Skip to content
2000
Volume 32, Issue 4
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background

Since the Coronavirus Disease (COVID-19) became a pandemic in late 2019, vaccination remains the primary approach to combating the virus. Nevertheless, the emergence of new variants poses challenges to vaccine efficacy. This study aimed to identify targets within the SARS-CoV-2 spike (S) protein to detect T-cell responses to the five variants of concern from SARS-CoV-2: Alpha, Beta, Delta, Gamma, and Omicron.

Methods

Herein, immunoinformatics tools were employed to develop a peptide-based vaccine targeting the spike protein of SARS-CoV-2 and its major variants, including Alpha, Beta, Delta, Gamma, and Omicron. The peptides were screened for antigenicity, toxicity, allergenicity, and physicochemical properties to ensure their safety and efficacy.

Results

The potential T-cell epitopes with high immunogenicity and IFN-γ induction, are essential for a robust immune response by a comprehensive computational analysis. Population coverage analysis revealed significant coverage across diverse geographical regions, with significant efficacy in areas heavily impacted by the pandemic. Molecular docking simulations revealed strong interactions between the selected peptides and major histocompatibility complex class I (MHC-I) molecules, indicating their potential as vaccine candidates.

Conclusion

Our study provides a systematic approach to the rational design of a peptide-based vaccine against COVID-19, providing insights for further experimental validation and development of effective vaccines.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665364226250328084245
2025-04-14
2025-09-23
Loading full text...

Full text loading...

References

  1. GralinskiL.E. MenacheryV.D. Return of the Coronavirus: 2019-nCoV.Viruses202012213510.3390/v1202013531991541
    [Google Scholar]
  2. WangC. HorbyP.W. HaydenF.G. GaoG.F. A novel coronavirus outbreak of global health concern.Lancet20203951022347047310.1016/S0140‑6736(20)30185‑931986257
    [Google Scholar]
  3. WHO. COVID-19 epidemiological update – 6 November 2024.2024Available from: https://www.who.int/publications/m/item/ covid-19-epidemiological-update-edition-173
  4. LaiC.C. ShihT.P. KoW.C. TangH.J. HsuehP.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges.Int. J. Antimicrob. Agents202055310592410.1016/j.ijantimicag.2020.10592432081636
    [Google Scholar]
  5. WuD. WuT. LiuQ. YangZ. The SARS-CoV-2 outbreak: What we know.Int. J. Infect. Dis.202094444810.1016/j.ijid.2020.03.00432171952
    [Google Scholar]
  6. KarT. NarsariaU. BasakS. DebD. CastiglioneF. MuellerD.M. SrivastavaA.P. A candidate multi-epitope vaccine against SARS-CoV-2.Sci. Rep.20201011089510.1038/s41598‑020‑67749‑132616763
    [Google Scholar]
  7. OngE. WongM.U. HuffmanA. HeY. COVID-19 Coronavirus vaccine design using reverse vaccinology and machine learning.Front. Immunol.202011158110.3389/fimmu.2020.0158132719684
    [Google Scholar]
  8. DuL. HeY. ZhouY. LiuS. ZhengB.J. JiangS. The spike protein of SARS-CoV — A target for vaccine and therapeutic development.Nat. Rev. Microbiol.20097322623610.1038/nrmicro209019198616
    [Google Scholar]
  9. WestendorfK. ŽentelisS. WangL. FosterD. VaillancourtP. WigginM. LovettE. van der LeeR. HendleJ. PustilnikA. SauderJ.M. KraftL. HwangY. SiegelR.W. ChenJ. HeinzB.A. HiggsR.E. KallewaardN.L. JepsonK. GoyaR. SmithM.A. CollinsD.W. PellacaniD. XiangP. de PuyraimondV. RicicovaM. DevorkinL. PritchardC. O’NeillA. DalalK. PanwarP. DhuparH. GarcesF.A. CohenC.A. DyeJ.M. HuieK.E. BadgerC.V. KobasaD. AudetJ. FreitasJ.J. HassanaliS. HughesI. MunozL. PalmaH.C. RamamurthyB. CrossR.W. GeisbertT.W. MenacheryV. LokugamageK. BorisevichV. LanzI. AndersonL. SipahimalaniP. CorbettK.S. YangE.S. ZhangY. ShiW. ZhouT. ChoeM. MisasiJ. KwongP.D. SullivanN.J. GrahamB.S. FernandezT.L. HansenC.L. FalconerE. MascolaJ.R. JonesB.E. BarnhartB.C. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants.Cell Rep.202239711081210.1016/j.celrep.2022.11081235568025
    [Google Scholar]
  10. IketaniS. LiuL. GuoY. LiuL. ChanJ.F.W. HuangY. WangM. LuoY. YuJ. ChuH. ChikK.K.H. YuenT.T.T. YinM.T. SobieszczykM.E. HuangY. YuenK.Y. WangH.H. ShengZ. HoD.D. Antibody evasion properties of SARS-CoV-2 omicron sublineages.Nature2022604790655355610.1038/s41586‑022‑04594‑435240676
    [Google Scholar]
  11. KuzminaA. KhalailaY. VoloshinO. Keren-NausA. Boehm-CohenL. RavivY. Shemer-AvniY. RosenbergE. TaubeR. SARS-CoV-2 spike variants exhibit differential infectivity and neutralization resistance to convalescent or post-vaccination sera.Cell Host Microbe2021294522528.e210.1016/j.chom.2021.03.00833789085
    [Google Scholar]
  12. JensenK.K. AndreattaM. MarcatiliP. BuusS. GreenbaumJ.A. YanZ. SetteA. PetersB. NielsenM. Improved methods for predicting peptide binding affinity to MHC class II molecules.Immunology2018154339440610.1111/imm.1288929315598
    [Google Scholar]
  13. PatronovA. DoytchinovaI. T-cell epitope vaccine design by immunoinformatics.Open Biol.20133112013910.1098/rsob.12013923303307
    [Google Scholar]
  14. Tahir ul QamarM. RehmanA. TusleemK. AshfaqU.A. QasimM. ZhuX. FatimaI. ShahidF. ChenL.L. Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: Immunoinformatics and in silico approaches.PLoS One20201512e024417610.1371/journal.pone.024417633351863
    [Google Scholar]
  15. Padilla-SanchezV. SARS-CoV-2 structural analysis of receptor binding domain new variants from United Kingdom and South Africa.Res. Ideas Outcomes20217e6293610.3897/rio.7.e62936
    [Google Scholar]
  16. YazdaniZ. RafieiA. YazdaniM. ValadanR. Design an efficient multi-epitope peptide vaccine candidate against SARS-CoV-2: An in silico analysis.Infect. Drug Resist.2020133007302210.2147/IDR.S26457332943888
    [Google Scholar]
  17. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The protein data bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.23510592235
    [Google Scholar]
  18. LarsenM.V. LundegaardC. LamberthK. BuusS. LundO. NielsenM. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction.BMC Bioinformatics20078142410.1186/1471‑2105‑8‑42417973982
    [Google Scholar]
  19. PintoF.R. CarriçoJ.A. RamirezM. AlmeidaJ.S. Ranked Adjusted Rand: Integrating distance and partition information in a measure of clustering agreement.BMC Bioinformatics2007814410.1186/1471‑2105‑8‑4417286861
    [Google Scholar]
  20. GuptaS. KapoorP. ChaudharyK. GautamA. KumarR. In silico approach for predicting toxicity of peptides and proteins.PLoS ONE.201389e7395710.1371/journal.pone.007395724058508
    [Google Scholar]
  21. WoldS. JonssonJ. SjörströmM. SandbergM. RännarS. DNA and peptide sequences and chemical processes multivariately modelled by principal component analysis and partial least-squares projections to latent structures.Anal. Chim. Acta1993277223925310.1016/0003‑2670(93)80437‑P
    [Google Scholar]
  22. CalisJ.J.A. MaybenoM. GreenbaumJ.A. WeiskopfD. De SilvaA.D. SetteA. KeşmirC. PetersB. Properties of MHC class I presented peptides that enhance immunogenicity.PLOS Comput. Biol.2013910e100326610.1371/journal.pcbi.100326624204222
    [Google Scholar]
  23. DhandaS.K. VirP. RaghavaG.P.S. Designing of interferon-gamma inducing MHC class-II binders.Biol. Direct2013813010.1186/1745‑6150‑8‑3024304645
    [Google Scholar]
  24. BuiH.H. SidneyJ. DinhK. SouthwoodS. NewmanM.J. SetteA. Predicting population coverage of T-cell epitope-based diagnostics and vaccines.BMC Bioinformatics20067115310.1186/1471‑2105‑7‑15316545123
    [Google Scholar]
  25. KarosieneE. LundegaardC. LundO. NielsenM. NetMHCcons: A consensus method for the major histocompatibility complex class I predictions.Immunogenetics201264317718610.1007/s00251‑011‑0579‑822009319
    [Google Scholar]
  26. CamprouxA.C. GautierR. TufféryP. A hidden markov model derived structural alphabet for proteins.J. Mol. Biol.2004339359160510.1016/j.jmb.2004.04.00515147844
    [Google Scholar]
  27. WilliamsC.J. HeaddJ.J. MoriartyN.W. PrisantM.G. VideauL.L. DeisL.N. VermaV. KeedyD.A. HintzeB.J. ChenV.B. JainS. LewisS.M. ArendallW.B.III SnoeyinkJ. AdamsP.D. LovellS.C. RichardsonJ.S. RichardsonD.C. MolProbity: More and better reference data for improved all-atom structure validation.Protein Sci.201827129331510.1002/pro.333029067766
    [Google Scholar]
  28. GautierR. DouguetD. AntonnyB. DrinG. HELIQUEST: A web server to screen sequences with specific α-helical properties.Bioinformatics200824182101210210.1093/bioinformatics/btn39218662927
    [Google Scholar]
  29. GasteigerE. HooglandC. GattikerA. DuvaudS. WilkinsM.R. AppelR.D. BaiYochA. Protein identification and analysis tools on the ExPASy server.The Proteomics Protocols Handbook 2005, 571-607.10.1385/1‑59259‑890‑0:571
    [Google Scholar]
  30. LearS. CobbS.L. Pep-Calc.com: A set of web utilities for the calculation of peptide and peptoid properties and automatic mass spectral peak assignment.J. Comput. Aided Mol. Des.201630327127710.1007/s10822‑016‑9902‑726909892
    [Google Scholar]
  31. ChaudharyK. KumarR. SinghS. TuknaitA. GautamA. MathurD. AnandP. VarshneyG.C. RaghavaG.P.S. A web server and mobile app for computing hemolytic potency of peptides.Sci. Rep.2016612284310.1038/srep2284326953092
    [Google Scholar]
  32. MeherP.K. SahuT.K. RaoA.R. Prediction of donor splice sites using random forest with a new sequence encoding approach.BioData Min.201691410.1186/s13040‑016‑0086‑426807151
    [Google Scholar]
  33. LaskowskiR.A. SwindellsM.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery.J. Chem. Inf. Model.201151102778278610.1021/ci200227u21919503
    [Google Scholar]
  34. HaqueA. PantA.B. Efforts at COVID-19 vaccine development: Challenges and successes.Vaccines20208473910.3390/vaccines804073933291245
    [Google Scholar]
  35. AwadN. MohamedR.H. GhoneimN.I. ElmehrathA.O. El-BadriN. Immunoinformatics approach of epitope prediction for SARS-CoV-2.J. Genet. Eng. Biotechnol.20222016010.1186/s43141‑022‑00344‑135441904
    [Google Scholar]
  36. FedericoL. MaloneB. TennøeS. ChabanV. OsenJ.R. GainullinM. SmorodinaE. KaredH. AkbarR. GreiffV. StratfordR. ClancyT. MuntheL.A. Experimental validation of immunogenic SARS-CoV-2 T cell epitopes identified by artificial intelligence.Front. Immunol.202314126504410.3389/fimmu.2023.126504438045681
    [Google Scholar]
  37. AbdelmageedM.I. AbdelmoneimA.H. MustafaM.I. ElfadolN.M. MurshedN.S. ShantierS.W. MakhawiA.M. Design of a multiepitope-based peptide vaccine against the E protein of human COVID-19: An immunoinformatics approach.BioMed Res. Int.202020201268328610.1155/2020/268328632461973
    [Google Scholar]
  38. CallawayE. Heavily mutated Omicron variant puts scientists on alert.Nature20216007887212110.1038/d41586‑021‑03552‑w34824381
    [Google Scholar]
  39. SouzaP.F.N. MesquitaF.P. AmaralJ.L. LandimP.G.C. LimaK.R.P. CostaM.B. FariasI.R. BelémM.O. PintoY.O. MoreiraH.H.T. MagalhaesI.C.L. Castelo-BrancoD.S.C.M. MontenegroR.C. de AndradeC.R. The spike glycoprotein of SARS-CoV-2: A review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape.Int. J. Biol. Macromol.202220810512510.1016/j.ijbiomac.2022.03.05835300999
    [Google Scholar]
  40. HashjinS.A. SardariS. RostamianM. AhmadiK. MadanchiH. KhalajV. A new multi-epitope vaccine candidate based on S and M proteins is effective in inducing humoral and cellular immune responses against SARS-CoV-2 variants: An in silico design approach.J. Biomol. Struct. Dyn.202311837874075
    [Google Scholar]
  41. CheslerD.A. ReissC.S. The role of IFN-γ in immune responses to viral infections of the central nervous system.Cytokine Growth Factor Rev.200213644145410.1016/S1359‑6101(02)00044‑812401479
    [Google Scholar]
  42. LeeA.J. AshkarA.A. The dual nature of type I and type II interferons.Front. Immunol.20189206110.3389/fimmu.2018.0206130254639
    [Google Scholar]
  43. KhanM.S. KhanI.M. AhmadS.U. RahmanI. KhanM.Z. KhanM.S.Z. AbbasZ. NoreenS. LiuY. Immunoinformatics design of B and T-cell epitope-based SARS-CoV-2 peptide vaccination.Front. Immunol.202313100143010.3389/fimmu.2022.100143036685569
    [Google Scholar]
  44. Palatnik-de-SousaI. WallaceZ.S. CavalcanteS.C. RibeiroM.P.F. SilvaJ.A.B.M. CavalcanteR.C. ScheuermannR.H. Palatnik-de-SousaC.B. A novel vaccine based on SARS-CoV-2 CD4+ and CD8+ T cell conserved epitopes from variants Alpha to Omicron.Sci. Rep.20221211673110.1038/s41598‑022‑21207‑236202985
    [Google Scholar]
  45. HumayunF. CaiY. KhanA. FarhanS.A. KhanF. RanaU.I. QamarA. FawadN. ShamasS. Dongqing-Wei Structure-guided design of multi-epitopes vaccine against variants of concern (VOCs) of SARS-CoV-2 and validation through in silico cloning and immune simulations.Comput. Biol. Med.202214010512210.1016/j.compbiomed.2021.10512234896886
    [Google Scholar]
  46. LapelosaM. GallicchioE. ArnoldG.F. ArnoldE. LevyR.M. In silico vaccine design based on molecular simulations of rhinovirus chimeras presenting HIV-1 gp41 epitopes.J. Mol. Biol.2009385267569110.1016/j.jmb.2008.10.08919026659
    [Google Scholar]
  47. ChakrabortyS. ChakravortyR. AhmedM. RahmanA. WaiseT.M.Z. HassanF. RahmanM. ShamsuzzamanS. A computational approach for identification of epitopes in dengue virus envelope protein: A step towards designing a universal dengue vaccine targeting endemic regions.In Silico Biol.2010105,623524610.3233/ISB‑2010‑043522430357
    [Google Scholar]
  48. HasanA HossainM AlamJ. A computational assay to design an epitope-based peptide vaccine against saint louis encephalitis virus.Bioinform. Biol. Insights2013734735510.4137/BBI.S1340224324329
    [Google Scholar]
  49. SekineT. Perez-PottiA. Rivera-BallesterosO. StrålinK. GorinJ.B. OlssonA. Llewellyn-LaceyS. KamalH. BogdanovicG. MuschiolS. WullimannD.J. KammannT. EmgårdJ. ParrotT. FolkessonE. RooyackersO. ErikssonL.I. HenterJ.I. SönnerborgA. AllanderT. AlbertJ. NielsenM. KlingströmJ. Gredmark-RussS. BjörkströmN.K. SandbergJ.K. PriceD.A. LjunggrenH.G. AlemanS. BuggertM. AkberM. BerglinL. BergstenH. BrighentiS. BrownlieD. ButrymM. ChambersB. ChenP. JeanninM.C. GripJ. GomezA.C. DillnerL. LozanoI.D. DzidicM. TullbergM.F. FärnertA. GlansH. Haroun-IzquierdoA. HenrikssonE. HertwigL. KalsumS. KokkinouE. KvedaraiteE. LoretiM. LourdaM. MalekiK. MalmbergK-J. MarquardtN. MaucourantC. MichaelssonJ. MjösbergJ. MollK. MuvaJ. MårtenssonJ. NauclérP. Norrby-TeglundA. MedinaL.P. PerssonB. RadlerL. RingqvistE. SandbergJ.T. SohlbergE. SoiniT. SvenssonM. TynellJ. VarnaiteR. KriesA.V. UngeC. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19.Cell20201831158168.e1410.1016/j.cell.2020.08.01732979941
    [Google Scholar]
  50. SadoffJ. GrayG. VandeboschA. CárdenasV. ShukarevG. GrinsztejnB. GoepfertP.A. TruyersC. Van DrommeI. SpiessensB. VingerhoetsJ. CustersJ. ScheperG. RobbM.L. TreanorJ. RyserM.F. BarouchD.H. SwannE. MarovichM.A. NeuzilK.M. CoreyL. StoddardJ. HardtK. Ruiz-GuiñazúJ. Le GarsM. SchuitemakerH. Van HoofJ. StruyfF. DouoguihM. Final analysis of efficacy and safety of single-dose Ad26.COV2.S.N. Engl. J. Med.2022386984786010.1056/NEJMoa211760835139271
    [Google Scholar]
  51. RoyA.S. TonmoyM.I.Q. FarihaA. HamiI. AfifI.K. MunimM.A. AlamM.R. HossainM.S. Multi-epitope based peptide vaccine design using three structural proteins (S, E, and M) of SARS-CoV-2: An in silico approach.bioRxiv2020pp. 2020-2026
    [Google Scholar]
  52. MagazineN. ZhangT. WuY. McGeeM.C. VeggianiG. HuangW. Mutations and evolution of the SARS-CoV-2 spike protein.Viruses202214364010.3390/v1403064035337047
    [Google Scholar]
  53. Weingarten-GabbayS. KlaegerS. SarkizovaS. PearlmanL.R. ChenD.Y. GallagherK.M.E. BauerM.R. TaylorH.B. DunnW.A. TarrC. SidneyJ. RachimiS. ConwayH.L. KatsisK. WangY. Leistritz-EdwardsD. DurkinM.R. Tomkins-TinchC.H. FinkelY. NachshonA. GentiliM. RiveraK.D. CarulliI.P. CheaV.A. ChandrashekarA. BozkusC.C. CarringtonM. BhardwajN. BarouchD.H. SetteA. MausM.V. RiceC.M. ClauserK.R. KeskinD.B. PregibonD.C. HacohenN. CarrS.A. AbelinJ.G. SaeedM. SabetiP.C. Lavin-ParsonsK. ParryB. LilleyB. LodensteinC. McKaigB. CharlandN. KhannaH. MargolinJ. GonyeA. GushterovaI. LasalleT. SharmaN. RussoB.C. Rojas-LopezM. Sade-FeldmanM. ManakongtreecheepK. TantivitJ. Fisher ThomasM. Profiling SARS-CoV-2 HLA-I peptidome reveals T cell epitopes from out-of-frame ORFs.Cell20211841539623980.e1710.1016/j.cell.2021.05.04634171305
    [Google Scholar]
  54. RouzbahaniA.K. KheirandishF. HosseiniS.Z. Design of a multi-epitope-based peptide vaccine against the S and N proteins of SARS-COV-2 using immunoinformatics approach.Egypt. J. Med. Hum. Genet.20222311610.1186/s43042‑022‑00224‑w37521850
    [Google Scholar]
  55. MahmoudvandS. GhalehE.G.H. JalilianF.A. FarzanehpourM. DorostkarR. Design of a multi-epitope-based vaccine consisted of immunodominant epitopes of structural proteins of SARS-CoV-2 using immunoinformatics approach.Biotechnol. Appl. Biochem.20237031189120510.1002/bab.243136577011
    [Google Scholar]
  56. CunY. LiC. ShiL. SunM. DaiS. SunL. ShiL. YaoY. COVID-19 coronavirus vaccine T cell epitope prediction analysis based on distributions of HLA class I loci (HLA-A,-B,-C) across global populations.Hum. Vaccin. Immunother.20211741097110810.1080/21645515.2020.182377733175614
    [Google Scholar]
  57. Montes-GrajalesD. Olivero-VerbelJ. Bioinformatics prediction of SARS-CoV-2 epitopes as vaccine candidates for the Colombian population.Vaccines20219779710.3390/vaccines907079734358213
    [Google Scholar]
  58. VelasteguiE. VeraE. Vanden BergheW. MuñozM.S. Orellana-ManzanoA. “HLA-C: Evolution, epigenetics, and pathological implications in the major histocompatibility complex”.Front. Genet.202314120603410.3389/fgene.2023.120603437465164
    [Google Scholar]
  59. LiuX. ChangX. RothenD. DerveniM. KrengerP. RoongtaS. WrightE. VogelM. TarsK. MohsenM.O. BachmannM.F. AP205 VLPs based on dimerized capsid proteins accommodate RBM domain of SARS-CoV-2 and serve as an attractive vaccine candidate.Vaccines20219440310.3390/vaccines904040333921677
    [Google Scholar]
  60. RammenseeH.G. GouttefangeasC. HeiduS. KleinR. PreußB. WalzJ. NeldeA. HaenS. RethM. YangJ. TabatabaiG. BösmüllerH. HoffmannH. SchindlerM. PlanzO. WiesmüllerK.H. LöfflerM. Designing a SARS-CoV-2 T-cell-inducing vaccine for high-risk patient groups.Vaccines20219542810.3390/vaccines905042833923363
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665364226250328084245
Loading
/content/journals/ppl/10.2174/0109298665364226250328084245
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): acute respiratory syndrome; immunotherapy; pandemic; peptide-based; SARS-CoV-2; Vaccines
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test