Skip to content
2000
Volume 32, Issue 2
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Introduction

Tritrpticin (TRP3) is a peptide belonging to the cathelicidin family and has a broad spectrum of antimicrobial activity. However, this class of biomolecules can be easily degraded in the body, making it necessary to use an efficient transport system. The ability to form stable nanostructures from the interaction of glycyrrhizin saponin with the pluronic polymer F127 was demonstrated, forming mixed biopolymeric micelles, highly promising as drug carriers.

Objective

The present work sought to understand the physicochemical interaction of the antimicrobial peptide TRP3 with the mixed polymeric micelle made from pluronic F127 and the saponin glycyrrhizin.

Methods

The interaction of tritrpticin with mixed nanostructured micelles was evaluated through fluorescence spectroscopy and fluorescence quenching with acrylamide. The experiments were performed at room temperature (25 ± 1°C), adopting an excitation wavelength set to 280 nm and emission between 300 and 500 nm, with a slit of 5 nm.

Results

The interaction of the cationic peptide tritrpticin with the mixed biopolymeric micelles was observed through the blue shift of the fluorescence emission to shorter wavelengths, proving the change of tryptophan to a more hydrophobic environment. Through the fluorescence suppression technique, it was possible to indicate the location of the peptide in the mixed micelles, proving tritrpticin to be partially inserted inside them.

Conclusion

It was concluded that tritrpticin interacted with mixed nanostructured micelles, forming a promising system for biotechnological applications.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665359223241226091327
2025-01-28
2025-12-13
Loading full text...

Full text loading...

References

  1. PaivaC.L. ZaniL.B. DuarteI.D. Jonis-SilvaM.D.A. Uso indiscriminado de antibióticos e superbactérias KPC: Tema CTS controverso no ensino de Biologia.Debates em Educação Científica e Tecnológica201331324010.36524/dect.v3i01.46
    [Google Scholar]
  2. WHO Global Strategy for Containment of Antimicrobial ResistanceWorld Health Organization2001
    [Google Scholar]
  3. MishraB. ReilingS. ZarenaD. WangG. Host defense antimicrobial peptides as antibiotics: Design and application strategies.Curr. Opin. Chem. Biol.201738879610.1016/j.cbpa.2017.03.01428399505
    [Google Scholar]
  4. TassanakajonA. RimphanitchayakitV. VisetnanS. AmparyupP. SomboonwiwatK. CharoensapsriW. TangS. Shrimp humoral responses against pathogens: Antimicrobial peptides and melanization.Dev. Comp. Immunol.20188026819310.1016/j.dci.2017.05.00928501515
    [Google Scholar]
  5. MahlapuuM. HåkanssonJ. RingstadL. BjörnC. Antimicrobial peptides: An emerging category of therapeutic agents.Front. Cell. Infect. Microbiol.2016619410.3389/fcimb.2016.0019428083516
    [Google Scholar]
  6. LawyerC. PaiS. WatabeM. BorgiaP. MashimoT. EagletonL. WatabeK. Antimicrobial activity of a 13 amino acid tryptophan-rich peptide derived from a putative porcine precursor protein of a novel family of antibacterial peptides.FEBS Lett.19963901959810.1016/0014‑5793(96)00637‑08706838
    [Google Scholar]
  7. EpandR.M. VogelH.J. Diversity of antimicrobial peptides and their mechanisms of action.Biochim. Biophys. Acta Biomembr.199914621-2112810.1016/S0005‑2736(99)00198‑410590300
    [Google Scholar]
  8. ZanettiM. GennaroR. RomeoD. Cathelicidins: A novel protein family with a common proregion and a variable C-terminal antimicrobial domain.FEBS Lett.199537411510.1016/0014‑5793(95)01050‑O7589491
    [Google Scholar]
  9. ChanD.I. PrennerE.J. VogelH.J. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action.Biochim. Biophys. Acta Biomembr.2006175891184120210.1016/j.bbamem.2006.04.00616756942
    [Google Scholar]
  10. YangS.T. KimJ.I. ShinS.Y. Effect of dimerization of a β-turn antimicrobial peptide, PST13-RK, on antimicrobial activity and mammalian cell toxicity.Biotechnol. Lett.200931223323710.1007/s10529‑008‑9848‑518815734
    [Google Scholar]
  11. InfanteV.V. Miranda-OlveraA.D. De Leon-RodriguezL.M. Anaya-VelazquezF. RodriguezM.C. AvilaE.E. Effect of the antimicrobial peptide tritrpticin on the in vitro viability and growth of Trichomonas vaginalis. Curr. Microbiol.201162130130610.1007/s00284‑010‑9709‑z20640424
    [Google Scholar]
  12. YangS.T. Yub ShinS. KimY.C. KimY. HahmK.S. KimJ.I. Conformation-dependent antibiotic activity of tritrpticin, a cathelicidin-derived antimicrobial peptide.Biochem. Biophys. Res. Commun.200229651044105010.1016/S0006‑291X(02)02048‑X12207877
    [Google Scholar]
  13. Inui KishiR.N. Stach-MachadoD. SingulaniJ.L. dos SantosC.T. Fusco-AlmeidaA.M. CilliE.M. Freitas-AstúaJ. PicchiS.C. MachadoM.A. Evaluation of cytotoxicity features of antimicrobial peptides with potential to control bacterial diseases of citrus.PLoS One2018139e020345110.1371/journal.pone.020345130192822
    [Google Scholar]
  14. AriasM. HaneyE.F. HilchieA.L. CorcoranJ.A. HyndmanM.E. HancockR.E.W. VogelH.J. Selective anticancer activity of synthetic peptides derived from the host defence peptide tritrpticin.Biochim. Biophys. Acta Biomembr.20201862818322810.1016/j.bbamem.2020.18322832126228
    [Google Scholar]
  15. MaZ. WeiD. YanP. ZhuX. ShanA. BiZ. Characterization of cell selectivity, physiological stability and endotoxin neutralization capabilities of α-helix-based peptide amphiphiles.Biomaterials20155251753010.1016/j.biomaterials.2015.02.06325818457
    [Google Scholar]
  16. TiewcharoenS. PhurttikulW. RabablertJ. AuewarakulP. RoytrakulS. ChetanachanP. AtithepT. JunnuV. Effect of synthetic antimicrobial peptides on Naegleria fowleri trophozoites.Southeast Asian J. Trop. Med. Public Health201445353754624974637
    [Google Scholar]
  17. CirioniO. GiacomettiA. SilvestriC. Della VittoriaA. LicciA. RivaA. ScaliseG. In vitro activities of tritrpticin alone and in combination with other antimicrobial agents against Pseudomonas aeruginosa. Antimicrob. Agents Chemother.200650113923392510.1128/AAC.00652‑0616940073
    [Google Scholar]
  18. GhiselliR. CirioniO. GiacomettiA. MocchegianiF. OrlandoF. SilvestriC. LicciA. Della VittoriaA. ScaliseG. SabaV. The cathelicidin-derived tritrpticin enhances the efficacy of ertapenem in experimental rat models of septic shock.Shock200626219520010.1097/01.shk.0000225407.24479.3f16878029
    [Google Scholar]
  19. NagpalS. KaurK.J. JainD. SalunkeD.M. Plasticity in structure and interactions is critical for the action of indolicidin, an antibacterial peptide of innate immune origin.Protein Sci.20021192158216710.1110/ps.021160212192071
    [Google Scholar]
  20. SchibliD.J. HwangP.M. VogelH.J. Structure of the antimicrobial peptide tritrpticin bound to micelles: A distinct membrane-bound peptide fold.Biochemistry19993851167491675510.1021/bi990701c10606506
    [Google Scholar]
  21. AndrushchenkoV.V. VogelH.J. PrennerE.J. Solvent-dependent structure of two tryptophan-rich antimicrobial peptides and their analogs studied by FTIR and CD spectroscopy.Biochim. Biophys. Acta Biomembr.20061758101596160810.1016/j.bbamem.2006.07.01316956577
    [Google Scholar]
  22. SalayL.C. ProcopioJ. OliveiraE. NakaieC.R. SchreierS. Ion channel-like activity of the antimicrobial peptide tritrpticin in planar lipid bilayers.FEBS Lett.20045651-317117510.1016/j.febslet.2004.03.09315135074
    [Google Scholar]
  23. SchibliD.J. NguyenL.T. KernaghanS.D. RekdalØ. VogelH.J. Structure-function analysis of tritrpticin analogs: Potential relationships between antimicrobial activities, model membrane interactions, and their micelle-bound NMR structures.Biophys. J.200691124413442610.1529/biophysj.106.08583716997878
    [Google Scholar]
  24. YangS.T. ShinS.Y. HahmK.S. KimJ.I. Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities.Int. J. Antimicrob. Agents200627432533010.1016/j.ijantimicag.2005.11.01416563706
    [Google Scholar]
  25. SalayL.C. FerreiraM. OliveiraO.N.Jr NakaieC.R. SchreierS. Headgroup specificity for the interaction of the antimicrobial peptide tritrpticin with phospholipid Langmuir monolayers.Colloids Surf. B Biointerfaces20121009510210.1016/j.colsurfb.2012.05.00222772075
    [Google Scholar]
  26. BozelliJ.C.Jr SasaharaE.T. PintoM.R.S. NakaieC.R. SchreierS. Effect of head group and curvature on binding of the antimicrobial peptide tritrpticin to lipid membranes.Chem. Phys. Lipids2012165436537310.1016/j.chemphyslip.2011.12.00522209923
    [Google Scholar]
  27. YangS.T. ShinS.Y. HahmK.S. KimJ.I. Different modes in antibiotic action of tritrpticin analogs, cathelicidin-derived Trp-rich and Pro/Arg-rich peptides.Biochim. Biophys. Acta Biomembr.20061758101580158610.1016/j.bbamem.2006.06.00716859636
    [Google Scholar]
  28. SchibliD.J. EpandR.F. VogelH.J. EpandR.M. Tryptophan-rich antimicrobial peptides: Comparative properties and membrane interactions.Biochem. Cell Biol.200280566767710.1139/o02‑14712440706
    [Google Scholar]
  29. AndrushchenkoV.V. AarabiM.H. NguyenL.T. PrennerE.J. VogelH.J. Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes.Biochim. Biophys. Acta Biomembr.2008177841004101410.1016/j.bbamem.2007.12.02218222168
    [Google Scholar]
  30. AndrushchenkoV.V. VogelH.J. PrennerE.J. Interactions of tryptophan-rich cathelicidin antimicrobial peptides with model membranes studied by differential scanning calorimetry.Biochim. Biophys. Acta Biomembr.20071768102447245810.1016/j.bbamem.2007.05.01517597579
    [Google Scholar]
  31. SharmaR. LomashS. SalunkeD.M. Putative bioactive motif of tritrpticin revealed by an antibody with biological receptor-like properties.PLoS One201389e7558210.1371/journal.pone.007558224086578
    [Google Scholar]
  32. SalayL.C. PetriD.F.S. NakaieC.R. SchreierS. Adsorption of the antimicrobial peptide tritrpticin onto solid and liquid surfaces: Ion-specific effects.Biophys. Chem.201520712813410.1016/j.bpc.2015.10.00426529674
    [Google Scholar]
  33. BiswaroL.S. da Costa SousaM.G. RezendeT.M.B. DiasS.C. FrancoO.L. Antimicrobial peptides and nanotechnology, recent advances and challenges.Front. Microbiol.2018985510.3389/fmicb.2018.0085529867793
    [Google Scholar]
  34. TeixeiraM.C. CarboneC. SousaM.C. EspinaM. GarciaM.L. Sanchez-LopezE. SoutoE.B. Nanomedicines for the delivery of antimicrobial peptides (AMPs).Nanomaterials (Basel)202010356010.3390/nano1003056032244858
    [Google Scholar]
  35. BatrakovaE.V. KabanovA.V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers.J. Control. Release200813029810610.1016/j.jconrel.2008.04.01318534704
    [Google Scholar]
  36. KakizawaY. KataokaK. Block copolymer micelles for delivery of gene and related compounds.Adv. Drug Deliv. Rev.200254220322210.1016/S0169‑409X(02)00017‑011897146
    [Google Scholar]
  37. OwensD.III PeppasN. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles.Int. J. Pharm.200630719310210.1016/j.ijpharm.2005.10.01016303268
    [Google Scholar]
  38. XiongX.Y. TamK.C. GanL.H. Polymeric nanostructures for drug delivery applications based on Pluronic copolymer systems.J. Nanosci. Nanotechnol.2006692638265010.1166/jnn.2006.44917048472
    [Google Scholar]
  39. AlexandridisP. AthanassiouV. FukudaS. HattonT.A. Surface activity of Poly(ethylene oxide)-block-Poly(propylene oxide)-block-Poly(ethylene oxide) copolymers.Langmuir19941082604261210.1021/la00020a019
    [Google Scholar]
  40. MoebusK. SiepmannJ. BodmeierR. Alginate–poloxamer microparticles for controlled drug delivery to mucosal tissue.Eur. J. Pharm. Biopharm.2009721425310.1016/j.ejpb.2008.12.00419126428
    [Google Scholar]
  41. AkashM.S.H. RehmanK. Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives.J. Control. Release201520912013810.1016/j.jconrel.2015.04.03225921088
    [Google Scholar]
  42. PragatheeswaranA.M. ChenS.B. Effect of chain length of PEO on the gelation and micellization of the pluronic F127 copolymer aqueous system.Langmuir201329319694970110.1021/la401639g23855644
    [Google Scholar]
  43. PadillaM. ClarkG.T. MerrillR.L. Topical medications for orofacial neuropathic pain: A review.J. Am. Dent. Assoc.2000131218419510.14219/jada.archive.2000.014610680386
    [Google Scholar]
  44. JainN.K. ShahB.K. TanejaL.N. Nasal absorption of metoprolol tartrate.Indian J. Pharm. Sci.1991531619
    [Google Scholar]
  45. RyuJ.M. ChungS.J. LeeM.H. KimC.K. ShimC.K. Increased bioavailability of propranolol in rats by retaining thermally gelling liquid suppositories in the rectum.J. Control. Release199959216317210.1016/S0168‑3659(98)00189‑810332051
    [Google Scholar]
  46. LinH.R. SungK.C. Carbopol/pluronic phase change solutions for ophthalmic drug delivery.J. Control. Release200069337938810.1016/S0168‑3659(00)00329‑111102678
    [Google Scholar]
  47. KollerC. BuriP. Propriétés et intérêt pharmaceutique des gels thermoréversibles à base de poloxamers et poloxamines.S.T.P. Pharma. Sci.19873115124
    [Google Scholar]
  48. GangulyR. KumarS. KunwarA. NathS. SarmaH.D. TripathiA. VermaG. ChaudhariD.P. AswalV.K. MeloJ.S. Structural and therapeutic properties of curcumin solubilized pluronic F127 micellar solutions and hydrogels.J. Mol. Liq.202031411359110.1016/j.molliq.2020.113591
    [Google Scholar]
  49. WankaG. HoffmannH. UlbrichtW. Phase diagrams and aggregation behavior of poly(oxyethy1-ene)- poly(oxypropylene)-poly-(oxyethylene) triblock copolymers in aqueous solutions.Macromolecules199427154145415910.1021/ma00093a016
    [Google Scholar]
  50. SalayL.C. PrazeresE.A. Marín HuachacaN.S. LemosM. PiccoliJ.P. SanchesP.R.S. CilliE.M. SantosR.S. FeitosaE. Molecular interactions between Pluronic F127 and the peptide tritrpticin in aqueous solution.Colloid Polym. Sci.2018296480981710.1007/s00396‑018‑4304‑0
    [Google Scholar]
  51. RibeiroB.D. CoelhoM.A.Z. MarruchoI.M. Extraction of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro) with cholinium-based ionic liquids and deep eutectic solvents.Eur. Food Res. Technol.2013237696597510.1007/s00217‑013‑2068‑9
    [Google Scholar]
  52. ZhouW. WangX. ChenC. ZhuL. Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin.Colloids Surf. A Physicochem. Eng. Asp.201342512212810.1016/j.colsurfa.2013.02.055
    [Google Scholar]
  53. Güçlü-ÜstündağÖ. MazzaG. Saponins: Properties, applications and processing.Crit. Rev. Food Sci. Nutr.200747323125810.1080/1040839060069819717453922
    [Google Scholar]
  54. LorentJ.H. Quetin-LeclercqJ. Mingeot-LeclercqM.P. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells.Org. Biomol. Chem.201412448803882210.1039/C4OB01652A25295776
    [Google Scholar]
  55. FrancisG. KeremZ. MakkarH.P.S. BeckerK. The biological action of saponins in animal systems: A review.Br. J. Nutr.200288658760510.1079/BJN200272512493081
    [Google Scholar]
  56. HarwanshR.K. PatraK.C. ParetaS.K. SinghJ. RahmanM.A. Nanoemulsions as vehicles for transdermal delivery of glycyrrhizin.Braz. J. Pharm. Sci.201147476977810.1590/S1984‑82502011000400014
    [Google Scholar]
  57. SharmaV. AgrawalR.C. Glycyrrhiza glabra - a plant for the future.Mint. J. Pharm. Med. Sci.201321520
    [Google Scholar]
  58. MorganA.G. McadamW.A. Glycyrrhiza glabra. Monograph.Altern. Med. Rev.200510323023716164378
    [Google Scholar]
  59. NafisiS. BonsaiiM. ManouchehriF. AbdiK. Interaction of glycyrrhizin and glycyrrhetinic acid with DNA.DNA Cell Biol.201231111412110.1089/dna.2011.128722074129
    [Google Scholar]
  60. RoshanA. VermaN.K. KumarC.S. ChandraV. SinghD.P. PandayM.K. Phytochemical constituent, pharmacological activities and medicinal uses through the millenia of Glycyrrhiza glabra linn: A Review.Int. Res. J. Pharm.201234555
    [Google Scholar]
  61. HasanM.K. AraI. MondalM.S.A. KabirY. Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra.Heliyon202176e0724010.1016/j.heliyon.2021.e0724034189299
    [Google Scholar]
  62. NafisiS. ManouchehriF. BonsaiiM. Study on the interaction of glycyrrhizin and glycyrrhetinic acid with RNA.J. Photochem. Photobiol. B2012111273410.1016/j.jphotobiol.2012.03.00622513095
    [Google Scholar]
  63. SaxenaS. Glycyrrhiza glabra: Medicine over the millenium.Nat. Prod. Radiance200545
    [Google Scholar]
  64. HemrajR.K. SinghG. GuptaA. Pharmacological activities on Glycyrrhiza glabra –a review.Asian J. Pharm. Clin. Res.2013657
    [Google Scholar]
  65. PolyakovN.E. LeshinaT.V. Glycyrrhizic acid as a novel drug delivery vector: Synergy of drug transport and efficacy.Open Conf. Proc. J.201121647210.2174/2210289201102010064
    [Google Scholar]
  66. SciasciaL. CasellaS. CavallaroG. LazzaraG. MiliotoS. PrincivalleF. ParisiF. Olive mill wastewaters decontamination based on organo-nano-clay composites.Ceram. Int.20194522751275910.1016/j.ceramint.2018.08.155
    [Google Scholar]
  67. de OliveiraR.S.S. Marín HuachacaN.S. LemosM. SantosN.F. FeitosaE. SalayL.C. Molecular interactions between Pluronic F127 and saponin in aqueous solution.Colloid Polym. Sci.2020298211312210.1007/s00396‑019‑04552‑z
    [Google Scholar]
  68. MerrifieldR.B. Solid-phase peptide synthesis. 3. an improved synthesis of bradykinin.Biochemistry1964391385139010.1021/bi00897a03214229685
    [Google Scholar]
  69. AriasM. JensenK.V. NguyenL.T. StoreyD.G. VogelH.J. Hydroxy-tryptophan containing derivatives of tritrpticin: Modification of antimicrobial activity and membrane interactions.Biochim. Biophys. Acta Biomembr.20151848127728810.1016/j.bbamem.2014.08.02425178967
    [Google Scholar]
  70. NguyenL.T. de BoerL. ZaatS.A.J. VogelH.J. Investigating the cationic side chains of the antimicrobial peptide tritrpticin: Hydrogen bonding properties govern its membrane-disruptive activities.Biochim. Biophys. Acta Biomembr.2011180892297230310.1016/j.bbamem.2011.05.01521641334
    [Google Scholar]
  71. AriasM. NguyenL. KuczynskiA. LejonT. VogelH. Position-dependent influence of the three trp residues on the membrane activity of the antimicrobial peptide, tritrpticin.Antibiotics (Basel)20143459561610.3390/antibiotics304059527025758
    [Google Scholar]
  72. LakowiczJ.R. Principles of Fluorescence Spectroscopy.3rd edSpringer200610.1007/978‑0‑387‑46312‑4
    [Google Scholar]
  73. SantosT.L. MoraesA. NakaieC.R. AlmeidaF.C.L. SchreierS. ValenteA.P. Structural and dynamic insights of the interaction between tritrpticin and micelles: An NMR study.Biophys. J.2016111122676268810.1016/j.bpj.2016.10.03428002744
    [Google Scholar]
  74. BozelliJ.C. LuizC.S. MirandaM.A. ProcópioJ. RicilucaK.C.T. JuniorP.I.C. NakaieC.R. SchreierS. A comparison of activity, toxicity, and conformation of tritrpticin and two TOAC-labeled analogues. Effects on the mechanism of action.Biochim. Biophys. Acta202018622183110.10.1016/j.bbamem.2019.18311031672543
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665359223241226091327
Loading
/content/journals/ppl/10.2174/0109298665359223241226091327
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): fluorescence; mixed micelles; Pluronic F-127; saponin; self-organization; Tritrpticin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test