Skip to content
2000
Volume 32, Issue 2
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Background

The transformation of proteins from their native conformation into highly ordered fibrillar structures due to their misfolding and aggregation under particular conditions are described as beta-sheet enriched amyloid fibrils. The accumulation of these fibrils in different body parts is the major cause of several neurological and non-neurological conditions (proteinopathies).

Objectives

To prevent these proteinopathies, inhibition of protein aggregation is considered a promising strategy. Therefore, in this study, we synthesized montmorillonite (MMT) based poly-orthophenylenediamine (PoPD) nanocomposites (NCs) and characterized their size and morphology due to their remarkable biological properties. Further, the effect of these nanocomposites on inhibition of fibril formation was assessed.

Methods

These nanocomposites were evaluated for their anti-amyloidogenic potential on two model proteins of amyloidopathies, human lysozyme and human serum albumin (HL & HSA), by using several biophysical methods, such as Thioflavin T (ThT) and 1-anilino-8-naphthalene sulfonate (ANS) fluorescence, congo red dye binding assay (CR). Secondary structural content was evaluated by Circular dichroism (CD) spectroscopy.

Results

Results demonstrated that synthesized nanocomposites significantly inhibited fibril formation in dose-dependent manner that corresponds to their ability to arrest fibrillation. It is suggested that they may adsorb proteins to protect them against aggregation when they are subjected to aggregating conditions.

Conclusion

This study offers an opportunity to understand the mechanism of inhibition of fibril formation by nanocomposites, showing that they inhibit amyloid formation and amyloid diseases. Thus, the study concludes that these nanocomposites are promising candidates as therapeutic molecules for proteinopathies and are envisaged to enrich the area of personalized medicine, augmenting the human healthcare system.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665274059231002071951
2023-10-04
2025-09-01
Loading full text...

Full text loading...

References

  1. BoronatS. CabreraM. VegaM. AlcaláJ. Salas-PinoS. DagaR.R. AytéJ. HidalgoE. AytéJ. HidalgoE. Formation of transient protein aggregate-like centers is a general strategy postponing degradation of misfolded intermediates.Int. J. Mol. Sci.202324131120210.3390/ijms24131120237446379
    [Google Scholar]
  2. MechaM.F. HutchinsonR.B. LeeJ.H. CavagneroS. Protein folding in vitro and in the cell: From a solitary journey to a team effort.Biophys. Chem.202228710682110.1016/j.bpc.2022.10682135667131
    [Google Scholar]
  3. KishoreP. CollinetA.C.T. BrundelB.J.J.M. Prevention of atrial fibrillation: Putting proteostasis derailment back on track.J. Clin. Med.20231213435210.3390/jcm1213435237445387
    [Google Scholar]
  4. AjmalM.R. Protein misfolding and aggregation in proteinopathies: Causes, mechanism and cellular response.Diseases20231113010.3390/diseases1101003036810544
    [Google Scholar]
  5. Rezaei-GhalehN. AmininasabM. GillerK. BeckerS. Familial Alzheimer’s disease-related mutations differentially alter stability of amyloid-beta aggregates.J. Phys. Chem. Lett.20231461427143510.1021/acs.jpclett.2c0372936734539
    [Google Scholar]
  6. LathamA.S. GeerC.E. AckartD.F. AndersonI.K. VittoriaK.M. PodellB.K. BasarabaR.J. MorenoJ.A. Gliosis, misfolded protein aggregation, and neuronal loss in a guinea pig model of pulmonary tuberculosis.Front. Neurosci.202317115765210.3389/fnins.2023.115765237274195
    [Google Scholar]
  7. ZhangL. XiaY. GuiY. Neuronal ApoE4 in Alzheimer’s disease and potential therapeutic targets.Front. Aging Neurosci.202315119943410.3389/fnagi.2023.119943437333457
    [Google Scholar]
  8. MiglioreS. LandiD. ProiettiF. D’AurizioG. SquitieriF. MataluniG. NicolettiC.G. CurcioG. MarfiaG.A. Validity of the Italian multiple sclerosis neuropsychological screening questionnaire.Neurol. Sci.202142114583458910.1007/s10072‑021‑05141‑133651198
    [Google Scholar]
  9. Nicy WalesD.J. Energy landscapes and heat capacity signatures for monomers and dimers of amyloid-forming hexapeptides.Int. J. Mol. Sci.202324131061310.3390/ijms24131061337445791
    [Google Scholar]
  10. DobsonC.M. KnowlesT.P.J. VendruscoloM. The amyloid phenomenon and its significance in biology and medicine.Cold Spring Harb. Perspect. Biol.2020122a03387810.1101/cshperspect.a03387830936117
    [Google Scholar]
  11. SeanC. JoshiP. YangX. Combinations of vitamin A and vitamin E metabolites confer resilience against amyloid-β aggregation.ACS Chem Neurosci.2023144657666
    [Google Scholar]
  12. ParveenR. TarannumZ. AliS. FatimaS. Nanoclay based study on protein stability and aggregation and its implication in human health.Int. J. Biol. Macromol.202116638540010.1016/j.ijbiomac.2020.10.19733122071
    [Google Scholar]
  13. KimM.J. ChoY.A. KimE. ChoeJ.Y. ParkJ.W. LeeJ. LeeJ.W. MoonS.H. KimY.S. KimS.E. ChoiE.K. Cellular prion protein is closely associated with early recurrence and poor survival in patients with hepatocellular carcinoma.Diagnostics (Basel)2022127163510.3390/diagnostics1207163535885540
    [Google Scholar]
  14. BanerjeeS. BaghelD. Pacheco de OliveiraA. GhoshA. β-Carotene, a potent amyloid aggregation inhibitor, promotes disordered Aβ fibrillar structure.Int. J. Mol. Sci.2023246517510.3390/ijms2406517536982248
    [Google Scholar]
  15. GeX. YangY. SunY. CaoW. DingF. Islet amyloid polypeptide promotes amyloid-beta aggregation by binding-induced helix-unfolding of the amyloidogenic core.ACS Chem. Neurosci.20189596797510.1021/acschemneuro.7b0039629378116
    [Google Scholar]
  16. RoyM. RoyA. RustagiS. PandeyN. An overview of nanomaterial applications in pharmacology.BioMed Res. Int.2023202312310.1155/2023/483804337388336
    [Google Scholar]
  17. DasramM.H. WalkerR.B. KhamangaS.M. Recent advances in endocannabinoid system targeting for improved specificity: Strategic approaches to targeted drug delivery.Int. J. Mol. Sci.202223211322310.3390/ijms23211322336362014
    [Google Scholar]
  18. KlammingerG.G. FrauenknechtK.B.M. MittelbronnM. Kleine BorgmannF.B. From research to diagnostic application of raman spectroscopy in neurosciences: Past and perspectives.Free Neuropathol2022331937284145
    [Google Scholar]
  19. ChopraH. BibiS. SinghI. KamalM.A. IslamF. AlhumaydhiF.A. EmranT.B. CavaluS. Nanomedicines in the management of Alzheimer’s disease: Current view and future prospects.Front. Aging Neurosci.20221487911410.3389/fnagi.2022.87911435875806
    [Google Scholar]
  20. LiangH. WangB. WangH. YuM. ZhengL. WangM. ZhangA. FengW. Inhibition of lysozyme fibrillation by gold nanorods and nanoparticles.J. Nanosci. Nanotechnol.20181853087309410.1166/jnn.2018.1466229442807
    [Google Scholar]
  21. ShenC.L. WuY.H. ZhangT.H. TuL.H. Dihydrocaffeic acid-decorated iron oxide nanomaterials effectively inhibit human calcitonin aggregation.ACS Omega2022735315203152810.1021/acsomega.2c0420636092590
    [Google Scholar]
  22. HossainS.I. KukushkinaE.A. IzziM. SportelliM.C. PiccaR.A. DitarantoN. CioffiN. A review on montmorillonite-based nanoantimicrobials: State of the art.Nanomaterials (Basel)202313584810.3390/nano1305084836903726
    [Google Scholar]
  23. VaškováJ. StupákM. Vidová UgurbaşM. ŽatkoD. VaškoL. Therapeutic efficiency of humic acids in intoxications.Life (Basel)202313497110.3390/life1304097137109500
    [Google Scholar]
  24. KattiK.S. JasujaH. JaswandkarS.V. MohantyS. KattiD.R. Nanoclays in medicine: A new frontier of an ancient medical practice.Materials Advances20223207484750010.1039/D2MA00528J36324871
    [Google Scholar]
  25. AbulyaziedD.E. EneA. An investigative study on the progress of nanoclay-reinforced polymers: preparation, properties, and applications: A review.Polymers (Basel)20211324440110.3390/polym1324440134960959
    [Google Scholar]
  26. SentaninF.C. CalimanW.R. SabadiniR.C. CavalheiroC.C.S. PereiraR.F.P. SilvaM.M. PawlickaA. Nanocomposite polymer electrolytes of sodium alginate and montmorillonite clay.Molecules2021268213910.3390/molecules2608213933917730
    [Google Scholar]
  27. YoussefA.M. AssemF.M. El-SayedH.S. El-SayedS.M. ElaaserM. Abd El-SalamM.H. Synthesis and evaluation of eco-friendly carboxymethyl cellulose/polyvinyl alcohol/CuO bionanocomposites and their use in coating processed cheese.RSC Advances20201062378573787010.1039/D0RA07898K35515154
    [Google Scholar]
  28. HillI.M. WuD. XuB. WangY. Oligoaniline-assisted self-assembly of polyaniline crystals.Mater. Horiz.20231041282129110.1039/D2MH01344D36723132
    [Google Scholar]
  29. BagalM. DebB. UnhariaT. RajanV. MohodA. Optimization of esterification of palm fatty acid distillate using conventional approach and its comparison with ultrasonic and microwave irradiation.Energy Ecol. Environ.20216655556510.1007/s40974‑021‑00206‑5
    [Google Scholar]
  30. KiariM. BerenguerR. MontillaF. MorallónE. Preparation and characterization of montmorillonite/PEDOT-PSS and diatomite/PEDOT-PSS hybrid materials.J. Comp. Sci.2020425110.3390/jcs4020051
    [Google Scholar]
  31. EjetaL.O. Nanoclay/organic filler-reinforced polymeric hybrid composites as promising materials for building, automotive, and construction applications- a state-of-the-art review.Compos. Interfaces2023202312410.1080/09276440.2023.2220217
    [Google Scholar]
  32. KhelifaI. BelmokhtarA. BerenguerR. BenyoucefA. MorallonE. New poly(o-phenylenediamine)/modified-clay nanocomposites: A study on spectral, thermal, morphological and electrochemical characteristics.J. Mol. Struct.2019117832733210.1016/j.molstruc.2018.10.054
    [Google Scholar]
  33. ZorombaM.S. Abdel-AzizM.H. GhazyA.R. SalahN. Al-HossainyA.F. Polymeric solar cell with 19.69% efficiency based on poly(o-phenylene diamine)/TiO2 composites.Polymers (Basel)2023155111110.3390/polym1505111136904350
    [Google Scholar]
  34. JanekT. SałekK. BurgerJ. CzyżnikowskaŻ. EustonS.R. Investigating the biomolecular interactions between model proteins and glycine betaine surfactant with reference to the stabilization of emulsions and antimicrobial properties.Colloids Surf. B Biointerfaces202019411122610.1016/j.colsurfb.2020.11122632623332
    [Google Scholar]
  35. MishraV. HeathR.J. Structural and biochemical features of human serum albumin essential for eukaryotic cell culture.Int. J. Mol. Sci.20212216841110.3390/ijms2216841134445120
    [Google Scholar]
  36. Maciążek-JurczykM. JanasK. PożyckaJ. SzkudlarekA. RogóżW. OwczarzyA. KuligK. Human serum albumin aggregation/fibrillation and its abilities to drugs binding.Molecules202025361810.3390/molecules2503061832023900
    [Google Scholar]
  37. AlomarS.Y. Studying the mechanism of interaction of doxofylline with human lysozyme: A biophysical and in silico approach.Molecules2023288346210.3390/molecules2808346237110695
    [Google Scholar]
  38. MouraA. NocerinoP. GilbertsonJ.A. RendellN.B. MangioneP.P. VeronaG. RowczenioD. GillmoreJ.D. TaylorG.W. BellottiV. CanettiD. Lysozyme amyloid: Evidence for the W64R variant by proteomics in the absence of the wild type protein.Amyloid202027320620710.1080/13506129.2020.172063732067519
    [Google Scholar]
  39. MakshakovaO. BogdanovaL. FaizullinD. KhaibrakhmanovaD. ZiganshinaS. ErmakovaE. ZuevY. SedovI. The ability of some polysaccharides to disaggregate lysozyme amyloid fibrils and renature the protein.Pharmaceutics202315262410.3390/pharmaceutics1502062436839946
    [Google Scholar]
  40. MudedlaS.K. MuruganN.A. SubramanianV. AgrenH. Destabilization of amyloid fibrils on interaction with MoS2-based nanomaterials.RSC Advances2019931613162410.1039/C8RA10184A35518018
    [Google Scholar]
  41. KakinenA. AdamcikJ. WangB. GeX. MezzengaR. DavisT.P. DingF. KeP.C. Nanoscale inhibition of polymorphic and ambidextrous IAPP amyloid aggregation with small molecules.Nano Res.20181173636364710.1007/s12274‑017‑1930‑730275931
    [Google Scholar]
  42. IslamY. LeachA.G. SmithJ. PluchinoS. CoxonC.R. SivakumaranM. DowningJ. FatokunA.A. TeixidòM. EhtezaziT. Physiological and pathological factors affecting drug delivery to the brain by nanoparticles.Adv. Sci. (Weinh.)2021811200208510.1002/advs.20200208534105297
    [Google Scholar]
  43. RiazU. AshrafS.M. VermaA. Influence of conducting polymer as filler and matrix on the spectral, morphological and fluorescent properties of sonochemically intercalated poly(o-phenylenediamine)/montmorillonite nanocomposites.Recent Pat. Nanotechnol.2016101667610.2174/187221051099916031612240327018274
    [Google Scholar]
  44. SharmaV. GhoshK.S. Inhibition of amyloid fibrillation by small molecules and nanomaterials: Strategic development of pharmaceuticals against amyloidosis.Protein Pept. Lett.201926531532310.2174/092986652666619030716494430848182
    [Google Scholar]
  45. SunB. ZhangM. ZhouN. ChuX. YuanP. ChiC. WuF. ShenJ. Study on montmorillonite–chlorhexidine acetate–terbinafine hydrochloride intercalation composites as drug release systems.RSC Advances2018838213692137710.1039/C8RA03651A35539924
    [Google Scholar]
  46. LogiganC.L. DelaiteC. TironC.E. PeptuC. PopaM. PeptuC.A. Chitosan grafted poly (ethylene glycol) methyl ether acrylate particulate hydrogels for drug delivery applications.Gels20228849410.3390/gels808049436005095
    [Google Scholar]
  47. WuT. HuangM. LiuX. FengH. ShaoM. CaiH. Characterization method for the swelling effect of an insulating washing agent on silicone rubber in power systems.ACS Omega2022746423314233810.1021/acsomega.2c0536736440148
    [Google Scholar]
  48. KoikeH. KatsunoM. The ultrastructure of tissue damage by amyloid fibrils.Molecules20212615461110.3390/molecules2615461134361762
    [Google Scholar]
  49. BhogaleD. MazahirF. YadavA.K. Recent synergy of nanodiamonds: Role in brain-targeted drug delivery for the management of neurological disorders.Mol. Neurobiol.20225984806482410.1007/s12035‑022‑02882‑835618981
    [Google Scholar]
  50. KumarV. KunduS. SinghA. SinghS. Understanding the role of histone deacetylase and their inhibitors in neurodegenerative disorders: Current targets and future perspective.Curr. Neuropharmacol.202220115817810.2174/1570159X1966621060916001734151764
    [Google Scholar]
  51. YangJ. LiuW. SunY. DongX. LVFFARK-PEG-stabilized black phosphorus nanosheets potently inhibit amyloid-β fibrillogenesis.Langmuir20203671804181210.1021/acs.langmuir.9b0361232011894
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665274059231002071951
Loading
/content/journals/ppl/10.2174/0109298665274059231002071951
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test