
Full text loading...
Since the Coronavirus Disease (COVID-19) became a pandemic in late 2019, vaccination remains the primary approach to combating the virus. Nevertheless, the emergence of new variants poses challenges to vaccine efficacy. This study aimed to identify targets within the SARS-CoV-2 spike (S) protein to detect T-cell responses to the five variants of concern from SARS-CoV-2: Alpha, Beta, Delta, Gamma, and Omicron.
Herein, immunoinformatics tools were employed to develop a peptide-based vaccine targeting the spike protein of SARS-CoV-2 and its major variants, including Alpha, Beta, Delta, Gamma, and Omicron. The peptides were screened for antigenicity, toxicity, allergenicity, and physicochemical properties to ensure their safety and efficacy.
The potential T-cell epitopes with high immunogenicity and IFN-γ induction, are essential for a robust immune response by a comprehensive computational analysis. Population coverage analysis revealed significant coverage across diverse geographical regions, with significant efficacy in areas heavily impacted by the pandemic. Molecular docking simulations revealed strong interactions between the selected peptides and major histocompatibility complex class I (MHC-I) molecules, indicating their potential as vaccine candidates.
Our study provides a systematic approach to the rational design of a peptide-based vaccine against COVID-19, providing insights for further experimental validation and development of effective vaccines.
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements