cobalt and nickel.J. Environ. Chem. Eng.20208210360610.1016/j.jece.2019.103606
    [Google Scholar]
  91. KorkmazN. HwangC. KesslerK.K. SilinaY.E. MüllerL. ParkJ. A novel copper (II) binding peptide for a colorimetric biosensor system design.Talanta202123212243910.1016/j.talanta.2021.12243934074424
    [Google Scholar]
  92. ZuoR. ÖrnekD. WoodT.K. Aluminum- and mild steel-binding peptides from phage display.Appl. Microbiol. Biotechnol.200568450550910.1007/s00253‑005‑1922‑515703906
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665372719250616085616
Loading
/content/journals/ppl/10.2174/0109298665372719250616085616
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test