Skip to content
2000
Volume 32, Issue 4
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Introduction

Ubiquitin and ubiquitin-like systems play crucial roles across a wide range of organisms, from simple to complex. Among the three enzyme-mediated post-translational modification (PTM) steps, the ligation step is the most critical. HERC5, a member of the HECT ligase family, is one of the three enzymes involved in the ISGylation system. However, the precise start points and lengths of the HECT domains in HECT ligases are still under debate.

Methods

Some studies suggest the inclusion of an additional N-terminal alpha helix region within the HECT domain. To investigate the structural biology of the HECT domain of HERC5, we produced and purified various lengths of the HERC5 HECT domain using different fusion proteins. This approach allowed us to explore the role of the N-terminal alpha helix in the stability of the HECT domain. Our experiments successfully produced and purified HERC5 HECT domains of different lengths with various fusion proteins.

Results

The findings demonstrated that the N-terminal alpha-helix does not enhance the stability of the HECT domain. These results challenge the notion that the N-terminal alpha-helix should be generally included in the HECT domain across all HECT ligases.

Conclusion

The inclusion of this region within the HECT domain may not be appropriate for generalization, as it does not contribute to stability, contrary to some previous suggestions.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665362863250114075840
2025-02-11
2025-09-23
Loading full text...

Full text loading...

References

  1. CorreaA. OrtegaC. ObalG. AlzariP. VincentelliR. OppezzoP. Generation of a vector suite for protein solubility screening.Front. Microbiol.201456710.3389/fmicb.2014.0006724616717
    [Google Scholar]
  2. RosanoG. L. MoralesE. S. CeccarelliE. A. New tools for recombinant protein production in Escherichia coli: A 5-year update.Prot. Sci.20192881412142210.1002/pro.3668
    [Google Scholar]
  3. GuptaV. SenguptaM. PrakashJ. TripathyB. C. Production of recombinant pharmaceutical proteins.Basi. Appl. Aspec. Biotechnol.2016747710110.1007/978‑981‑10‑0875‑7_4
    [Google Scholar]
  4. PouresmaeilM. Azizi-DargahlouS. Factors involved in heterologous expression of proteins in E. coli host.Arch. Microbiol.2023205521210.1007/s00203‑023‑03541‑937120438
    [Google Scholar]
  5. EspositoD. ChatterjeeD.K. Enhancement of soluble protein expression through the use of fusion tags.Curr. Opin. Biotechnol.200617435335810.1016/j.copbio.2006.06.00316781139
    [Google Scholar]
  6. KöpplC. LinggN. FischerA. KrößC. LoiblJ. BuchingerW. SchneiderR. JungbauerA. StriednerG. Cserjan-PuschmannM. Fusion tag design influences soluble recombinant protein production in Escherichia coli. Int. J. Mol. Sci.20222314767810.3390/ijms2314767835887026
    [Google Scholar]
  7. GuoH.J. RahimiN. TadiP. Biochemistry, Ubiquitination.StatPearls.Treasure Island (FL)StatPearls Publishing202332310512
    [Google Scholar]
  8. ZhangD. ZhangD. E. Interferon-stimulated gene 15 and the protein ISGylation system.J. Interfe. Cytok. Res.201131111913010.1089/jir.2010.011021190487
    [Google Scholar]
  9. PerngY.C. LenschowD.J. ISG15 in antiviral immunity and beyond.Nat. Rev. Microbiol.201816742343910.1038/s41579‑018‑0020‑529769653
    [Google Scholar]
  10. ScheffnerM. StaubO. HECT E3s and human disease.BMC Biochem.20078Suppl 1S610.1186/1471‑2091‑8‑S1‑S618047743
    [Google Scholar]
  11. RotinD. KumarS. Physiological functions of the HECT family of ubiquitin ligases.Nat. Rev. Mol. Cell Biol.200910639840910.1038/nrm269019436320
    [Google Scholar]
  12. QianH. ZhangY. WuB. WuS. YouS. ZhangN. SunY. Structure and function of HECT E3 ubiquitin ligases and their role in oxidative stress.J. Transl. Int. Med.202082717910.2478/jtim‑2020‑001232983929
    [Google Scholar]
  13. YangQ. ZhaoJ. ChenD. WangY. E3 ubiquitin ligases: Styles, structures and functions.Mol. Biomed.2021212310.1186/s43556‑021‑00043‑235006464
    [Google Scholar]
  14. ShahS.S. KumarS. Adaptors as the regulators of HECT ubiquitin ligases.Cell Death Differ.202128245547210.1038/s41418‑020‑00707‑633402750
    [Google Scholar]
  15. KaneE.I. BeasleyS.A. SchaferJ.M. BohlJ.E. LeeY.S. RichK.J. BosiaE.F. SprattD.E. Redefining the catalytic HECT domain boundaries for the HECT E3 ubiquitin ligase family.Biosci. Rep.20224210BSR2022103610.1042/BSR2022103636111624
    [Google Scholar]
  16. WangZ. FanF. LiZ. YeF. WangQ. GaoR. QiuJ. LvY. LinM. XuW. LuoC. YuX. Structural insights into the functional mechanism of the ubiquitin ligase E6AP.Nat. Commun.2024151353110.1038/s41467‑024‑47586‑w38670961
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665362863250114075840
Loading
/content/journals/ppl/10.2174/0109298665362863250114075840
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): biotechnology; Escherichia coli; HECT ligase; HERC5; ISGylation; ubiquitin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test