Skip to content
2000
Volume 32, Issue 5
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Amyloid refers to a specific quaternary structure characterized by fibrillar arrangements of proteins or peptides forming cross β-sheet architectures. Initially associated with diseases like Alzheimer's, amyloid was seen predominantly as pathological. However, recent research has revealed that amyloid also plays functional roles across various biological systems, from bacteria to mammals. The cross β-sheet structure of amyloid enables the transformation of soluble proteins into insoluble fibrils, providing high stability and a robust prion-like copying mechanism. However, recent research has revealed that amyloid also plays functional roles in various biological systems, such as biofilm formation in bacteria, aiding melanin biosynthesis in humans, and supporting the formation of fungal hyphae. Understanding the dual nature of amyloid-a pathological and functional entity-offers insights into disease mechanisms and therapeutic strategies. Recognizing the distinction between pathological and functional amyloids is crucial for advancing diagnostics and treatments. This review highlights the importance of functional amyloids (FAs), particularly in disease detection, underscoring their significant biological roles and potential applications.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665368109250419175111
2025-05-07
2025-09-02
Loading full text...

Full text loading...

References

  1. Pintado-GrimaC. BárcenasO. Manglano-ArtuñedoZ. VilaçaR. Macedo-RibeiroS. PallarèsI. SantosJ. VenturaS. CARS-DB: A database of cryptic amyloidogenic regions in intrinsically disordered proteins.Front. Mol. Biosci.2022988216010.3389/fmolb.2022.88216035898309
    [Google Scholar]
  2. MosesD. GinellG.M. HolehouseA.S. SukenikS. Intrinsically disordered regions are poised to act as sensors of cellular chemistry.Trends Biochem. Sci.202348121019103410.1016/j.tibs.2023.08.00137657994
    [Google Scholar]
  3. EisenbergD. JuckerM. The amyloid state of proteins in human diseases.Cell201214861188120310.1016/j.cell.2012.02.02222424229
    [Google Scholar]
  4. WeiG. SuZ. ReynoldsN.P. ArosioP. HamleyI.W. GazitE. MezzengaR. Self-assembling peptide and protein amyloids: From structure to tailored function in nanotechnology.Chem. Soc. Rev.201746154661470810.1039/C6CS00542J28530745
    [Google Scholar]
  5. Nabi AfjadiM. AziziyanF. FarzamF. DabirmaneshB. Biotechnological applications of amyloid fibrils.Prog. Mol. Biol. Transl. Sci.202420643547210.1016/bs.pmbts.2024.04.00138811087
    [Google Scholar]
  6. CabreraP. Jara-GuajardoP. OyarzúnM.P. Parra-MuñozN. CamposA. SolerM. ÁlvarezA. Morales-ZavalaF. ArayaE. MinnitiA.N. AldunateR. KoganM.J. Surface enhanced fluorescence effect improves the in vivo detection of amyloid aggregates.Nanomedicine20224410256910.1016/j.nano.2022.10256935595016
    [Google Scholar]
  7. Jara-GuajardoP. CabreraP. CelisF. SolerM. BerlangaI. Parra-MuñozN. AcostaG. AlbericioF. GuzmanF. CamposM. AlvarezA. Morales-ZavalaF. KoganM.J. Gold nanoparticles mediate improved detection of β-amyloid aggregates by fluorescence.Nanomaterials202010469010.3390/nano1004069032268543
    [Google Scholar]
  8. ChapmanM.R. RobinsonL.S. PinknerJ.S. RothR. HeuserJ. HammarM. NormarkS. HultgrenS.J. Role of Escherichia coli curli operons in directing amyloid fiber formation.Science2002295555685185510.1126/science.106748411823641
    [Google Scholar]
  9. RomeroD. Bacterial determinants of the social behavior of Bacillus subtilis.Res. Microbiol.2013164778879810.1016/j.resmic.2013.06.00423791621
    [Google Scholar]
  10. BöhningJ. GhrayebM. PedebosC. AbbasD.K. KhalidS. ChaiL. BharatT.A.M. Donor-strand exchange drives assembly of the TasA scaffold in Bacillus subtilis biofilms.Nat. Commun.2022131708210.1038/s41467‑022‑34700‑z36400765
    [Google Scholar]
  11. WasmerC. LangeA. Van MelckebekeH. SiemerA.B. RiekR. MeierB.H. Amyloid fibrils of the HET-s(218-289) prion form a β solenoid with a triangular hydrophobic core.Science200831958691523152610.1126/science.115183918339938
    [Google Scholar]
  12. SiM. LouJ. ZhouC.X. ShenJ.N. WuH.H. YangB. HeQ.J. WuH.S. Insulin releasing and alpha-glucosidase inhibitory activity of ethyl acetate fraction of Acorus calamus in vitro and in vivo.J. Ethnopharmacol.2010128115415910.1016/j.jep.2009.12.04420051258
    [Google Scholar]
  13. MillerA.L. de AndaJ. WongG.C.L. TükelÇ. Amyloid-containing biofilms and autoimmunity.Curr. Opin. Struct. Biol.20227510243510.1016/j.sbi.2022.10243535863164
    [Google Scholar]
  14. MajiS.K. PerrinM.H. SawayaM.R. JessbergerS. VadodariaK. RissmanR.A. SingruP.S. NilssonK.P.R. SimonR. SchubertD. EisenbergD. RivierJ. SawchenkoP. ValeW. RiekR. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules.Science2009325593832833210.1126/science.117315519541956
    [Google Scholar]
  15. WestermarkP. AnderssonA. WestermarkG.T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus.Physiol. Rev.201191379582610.1152/physrev.00042.200921742788
    [Google Scholar]
  16. TP FavaroM. López-LagunaH. Voltà-DuránE. Alba-CastellonL. SánchezJ.M. CasanovaI. UnzuetaU. ManguesR. VillaverdeA. VázquezE. Lyophilization of biomimetic amyloids preserves their regulatable, endocrine-like functions for nanoparticle release.Appl. Mater. Today20243910234810.1016/j.apmt.2024.102348
    [Google Scholar]
  17. HalfmannR. WrightJ.R. AlbertiS. LindquistS. RexachM. Prion formation by a yeast GLFG nucleoporin.Prion20126439139910.4161/pri.2019922561191
    [Google Scholar]
  18. KushnirovV.V. DergalevA.A. AlexandrovA.I. Amyloid fragmentation and disaggregation in yeast and animals.Biomolecules20211112188410.3390/biom1112188434944528
    [Google Scholar]
  19. BagriantsevS.N. GrachevaE.O. RichmondJ.E. LiebmanS.W. Variant-specific [PSI+] infection is transmitted by Sup35 polymers within [PSI+] aggregates with heterogeneous protein composition.Mol. Biol. Cell20081962433244310.1091/mbc.e08‑01‑007818353968
    [Google Scholar]
  20. LykeD.R. DorweilerJ.E. ManogaranA.L. The three faces of Sup35.Yeast201936846547210.1002/yea.339230963611
    [Google Scholar]
  21. AlbertsI.L. NadassyK. WodakS.J. Analysis of zinc binding sites in protein crystal structures.Protein Sci.1998781700171610.1002/pro.556007080510082367
    [Google Scholar]
  22. GazitE. Self-assembled peptide nanostructures: The design of molecular building blocks and their technological utilization.Chem. Soc. Rev.20073681263126910.1039/b605536m17619686
    [Google Scholar]
  23. PilkingtonS.M. RobertsS.J. MeadeS.J. GerrardJ.A. Amyloid fibrils as a nanoscaffold for enzyme immobilization.Biotechnol. Prog.20102619310010.1002/btpr.30919918761
    [Google Scholar]
  24. FowlerD.M. KoulovA.V. Alory-JostC. MarksM.S. BalchW.E. KellyJ.W. Functional amyloid formation within mammalian tissue.PLoS Biol.200541e610.1371/journal.pbio.004000616300414
    [Google Scholar]
  25. WattB. van NielG. FowlerD.M. HurbainI. LukK.C. StayrookS.E. LemmonM.A. RaposoG. ShorterJ. KellyJ.W. MarksM.S. N-terminal domains elicit formation of functional Pmel17 amyloid fibrils.J. Biol. Chem.200928451355433555510.1074/jbc.M109.04744919840945
    [Google Scholar]
  26. RubelM.S. FedotovS.A. GrizelA.V. SopovaJ.V. MalikovaO.A. ChernoffY.O. RubelA.A. Functional mammalian amyloids and amyloid-like proteins.Life202010915610.3390/life1009015632825636
    [Google Scholar]
  27. DeanD.N. LeeJ.C. Purification and characterization of an amyloidogenic repeat domain from the functional amyloid Pmel17.Protein Expr. Purif.202118710594410.1016/j.pep.2021.10594434293440
    [Google Scholar]
  28. FriedrichC.L. RozekA. PatrzykatA. HancockR.E.W. Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria.J. Biol. Chem.200127626240152402210.1074/jbc.M00969120011294848
    [Google Scholar]
  29. AnderssonE.K. BengtssonC. EvansM.L. ChorellE. SellstedtM. LindgrenA.E.G. HufnagelD.A. BhattacharyaM. TessierP.M. Wittung-StafshedeP. AlmqvistF. ChapmanM.R. Modulation of curli assembly and pellicle biofilm formation by chemical and protein chaperones.Chem. Biol.201320101245125410.1016/j.chembiol.2013.07.01724035282
    [Google Scholar]
  30. LeeE.Y. SrinivasanY. de AndaJ. NicastroL.K. TükelÇ. WongG.C.L. Functional reciprocity of amyloids and antimicrobial peptides: Rethinking the role of supramolecular assembly in host defense, immune activation, and inflammation.Front. Immunol.202011162910.3389/fimmu.2020.0162932849553
    [Google Scholar]
  31. ChenD. LiuX. ChenY. LinH. Amyloid peptides with antimicrobial and/or microbial agglutination activity.Appl. Microbiol. Biotechnol.2022106237711772010.1007/s00253‑022‑12246‑w36322251
    [Google Scholar]
  32. BajorM. KaczmarekL. Proteolytic remodeling of the synaptic cell adhesion molecules (CAMs) by metzincins in synaptic plasticity.Neurochem. Res.20133861113112110.1007/s11064‑012‑0919‑623124395
    [Google Scholar]
  33. Leshchyns’kaI. SytnykV. Synaptic cell adhesion molecules in Alzheimer’s disease.Neural Plast.201620161910.1155/2016/642753727242933
    [Google Scholar]
  34. ErskineE. MacPheeC.E. Stanley-WallN.R. Functional amyloid and other protein fibers in the biofilm matrix.J. Mol. Biol.2018430203642365610.1016/j.jmb.2018.07.02630098341
    [Google Scholar]
  35. SmithD. PriceJ. BurbyP. BlancoL. ChamberlainJ. ChapmanM. The production of curli amyloid fibers is deeply integrated into the biology of Escherichia coli.Biomolecules2017747510.3390/biom704007529088115
    [Google Scholar]
  36. AbdaliZ. AminzareM. ZhuX. DeBenedictisE. XieO. KetenS. Dorval CourchesneN.M. Curli-mediated self-assembly of a fibrous protein scaffold for hydroxyapatite mineralization.ACS Synth. Biol.20209123334334310.1021/acssynbio.0c0041533237760
    [Google Scholar]
  37. ChakravarthiS.T. JoshiS.G. An association of pathogens and biofilms with Alzheimer’s disease.Microorganisms20211015610.3390/microorganisms1001005635056505
    [Google Scholar]
  38. AkbeyÜ. AndreasenM. Functional amyloids from bacterial biofilms – Structural properties and interaction partners.Chem. Sci.202213226457647710.1039/D2SC00645F35756505
    [Google Scholar]
  39. CastellanoL.M. ShorterJ. The surprising role of amyloid fibrils in HIV infection.Biology201211588010.3390/biology101005824832047
    [Google Scholar]
  40. CruzA. CondinhoM. CarvalhoB. ArraianoC.M. PobreV. PintoS.N. The two weapons against bacterial biofilms: Detection and treatment.Antibiotics20211012148210.3390/antibiotics1012148234943694
    [Google Scholar]
  41. ParlakO. Richter-DahlforsA. Bacterial sensing and biofilm monitoring for infection diagnostics.Macromol. Biosci.20202011200012910.1002/mabi.20200012932588553
    [Google Scholar]
  42. Peña-DíazS. OlsenW.P. WangH. OtzenD.E. Functional amyloids: The biomaterials of tomorrow?Adv. Mater.20243618231282310.1002/adma.20231282338308110
    [Google Scholar]
  43. VrahatisA.G. SkolarikiK. KrokidisM.G. LazarosK. ExarchosT.P. VlamosP. Revolutionizing the early detection of Alzheimer’s disease through non-invasive biomarkers: The role of artificial intelligence and deep learning.Sensors2023239418410.3390/s2309418437177386
    [Google Scholar]
  44. EnnerfeltH.E. LukensJ.R. The role of innate immunity in Alzheimer’s disease.Immunol. Rev.2020297122524610.1111/imr.1289632588460
    [Google Scholar]
  45. RaulinA.C. DossS.V. TrottierZ.A. IkezuT.C. BuG. LiuC.C. ApoE in Alzheimer’s disease: Pathophysiology and therapeutic strategies.Mol. Neurodegener.20221717210.1186/s13024‑022‑00574‑436348357
    [Google Scholar]
  46. ZhangW. XiaoD. MaoQ. XiaH. Role of neuroinflammation in neurodegeneration development.Signal Transduct. Target. Ther.20238126710.1038/s41392‑023‑01486‑537433768
    [Google Scholar]
  47. MiaoJ. MaH. YangY. LiaoY. LinC. ZhengJ. YuM. LanJ. Microglia in Alzheimer’s disease: Pathogenesis, mechanisms, and therapeutic potentials.Front. Aging Neurosci.202315120198210.3389/fnagi.2023.120198237396657
    [Google Scholar]
  48. FialaM. CribbsD.H. RosenthalM. BernardG. Phagocytosis of amyloid-β and inflammation: Two faces of innate immunity in Alzheimer’s disease.J. Alzheimers Dis.200711445746310.3233/JAD‑2007‑1140617656824
    [Google Scholar]
  49. KimS.H. NohM.Y. KimH.J. OhK.W. ParkJ. LeeS. MoonY. KimY.E. BaeJ.S. JinH.K. A therapeutic strategy for Alzheimer’s disease focused on immune-inflammatory modulation.Dement. Neurocognitive Disord.2019182334610.12779/dnd.2019.18.2.3331297134
    [Google Scholar]
  50. LacyP. StowJ.L. Cytokine release from innate immune cells: Association with diverse membrane trafficking pathways.Blood2011118191810.1182/blood‑2010‑08‑26589221562044
    [Google Scholar]
  51. WhikehartD.R. Corneal Endothelium: Overview.Elsevier eBooks201042443410.1016/B978‑0‑12‑374203‑2.00074‑9
    [Google Scholar]
  52. KehrlJ.H. Chemokine Receptor Signaling.Elsevier eBooks201610.1016/B978‑0‑12‑374279‑7.11014‑8
    [Google Scholar]
  53. WeaverD.F. Alzheimer’s disease as an innate autoimmune disease (AD2): A new molecular paradigm.Alzheimers Dement.20231931086109810.1002/alz.1278936165334
    [Google Scholar]
  54. HampelH. HardyJ. BlennowK. ChenC. PerryG. KimS.H. VillemagneV.L. AisenP. VendruscoloM. IwatsuboT. MastersC.L. ChoM. LannfeltL. CummingsJ.L. VergalloA. The Amyloid-β pathway in Alzheimer’s disease.Mol. Psychiatry202126105481550310.1038/s41380‑021‑01249‑034456336
    [Google Scholar]
  55. WeaverD.F. Amyloid beta is an early responder cytokine and immunopeptide of the innate immune system.Alzheimers Dement.202061e1210010.1002/trc2.1210033163614
    [Google Scholar]
  56. HuangY.M. HongX.Z. ShenJ. GengL.J. PanY.H. LingW. ZhaoH.L. Amyloids in site-specific autoimmune reactions and inflammatory responses.Front. Immunol.202010298010.3389/fimmu.2019.0298031993048
    [Google Scholar]
  57. PengY. JinH. XueY. ChenQ. YaoS. DuM. LiuS. Current and future therapeutic strategies for Alzheimer’s disease: An overview of drug development bottlenecks.Front. Aging Neurosci.202315120657210.3389/fnagi.2023.120657237600514
    [Google Scholar]
  58. ChristensenD.P. DahllöfM. LundhM. RasmussenD.N. NielsenM.D. BillestrupN. GrunnetL.G. Mandrup-PoulsenT. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus.Mol. Med.2011175-637839010.2119/molmed.2011.0002121274504
    [Google Scholar]
  59. AkterR. CaoP. NoorH. RidgwayZ. TuL.H. WangH. WongA.G. ZhangX. AbediniA. SchmidtA.M. RaleighD.P. Islet amyloid polypeptide: Structure, function, and pathophysiology.J. Diabetes Res.2016201611810.1155/2016/279826926649319
    [Google Scholar]
  60. KwonH.J. SanthoshD. HuangZ. A novel monomeric amyloid β-activated signaling pathway regulates brain development via inhibition of microglia.eLife202413RP10044610.1101/2024.06.13.598890
    [Google Scholar]
  61. GearyN. Hunger and Satiation.Elsevier eBooks200445946810.1016/B0‑12‑475570‑4/01166‑5
    [Google Scholar]
  62. PrentkiM. NolanC.J. Islet cell failure in type 2 diabetes.J. Clin. Invest.200611671802181210.1172/JCI2910316823478
    [Google Scholar]
  63. SotoC. PritzkowS. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases.Nat. Neurosci.201821101332134010.1038/s41593‑018‑0235‑930250260
    [Google Scholar]
  64. IrwinD.J. HurtigH.I. The contribution of tau, amyloid-beta and alpha-synuclein pathology to dementia in Lewy body disorders.J. Alzheimers Dis. Parkinsonism20188444410.4172/2161‑0460.100044430473927
    [Google Scholar]
  65. Spires-JonesT.L. AttemsJ. ThalD.R. Interactions of pathological proteins in neurodegenerative diseases.Acta Neuropathol.2017134218720510.1007/s00401‑017‑1709‑728401333
    [Google Scholar]
  66. JanelidzeS. StomrudE. SmithR. PalmqvistS. MattssonN. AireyD.C. ProctorN.K. ChaiX. ShcherbininS. SimsJ.R. Triana-BaltzerG. TheunisC. SlemmonR. MerckenM. KolbH. DageJ.L. HanssonO. Cerebrospinal fluid p-tau217 performs better than p-tau181 as a biomarker of Alzheimer’s disease.Nat. Commun.2020111168310.1038/s41467‑020‑15436‑032246036
    [Google Scholar]
  67. AnoopA. SinghP.K. JacobR.S. MajiS.K. CSF biomarkers for Alzheimer’s disease diagnosis.Int. J. Alzheimers Dis.2010201011210.4061/2010/60680220721349
    [Google Scholar]
  68. KasugaK. NishizawaM. IkeuchiT. -Synuclein as CSF and blood biomarker of dementia with lewy bodies.Int. J. Alzheimers Dis.201220121910.1155/2012/43702523056991
    [Google Scholar]
  69. SenguptaU. KayedR. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases.Prog. Neurobiol.202221410227010.1016/j.pneurobio.2022.10227035447272
    [Google Scholar]
  70. HanssonO. Biomarkers for neurodegenerative diseases.Nat. Med.202127695496310.1038/s41591‑021‑01382‑x34083813
    [Google Scholar]
  71. WangF. PritzkowS. SotoC. PMCA for ultrasensitive detection of prions and to study disease biology.Cell Tissue Res.2023392130732110.1007/s00441‑022‑03727‑536567368
    [Google Scholar]
  72. ChungC.C. ChanL. ChenJ.H. BamoduO.A. ChiuH.W. HongC.T. Plasma extracellular vesicles tau and β-amyloid as biomarkers of cognitive dysfunction of Parkinson’s disease.FASEB J.20213510e2189510.1096/fj.202100787R34478572
    [Google Scholar]
  73. Zayas-SantiagoA. Martínez-MontemayorM.M. Colón-VázquezJ. Ortiz-SotoG. Cirino-SimonetJ.G. InyushinM. Accumulation of amyloid beta (Aβ) and amyloid precursor protein (APP) in tumors formed by a mouse xenograft model of inflammatory breast cancer.FEBS Open Bio20221219510510.1002/2211‑5463.1330834592066
    [Google Scholar]
  74. Di NoiaV. D’ArgentoE. PilottoS. CarboneC. VitaE. CeresoliG.L. BerettaG.D. TortoraG. BriaE. Blood serum amyloid A as potential biomarker of pembrolizumab efficacy for patients affected by advanced non-small cell lung cancer (NSCLC) overexpressing PD-L1: Early results of the FoRECATT Study.J. Clin. Oncol.20203815_suppl9598959810.1200/JCO.2020.38.15_suppl.9598
    [Google Scholar]
  75. MalleE. Sodin-SemrlS. KovacevicA. Serum amyloid A: An acute-phase protein involved in tumour pathogenesis.Cell. Mol. Life Sci.200966192610.1007/s00018‑008‑8321‑x18726069
    [Google Scholar]
  76. ZhangX.Y. ZhangG. JiangY. LiuD. LiM.Z. ZhongQ. ZengS.Q. LiuW.L. ZengM.S. The prognostic value of serum C-reactive protein-bound serum amyloid A in early-stage lung cancer.Chin. J. Cancer20153433910.1186/s40880‑015‑0039‑126264146
    [Google Scholar]
  77. CaleroC. ArellanoE. Lopez-VillalobosJ.L. Sánchez-LópezV. Moreno-MataN. López-CamposJ.L. Differential expression of C-Reactive protein and Serum amyloid A in different cell types in the lung tissue of chronic obstructive pulmonary disease patients.BMC Pulm. Med.20141419510.1186/1471‑2466‑14‑9524884805
    [Google Scholar]
  78. ReunanenN. KähäriV. Matrix metalloproteinases in cancer cell invasion. In:Madame Curie Bioscience Database - NCBI BookshelfAustin (TX), 2013.
    [Google Scholar]
  79. VietriL. FuiA. BergantiniL. d’AlessandroM. CameliP. SestiniP. RottoliP. BargagliE. Serum amyloid A: A potential biomarker of lung disorders.Respir. Investig.2020581212710.1016/j.resinv.2019.09.00531708467
    [Google Scholar]
  80. GutowskaK. CzajkowskiK. KuryłowiczA. Receptor for the Advanced Glycation end products (RAGE) pathway in adipose tissue metabolism.Int. J. Mol. Sci.202324131098210.3390/ijms24131098237446161
    [Google Scholar]
  81. SinghV.P. BaliA. SinghN. JaggiA.S. Advanced glycation end products and diabetic complications.Korean J. Physiol. Pharmacol.201418111410.4196/kjpp.2014.18.1.124634591
    [Google Scholar]
  82. RaghavanC.T. Advanced glycation end products in neurodegenerative diseases.J. Mol. Neurosci.202474411410.1007/s12031‑024‑02297‑139653979
    [Google Scholar]
  83. RöckenC. Kientsch-EngelR. MansfeldS. StixB. StubenrauchK. WeigleB. BühlingF. SchwanM. SaegerW. Advanced glycation end products and receptor for advanced glycation end products in AA amyloidosis.Am. J. Pathol.200316241213122010.1016/S0002‑9440(10)63917‑X12651613
    [Google Scholar]
  84. SirangeloI. IannuzziC. Understanding the role of protein glycation in the amyloid aggregation process.Int. J. Mol. Sci.20212212660910.3390/ijms2212660934205510
    [Google Scholar]
  85. TyckoR. Amyloid polymorphism: Structural basis and neurobiological relevance.Neuron201586363264510.1016/j.neuron.2015.03.01725950632
    [Google Scholar]
  86. YueF. FengS. LuC. ZhangT. TaoG. LiuJ. YueC. JingN. Synthetic amyloid-β oligomers drive early pathological progression of Alzheimer’s disease in nonhuman primates.iScience2021241010320710.1016/j.isci.2021.10320734704001
    [Google Scholar]
  87. PujolsJ. Peña-DíazS. Conde-GiménezM. PinheiroF. NavarroS. SanchoJ. VenturaS. High-throughput screening methodology to identify alpha-synuclein aggregation inhibitors.Int. J. Mol. Sci.201718347810.3390/ijms1803047828257086
    [Google Scholar]
  88. O’BrienR.J. WongP.C. Amyloid precursor protein processing and Alzheimer’s disease.Annu. Rev. Neurosci.201134118520410.1146/annurev‑neuro‑061010‑11361321456963
    [Google Scholar]
  89. EliasA.K. ScanlonD. MusgraveI.F. CarverJ.A. SEVI, the semen enhancer of HIV infection along with fragments from its central region, form amyloid fibrils that are toxic to neuronal cells.Biochim. Biophys. Acta. Proteins Proteomics2014184491591159810.1016/j.bbapap.2014.06.00624948476
    [Google Scholar]
  90. TaglialegnaA. LasaI. ValleJ. Amyloid structures as biofilm matrix scaffolds.J. Bacteriol.2016198192579258810.1128/JB.00122‑1627185827
    [Google Scholar]
  91. DealwisC. WallJ. Towards understanding the structure-function relationship of human amyloid disease.Curr. Drug Targets20045215917110.2174/138945004349055015011949
    [Google Scholar]
  92. SidhuA. Segers-NoltenI. SubramaniamV. Solution conditions define morphological homogeneity of α-synuclein fibrils.Biochim. Biophys. Acta. Proteins Proteomics20141844122127213410.1016/j.bbapap.2014.09.00725224747
    [Google Scholar]
  93. SønderbyT.V. NajarzadehZ. OtzenD.E. Functional bacterial amyloids: Understanding fibrillation, regulating biofilm fibril formation and organizing surface assemblies.Molecules20222713408010.3390/molecules2713408035807329
    [Google Scholar]
  94. HuK.N. McGlincheyR.P. WicknerR.B. TyckoR. Segmental polymorphism in a functional amyloid.Biophys. J.201110192242225010.1016/j.bpj.2011.09.05122067164
    [Google Scholar]
  95. JinY. VadukulD.M. GialamaD. GeY. ThrushR. WhiteJ.T. AprileF.A. The diagnostic potential of amyloidogenic proteins.Int. J. Mol. Sci.2021228412810.3390/ijms2208412833923609
    [Google Scholar]
  96. RatanjiK.D. DerrickJ.P. DearmanR.J. KimberI. Immunogenicity of therapeutic proteins: Influence of aggregation.J. Immunotoxicol.20141129910910.3109/1547691X.2013.82156423919460
    [Google Scholar]
  97. IvanovaM.I. LinY. LeeY.H. ZhengJ. RamamoorthyA. Biophysical processes underlying cross-seeding in amyloid aggregation and implications in amyloid pathology.Biophys. Chem.202126910650710.1016/j.bpc.2020.10650733254009
    [Google Scholar]
  98. LauA. BourkasM. LuY.Q.Q. OstrowskiL.A. Weber-AdrianD. FigueiredoC. ArshadH. ShoaeiS.Z.S. MorroneC.D. Matan-LithwickS. AbrahamK.J. WangH. Schmitt-UlmsG. Functional amyloids and their possible influence on Alzheimer disease.Discoveries201754e7910.15190/d.2017.932309597
    [Google Scholar]
  99. LeeY.H. RamamoorthyA. Semen-derived amyloidogenic peptides—Key players of HIV infection.Protein Sci.20182771151116510.1002/pro.339529493036
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665368109250419175111
Loading
/content/journals/ppl/10.2174/0109298665368109250419175111
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test