Skip to content
2000
Volume 32, Issue 4
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background

Pancreatic adenocarcinoma (PAAD) is one of the most prevalent cancers, and it has high death rates. Only 10% of PAAD patients can survive until 5 years. Hence, the improvement of survival rate of the patients should be improved.

Aim

The present study used a computational approach to identify novel biomarkers and potentially effective small drug-like molecules in PAAD.

Objective

The objective of this study was to identify the Differentially Expressed Genes (DEGs) and survival rate affecting genes (SDEGs) to single out the specific gene responsible for pancreatic cancer and predict the efficacy of interactions with hesperetin and emodin. Further, another objective was to validate the predicted efficacies using an MTT assay.

Methods

The GEPIA2 database was used to analyze the TCGA-PAAD dataset and identify DEGs and SDEGs. Venn identified the commonly scattered genes between the DEGs and SDEGs. Network Analyst v3.0, CytoScape v3.10.1, and cytoHubbawere used to construct protein-protein interactions (PPI) network and identifying hub genes which were described as target proteins. The Protein Data Bank (PDB) and PubChem were utilized to obtain the PDB structure of the target proteins and 13 phytocompounds in SDF format. Molecular docking studies were carried out and visualized by utilizing Autodock vina and Discovery Studio Visualizer v19.1.0.1828. The cytotoxicity was measured in the MiaPaCa-2 cell line after being treated with hesperetin and emodin.

Results

A total of 9219 Differentially Expressed Genes (DEGs) from the TCGA-PAAD dataset were identified. Among them, 8740 and 479 genes were up and down-regulated with the statistical significance of 0.05, respectively. Likely, 500 most survival rate affecting genes (SDEGs) in PAAD patients with a statistical significance of 0.05 were identified. The common 137 genes were identified between these obtained DEGs and SDEGs. The survival heat map was delineated for the predicted 137 common genes. Ninety-six genes were identified as the most hazardous genes (highlighted in red). After that, the network was constructed by using PPI for the most hazardous 96 genes. From the constructed PPI network, the highly interacted top 10 genes were identified. The survival analysis was carried out to identify the most hazardous genes and revealed that all the identified genes significantly reduced the survival rate of the patients affected by PAAD. From that, high survival affecting 5 genes, such as CDK1, CENPE, NCAPG, KIF20A, and c-MET, were selected for further analysis. The molecular docking studies were carried out for the identified top 5 genes, with the 13 phytocompounds reviewed previously for anti-cancer activity. The molecular docking analysis revealed that the hesperetin (binding affinity (BA) = -8.0 kcal/mol; Root mean square deviation (RMSD) = 2.012 Å) and emodin (BA = -8.6 kcal/mol; RMSD = 1.605 Å) interacted well with the c-MET based on the number of hydrogen bonds and BA. Hence, the synergistic efficacy was validated in the cell line MiaPaCa-2 with the hesperetin, emodin, and hesperetin: emodin in combination and obtained the IC values of 171.3 µM, 72.94 µM, and 92.36 µM respectively.

Conclusion

The results stated that emodin significantly reduced the cell proliferation rate of the MiaPaCa-2 pancreatic cells, and no synergistic effects were observed in this context with hesperetin. However, emodin improved the hesperetin efficacy in pancreatic cells, indicating that structural modification through pharmacokinetics by coupling these two compounds may help to identify novel compounds to treat pancreatic cancer in the future. However, further pancreatic cell lines, such as Panc-1, BxPC-3, and models that include CDX and PDX are needed to verify the combination effect of hespertin and emodin on pancreatic cells.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665363165250225100109
2025-03-24
2025-09-23
Loading full text...

Full text loading...

References

  1. MooreA. DonahueT. Pancreatic cancer.JAMA201932214142610.1001/jama.2019.1469931593274
    [Google Scholar]
  2. YangJ. XuR. WangC. QiuJ. RenB. YouL. Early screening and diagnosis strategies of pancreatic cancer: A comprehensive review.Cancer Commun. (Lond.)202141121257127410.1002/cac2.1220434331845
    [Google Scholar]
  3. ShiX. HuangB. ZhuJ. YamaguchiT. HuA. TabuchiM. WatanabeD. YoshikawaS. MizushimaS. MizushimaA. XiaS. A network pharmacology-based investigation of emodin against pancreatic adenocarcinoma.Medicine (Baltimore)202310220e3352110.1097/MD.000000000003352137335741
    [Google Scholar]
  4. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  5. FerlayJ. ErvikM. LamF. LaversanneM. ColombetM. MeryL. PiñerosM. ZnaorA. SoerjomataramI. BrayF. Global cancer observatory: Cancer today. Lyon, France: International Agency for Research on Cancer.2024Available from: https://gco.iarc.who.int/today
  6. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  7. LuoG. FanZ. GongY. JinK. YangC. ChengH. HuangD. NiQ. LiuC. YuX. Characteristics and outcomes of pancreatic cancer by histological subtypes.Pancreas201948681782210.1097/MPA.000000000000133831210663
    [Google Scholar]
  8. GaoH.L. WangW.Q. YuX.J. LiuL. Molecular drivers and cells of origin in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine carcinoma.Exp. Hematol. Oncol.2020912810.1186/s40164‑020‑00184‑033101770
    [Google Scholar]
  9. ShuppB. LiaquatH. PrenattZ. StollL. MatinA. A rare case of abdominal wall skeletal muscle metastasis from adenocarcinoma of the pancreatic head.Cureus2023157e4147010.7759/cureus.4147037546150
    [Google Scholar]
  10. CalderwoodA.H. SawhneyM.S. ThosaniN.C. RebbeckT.R. WaniS. CantoM.I. FishmanD.S. GolanT. HidalgoM. KwonR.S. Riegert-JohnsonD.L. SahaniD.V. StoffelE.M. VollmerC.M.Jr Al-HaddadM.A. AmateauS.K. BuxbaumJ.L. DiMaioC.J. Fujii-LauL.L. JamilL.H. JueT.L. LawJ.K. LeeJ.K. NaveedM. PawaS. StormA.C. QumseyaB.J. American society for gastrointestinal endoscopy guideline on screening for pancreatic cancer in individuals with genetic susceptibility: Methodology and review of evidence.Gastrointest. Endosc.2022955827854.e310.1016/j.gie.2021.12.00235183359
    [Google Scholar]
  11. PetersM.L.B. EckelA. SeguinC.L. DavidiB. HowardD.H. KnudsenA.B. PandharipandeP.V. Cost-effectiveness analysis of screening for pancreatic cancer among high-risk populations.JCO Oncol. Pract.202420227829010.1200/OP.23.0049538086003
    [Google Scholar]
  12. VincentA. HermanJ. SchulickR. HrubanR.H. GogginsM. Pancreatic cancer.Lancet2011378979160762010.1016/S0140‑6736(10)62307‑021620466
    [Google Scholar]
  13. KleinA.P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors.Nat. Rev. Gastroenterol. Hepatol.202118749350210.1038/s41575‑021‑00457‑x34002083
    [Google Scholar]
  14. FerroneC.R. FinkelsteinD.M. ThayerS.P. MuzikanskyA. CastilloC.F. WarshawA.L. Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma.J. Clin. Oncol.200624182897290210.1200/JCO.2005.05.393416782929
    [Google Scholar]
  15. GoonetillekeK.S. SiriwardenaA.K. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer.Eur. J. Surg. Oncol.200733326627010.1016/j.ejso.2006.10.00417097848
    [Google Scholar]
  16. ScaràS. BottoniP. ScatenaR. CA 19-9: Biochemical and clinical aspects.Adv. Exp. Med. Biol.201586724726010.1007/978‑94‑017‑7215‑0_1526530370
    [Google Scholar]
  17. HasanS. JacobR. ManneU. PaluriR. Advances in pancreatic cancer biomarkers.Oncol. Rev.201913141010.4081/oncol.2019.41031044028
    [Google Scholar]
  18. WuH. OuS. ZhangH. HuangR. YuS. ZhaoM. TaiS. Advances in biomarkers and techniques for pancreatic cancer diagnosis.Cancer Cell Int.202222122010.1186/s12935‑022‑02640‑935761336
    [Google Scholar]
  19. SunJ. RussellC.C. ScarlettC.J. McCluskeyA. Small molecule inhibitors in pancreatic cancer.RSC Med. Chem.202011216418310.1039/C9MD00447E33479626
    [Google Scholar]
  20. ShetuS.A. JamesN. RiveraG. BandyopadhyayD. Molecular research in pancreatic cancer: Small molecule inhibitors, their mechanistic pathways and beyond.Curr. Issues Mol. Biol.20234531914194910.3390/cimb4503012436975494
    [Google Scholar]
  21. ChourA. DenisJ. MascauxC. ZysmanM. Bigay-GameL. SwalduzA. GounantV. CortotA. DarrasonM. FalletV. AuclinE. BasseC. TissotC. DecroisetteC. BombaronP. Giroux-LeprieurE. OdierL. BrosseauS. CreusotQ. GueçamburuM. MeerssemanC. RochandA. CostantiniA. GaillardC.M. WasielewskiE. GirardN. CadranelJ. LafitteC. LebosséF. DuruisseauxM. Brief report: Severe sotorasib-related hepatotoxicity and non-liver adverse events associated with sequential anti–programmed cell death (ligand)1 and sotorasib therapy in KRASG12C-mutant lung cancer.J. Thorac. Oncol.202318101408141510.1016/j.jtho.2023.05.01337217096
    [Google Scholar]
  22. DzoboK. The role of natural products as sources of therapeutic agents for innovative drug discovery.Comprehensive PharmacologyLondonElsevier202211510.1016/B978‑0‑12‑820472‑6.00041‑4
    [Google Scholar]
  23. Stompor-GorącyM. The health benefits of emodin, a natural anthraquinone derived from rhubarb—a summary update.Int. J. Mol. Sci.20212217952210.3390/ijms2217952234502424
    [Google Scholar]
  24. AlipourM. SharifiS. SamieiM. ShahiS. AghazadehM. DizajS.M. Synthesis, characterization, and evaluation of Hesperetin nanocrystals for regenerative dentistry.Sci. Rep.2023131207610.1038/s41598‑023‑28267‑y36746996
    [Google Scholar]
  25. TangZ. KangB. LiC. ChenT. ZhangZ. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis.Nucleic Acids Res.201947W1W556W56010.1093/nar/gkz43031114875
    [Google Scholar]
  26. BrownN.R. KorolchukS. MartinM.P. StanleyW.A. MoukhametzianovR. NobleM.E.M. EndicottJ.A. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK.Nat. Commun.201561676910.1038/ncomms776925864384
    [Google Scholar]
  27. Garcia-SaezI. YenT. WadeR.H. KozielskiF. Crystal structure of the motor domain of the human kinetochore protein CENP-E.J. Mol. Biol.200434051107111610.1016/j.jmb.2004.05.05315236970
    [Google Scholar]
  28. HaraK. KinoshitaK. MigitaT. MurakamiK. ShimizuK. TakeuchiK. HiranoT. HashimotoH. Structural basis of Heat‐kleisin interactions in the human condensin I subcomplex.EMBO Rep.2019205e4718310.15252/embr.20184718330858338
    [Google Scholar]
  29. SerenaM. BastosR.N. ElliottP.R. BarrF.A. Molecular basis of MKLP2-dependent Aurora B transport from chromatin to the anaphase central spindle.J. Cell Biol.20202197e20191005910.1083/jcb.20191005932356865
    [Google Scholar]
  30. WuK. AiJ. LiuQ. ChenT. ZhaoA. PengX. WangY. JiY. YaoQ. XuY. GengM. ZhangA. Multisubstituted quinoxalines and pyrido[2,3-d]pyrimidines: Synthesis and SAR study as tyrosine kinase c-Met inhibitors.Bioorg. Med. Chem. Lett.201222206368637210.1016/j.bmcl.2012.08.07522985853
    [Google Scholar]
  31. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  32. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac95636305812
    [Google Scholar]
  33. DallakyanS. OlsonA.J. Small-molecule library screening by docking with PyRx.Methods Mol. Biol.2015126324325010.1007/978‑1‑4939‑2269‑7_1925618350
    [Google Scholar]
  34. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c0020334278794
    [Google Scholar]
  35. LillM.A. DanielsonM.L. Computer-aided drug design platform using PyMOL.J. Comput. Aided Mol. Des.2011251131910.1007/s10822‑010‑9395‑821053052
    [Google Scholar]
  36. LaskowskiR.A. SwindellsM.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery.J. Chem. Inf. Model.201151102778278610.1021/ci200227u21919503
    [Google Scholar]
  37. TakinoJ. SatoT. HiraishiI. NagamineK. HoriT. Alterations in glucose metabolism due to decreased expression of heterogeneous nuclear ribonucleoprotein M in pancreatic ductal adenocarcinoma.Biology (Basel)20211015710.3390/biology1001005733466816
    [Google Scholar]
  38. WangQ. BodeA.M. ZhangT. Targeting CDK1 in cancer: Mechanisms and implications.NPJ Precis. Oncol.2023715810.1038/s41698‑023‑00407‑737311884
    [Google Scholar]
  39. WijnenR. PecoraroC. CarboneD. FiujiH. AvanA. PetersG.J. GiovannettiE. DianaP. Cyclin dependent kinase-1 (CDK-1) inhibition as a novel therapeutic strategy against pancreatic ductal adenocarcinoma (PDAC).Cancers (Basel)20211317438910.3390/cancers1317438934503199
    [Google Scholar]
  40. Van MatreS. HuqS. AkanaL. EldridgeD.E. ZunigaO. RodriguesH. WolfeA.R. Enhanced radiosensitivity of pancreatic cancer achieved through inhibition of Cyclin-dependent kinase 1.Radiother. Oncol.202420011053110.1016/j.radonc.2024.11053139270987
    [Google Scholar]
  41. ChohanT.A. QayyumA. RehmanK. TariqM. AkashM.S.H. An insight into the emerging role of cyclin-dependent kinase inhibitors as potential therapeutic agents for the treatment of advanced cancers.Biomed. Pharmacother.20181071326134110.1016/j.biopha.2018.08.11630257348
    [Google Scholar]
  42. García-ReyesB. KretzA.L. RuffJ.P. Von KarstedtS. HillenbrandA. KnippschildU. Henne-BrunsD. LemkeJ. The emerging role of cyclin-dependent kinases (CDKs) in pancreatic ductal adenocarcinoma.Int. J. Mol. Sci.20181910321910.3390/ijms1910321930340359
    [Google Scholar]
  43. JainA. BhardwajV. Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities.World J. Gastroenterol.202127396527655010.3748/wjg.v27.i39.652734754151
    [Google Scholar]
  44. UhlénM. FagerbergL. HallströmB.M. LindskogC. OksvoldP. MardinogluA. SivertssonÅ. KampfC. SjöstedtE. AsplundA. OlssonI. EdlundK. LundbergE. NavaniS. SzigyartoC.A.K. OdebergJ. DjureinovicD. TakanenJ.O. HoberS. AlmT. EdqvistP.H. BerlingH. TegelH. MulderJ. RockbergJ. NilssonP. SchwenkJ.M. HamstenM. von FeilitzenK. ForsbergM. PerssonL. JohanssonF. ZwahlenM. von HeijneG. NielsenJ. PonténF. Tissue-based map of the human proteome.Science20153476220126041910.1126/science.126041925613900
    [Google Scholar]
  45. CaiX. GaoJ. ShiC. GuoW. GuoD. ZhangS. The role of NCAPG in various of tumors.Biomed. Pharmacother.202215511363510.1016/j.biopha.2022.11363536095957
    [Google Scholar]
  46. YangY.H. WeiY.L. SheZ.Y. Kinesin-7 CENP-E in tumorigenesis: Chromosome instability, spindle assembly checkpoint, and applications.Front. Mol. Biosci.202411136611310.3389/fmolb.2024.136611338560520
    [Google Scholar]
  47. ShiY.X. DaiP.H. JiangY.F. WangY.Q. LiuW. A pan-cancer landscape of centromere proteins in tumorigenesis and anticancer drug sensitivity.Transl. Oncol.20233110165810.1016/j.tranon.2023.10165836944275
    [Google Scholar]
  48. PisaR. PhuaD.Y.Z. KapoorT.M. Distinct mechanisms of resistance to a CENP-E inhibitor emerge in near-haploid and diploid cancer cells.Cell Chem. Biol.2020277850857.e610.1016/j.chembiol.2020.05.00332442423
    [Google Scholar]
  49. El-ArabeyA.A. SalamaS.A. Abd-AllahA.R. CENP-E as a target for cancer therapy: Where are we now?Life Sci.201820819220010.1016/j.lfs.2018.07.03730031812
    [Google Scholar]
  50. PengP. ZhengJ. HeK. WangK. WangL. ZhengX. WuH. YangZ. ZhangS. ZhaoL. CENPE is a diagnostic and prognostic biomarker for cervical cancer.Heliyon.20241024e4086010.1016/j.heliyon.2024.e4086039759304
    [Google Scholar]
  51. GuoZ. JiangY. OuB. LuX. ChengX. ZhaoR. Editorial: The role of angiogenesis and immune response in tumor microenvironment of solid tumor.Front. Immunol.202314119539010.3389/fimmu.2023.119539037143661
    [Google Scholar]
  52. JiangX. WangJ. DengX. XiongF. ZhangS. GongZ. LiX. CaoK. DengH. HeY. LiaoQ. XiangB. ZhouM. GuoC. ZengZ. LiG. LiX. XiongW. The role of microenvironment in tumor angiogenesis.J. Exp. Clin. Cancer Res.202039120410.1186/s13046‑020‑01709‑532993787
    [Google Scholar]
  53. LinJ. LiG. BaiY. XieY. NCAPG as a novel prognostic biomarker in numerous cancers: A meta-analysis and bioinformatics analysis.Aging (Albany NY)20231572503252410.18632/aging.20462136996493
    [Google Scholar]
  54. SunD.P. LinC.C. HungS.T. KuangY.Y. HseuY.C. FangC.L. LinK.Y. Aberrant expression of NCAPG is associated with prognosis and progression of gastric cancer.Cancer Manag. Res.2020127837784610.2147/CMAR.S24831832922082
    [Google Scholar]
  55. WahabM.A. Del GaudioN. GargiuloB. QuagliarielloV. MaureaN. NebbiosoA. AltucciL. ConteM. Exploring the role of CBX3 as a potential therapeutic target in lung cancer.Cancers (Basel)20241617302610.3390/cancers1617302639272883
    [Google Scholar]
  56. ZhongX. KanA. ZhangW. ZhouJ. ZhangH. ChenJ. TangS. CBX3/HP1γ promotes tumor proliferation and predicts poor survival in hepatocellular carcinoma.Aging (Albany NY)201911155483549710.18632/aging.10213231375643
    [Google Scholar]
  57. YangH. PuL. LiR. ZhuR. NCAPG is transcriptionally regulated by CBX3 and activates the Wnt/β-catenin signaling pathway to promote proliferation and the cell cycle and inhibit apoptosis in colorectal cancer.J. Gastrointest. Oncol.202314290091210.21037/jgo‑23‑6337201048
    [Google Scholar]
  58. ShiY. GeC. FangD. WeiW. LiL. WeiQ. YuH. NCAPG facilitates colorectal cancer cell proliferation, migration, invasion and epithelial–mesenchymal transition by activating the Wnt/β-catenin signaling pathway.Cancer Cell Int.202222111910.1186/s12935‑022‑02538‑635292013
    [Google Scholar]
  59. OrozcoC.A. Martinez-BoschN. GuerreroP.E. VinaixaJ. Dalotto-MorenoT. IglesiasM. MorenoM. DjurecM. PoirierF. GabiusH.J. Fernandez-ZapicoM.E. HwangR.F. GuerraC. RabinovichG.A. NavarroP. Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor–stroma crosstalk.Proc. Natl. Acad. Sci. USA201811516E3769E377810.1073/pnas.172243411529615514
    [Google Scholar]
  60. SunH. ZhangH. YanY. LiY. CheG. ZhouC. NicotC. MaH. NCAPG promotes the oncogenesis and progression of non-small cell lung cancer cells through upregulating LGALS1 expression.Mol. Cancer20222115510.1186/s12943‑022‑01533‑935180865
    [Google Scholar]
  61. StangelD. ErkanM. BuchholzM. GressT. MichalskiC. RaulefsS. FriessH. KleeffJ. KIF20A inhibition reduces migration and invasion of pancreatic cancer cells.J. Surg. Res.201519719110010.1016/j.jss.2015.03.07025953216
    [Google Scholar]
  62. LiuS.L. LinH.X. QiuF. ZhangW.J. NiuC.H. WenW. SunX.Q. YeL.P. WuX.Q. LinC.Y. SongL.B. GuoL. Overexpression of kinesin family member 20A correlates with disease progression and poor prognosis in human nasopharyngeal cancer: A retrospective analysis of 105 patients.PLoS One2017121e016928010.1371/journal.pone.016928028081138
    [Google Scholar]
  63. SuzukiN. HazamaS. UenoT. MatsuiH. ShindoY. IidaM. YoshimuraK. YoshinoS. TakedaK. OkaM. A phase I clinical trial of vaccination with KIF20A-derived peptide in combination with gemcitabine for patients with advanced pancreatic cancer.J. Immunother.2014371364210.1097/CJI.000000000000001224316554
    [Google Scholar]
  64. WangJ. MaS. MaR. QuX. LiuW. LvC. ZhaoS. GongY. KIF2A silencing inhibits the proliferation and migration of breast cancer cells and correlates with unfavorable prognosis in breast cancer.BMC Cancer201414146110.1186/1471‑2407‑14‑46124950762
    [Google Scholar]
  65. NakamuraM. TakanoA. ThangP. TsevegjavB. ZhuM. YokoseT. YamashitaT. MiyagiY. DaigoY. Characterization of KIF20A as a prognostic biomarker and therapeutic target for different subtypes of breast cancer.Int. J. Oncol.202057127728810.3892/ijo.2020.506032467984
    [Google Scholar]
  66. ZhangQ. DiJ. JiZ. MiA. LiQ. DuX. WangA. WangA. QinC. KIF20A predicts poor survival of patients and promotes colorectal cancer tumor progression through the JAK/STAT3 signaling pathway.Dis. Markers2020202011110.1155/2020/203267932695240
    [Google Scholar]
  67. ShengY. WangW. HongB. JiangX. SunR. YanQ. ZhangS. LuM. WangS. ZhangZ. LinW. LiY. Upregulation of KIF20A correlates with poor prognosis in gastric cancer.Cancer Manag. Res.2018106205621610.2147/CMAR.S17614730538567
    [Google Scholar]
  68. ImaiK. HirataS. IrieA. SenjuS. IkutaY. YokomineK. HaraoM. InoueM. TomitaY. TsunodaT. NakagawaH. NakamuraY. BabaH. NishimuraY. Identification of HLA-A2-restricted CTL epitopes of a novel tumour-associated antigen, KIF20A, overexpressed in pancreatic cancer.Br. J. Cancer2011104230030710.1038/sj.bjc.660605221179034
    [Google Scholar]
  69. XuZ. PangT.C.Y. LiuA.C. PothulaS.P. MekapoguA.R. PereraC.J. MurakamiT. GoldsteinD. PirolaR.C. WilsonJ.S. ApteM.V. Targeting the HGF/c-MET pathway in advanced pancreatic cancer: A key element of treatment that limits primary tumour growth and eliminates metastasis.Br. J. Cancer2020122101486149510.1038/s41416‑020‑0782‑132203220
    [Google Scholar]
  70. MekapoguA.R. XuZ. PothulaS. PereraC. PangT. HosenS.M.Z. DamalankaV. JanetkaJ. GoldsteinD. PirolaR. WilsonJ. ApteM. HGF/c-Met pathway inhibition combined with chemotherapy increases cytotoxic T-cell infiltration and inhibits pancreatic tumour growth and metastasis.Cancer Lett.202356821628610.1016/j.canlet.2023.21628637354984
    [Google Scholar]
  71. KimJ. LeeT.S. LeeM.H. ChoI.R. RyuJ.K. KimY.T. LeeS.H. PaikW.H. Pancreatic cancer treatment targeting the HGF/c-MET pathway: The MEK inhibitor trametinib.Cancers (Basel)2024165105610.3390/cancers1605105638473413
    [Google Scholar]
  72. PothulaS.P. XuZ. GoldsteinD. PirolaR.C. WilsonJ.S. ApteM.V. Targeting HGF/c-MET axis in pancreatic cancer.Int. J. Mol. Sci.20202123917010.3390/ijms2123917033271944
    [Google Scholar]
  73. AlbahdeM.A.H. AbdrakhimovB. LiG.Q. ZhouX. ZhouD. XuH. QianH. WangW. The role of microtubules in pancreatic cancer: Therapeutic progress.Front. Oncol.20211164086310.3389/fonc.2021.64086334094924
    [Google Scholar]
  74. LiN. WangC. ZhangP. YouS. Emodin inhibits pancreatic cancer EMT and invasion by up-regulating microRNA-1271.Mol. Med. Rep.20181833366337410.3892/mmr.2018.930430066876
    [Google Scholar]
  75. WeiW. WangJ. HuY. ChenS. LiuJ. Emodin reverses resistance to gemcitabine in pancreatic cancer by suppressing stemness through regulation of the epithelial-mesenchymal transition.Exp. Ther. Med.2022251710.3892/etm.2022.1170636545274
    [Google Scholar]
  76. ThulP.J. LindskogC. The human protein atlas: A spatial map of the human proteome.Protein Sci.201827123324410.1002/pro.330728940711
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665363165250225100109
Loading
/content/journals/ppl/10.2174/0109298665363165250225100109
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test