Skip to content
2000
Volume 32, Issue 3
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Introduction

Endogenous microRNAs (miRNAs) are critical regulators of tumor progression, making their role in breast cancer an important area of investigation.

Methods

This study examined the regulation of MSMO1 by miR-584-5p in breast cancer cells. Using bioinformatics and Western blotting, we confirmed MSMO1 expression in breast cancer cells and evaluated its effects on cell migration, invasion, and the AKT signaling pathway. experiments further supported these findings. The interaction between miR-584-5p and MSMO1 was validated through luciferase reporter assays, while functional studies highlighted the impact of miR-584-5p on cancer progression.

Results

Our findings revealed that MSMO1 is upregulated in breast cancer, enhancing cell migration and invasion. Silencing MSMO1 diminished AKT pathway activity, and luciferase assays confirmed MSMO1 as a direct target of miR-584-5p.

Conclusion

Overexpression of miR-584-5p suppressed migration and invasion of breast cancer cells. In summary, miR-584-5p is likely to modulate MSMO1 and subsequently regulate the AKT/PI3K pathway, presenting a promising therapeutic target for breast cancer treatment.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665339026250114070523
2025-02-11
2025-06-13
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.2165433433946
    [Google Scholar]
  2. AniketV.M. AsavariA.J. MahabaleshwarV.H. ShivajiraoS.K. Enterolactone modulates the ERK/NF-κB/Snail signaling pathway in triple-negative breast cancer cell line MDA-MB-231 to revert the TGF-β-induced epithelial–mesenchymal transition.Cancer Biol. Med.201815213715610.20892/j.issn.2095‑3941.2018.001229951338
    [Google Scholar]
  3. GuiotJ. NjockM.S. Editorial: Progressive fibrosing interstitial lung disease: From bench to bedside.Front. Med.202310127790910.3389/fmed.2023.127790937727756
    [Google Scholar]
  4. WuZ. JuQ. Non-coding RNAs implicated in the tumor microenvironment of colorectal cancer: Roles, mechanisms and clinical study.Front. Oncol.20221288827610.3389/fonc.2022.88827635574420
    [Google Scholar]
  5. GongX. WangY. ZengJ. LiS. LuoY. Computational identification and experimental validation of microRNAs binding to the fragile X syndrome gene Fmr1.Neurochem. Res.201540110911710.1007/s11064‑014‑1471‑325376939
    [Google Scholar]
  6. AgrawalS.A. AnandD. SiddamA.D. KakranaA. DashS. ScheiblinD.A. DangC.A. TerrellA.M. WatersS.M. SinghA. MotohashiH. YamamotoM. LachkeS.A. Compound mouse mutants of bZIP transcription factors Mafg and Mafk reveal a regulatory network of non-crystallin genes associated with cataract.Hum. Genet.2015134771773510.1007/s00439‑015‑1554‑525896808
    [Google Scholar]
  7. ZhengG. WangZ. FanY. WangT. ZhangL. WangM. ChenS. JiangL. The clinical significance and immunization of MSMO1 in cervical squamous cell carcinoma based on bioinformatics analysis.Front. Genet.20211270585110.3389/fgene.2021.70585134759952
    [Google Scholar]
  8. ZhaoF. HuangY. ZhangY. LiX. ChenK. LongY. LiF. MaX. SQLE inhibition suppresses the development of pancreatic ductal adenocarcinoma and enhances its sensitivity to chemotherapeutic agents in vitro.Mol. Biol. Rep.20224976613662110.1007/s11033‑022‑07504‑z35552960
    [Google Scholar]
  9. GuX. ZhuQ. TianG. SongW. WangT. WangA. ChenX. QinS. KIF11 manipulates SREBP2-dependent mevalonate cross talk to promote tumor progression in pancreatic ductal adenocarcinoma.Cancer Med.202211173282329510.1002/cam4.468335619540
    [Google Scholar]
  10. WangW. HuaT. LiX. ZhangX. HaoW. The UCA1 and microRNA-18a signaling pathway mediates the irisin-lowering effect of metformin in the management of polycystic ovary syndrome.Arch. Med. Sci.202118248949835316895
    [Google Scholar]
  11. TanH.M. ChengH. TangY.C. LeongS.M. TeoP.Y. LeeC.K. LeeV.K.M. HueS.S.S. MicroRNAs as potential biomarkers in the differential diagnosis of lipomatous tumors and their mimics.Int. J. Mol. Sci.20222314780410.3390/ijms2314780435887151
    [Google Scholar]
  12. PinoM.T.L. RoccaM.V. AcostaL.H. CabillaJ.P. Challenging the norm: The unrecognized impact of soluble guanylyl cyclase subunits in cancer.Int. J. Mol. Sci.202425181005310.3390/ijms25181005339337539
    [Google Scholar]
  13. LeeS.B. ParkY.S. SungJ.S. LeeJ.W. KimB. KimY.H. Tumor suppressor miR-584-5p inhibits migration and invasion in smoking related non-small cell lung cancer cells by targeting YKT6.Cancers2021135115910.3390/cancers1305115933800298
    [Google Scholar]
  14. AgiannitopoulosK. PotskaK. KatseliA. NtogkaC. TsaousisG.N. PepeG. BouzarelouD. TsoulosN. PapathanasiouA. ZiogasD. VenizelosV. MarkopoulosC. IosifidouR. KarageorgopoulouS. GiassasS. NatsiopoulosI. PapazisisK. AntonatouV.M. PsyrriA. KoumarianouA. MatthaiosD. ZairiE. BlidaruA. BanuE. JingaD.C. LaçinŞ. ÖzdoğanM. PapadopoulouE. NasioulasG. Only 32.3% of breast cancer families with pathogenic variants in cancer genes utilized cascade genetic testing.Cancers20231521521810.3390/cancers1521521837958392
    [Google Scholar]
  15. YuM. TangJ. HuangY. GuoC. DuP. LiN. QuanQ. HOXA10 Regulates the synthesis of cholesterol in endometrial stromal cells.Front. Endocrinol.20221385267110.3389/fendo.2022.85267135546998
    [Google Scholar]
  16. LuJ. ChenS. BaiX. LiaoM. QiuY. ZhengL.L. YuH. Targeting cholesterol metabolism in Cancer: From molecular mechanisms to therapeutic implications.Biochem. Pharmacol.202321811590710.1016/j.bcp.2023.11590737931664
    [Google Scholar]
  17. BovioP.P. FranzH. HeidrichS. RauleacT. KilpertF. MankeT. VogelT. Differential methylation of H3K79 reveals DOT1L target genes and function in the cerebellum in vivo.Mol. Neurobiol.20195664273428710.1007/s12035‑018‑1377‑130302725
    [Google Scholar]
  18. LiD. WuX. ChengC. LiangJ. LiangY. LiH. GuoX. LiR. ZhangW. SongW. A novel prognostic classification integrating lipid metabolism and immune co-related genes in acute myeloid leukemia.Front. Immunol.202314129096810.3389/fimmu.2023.129096838022627
    [Google Scholar]
  19. XuH.H. WangH.L. XingT.J. WangX.Q. A novel prognostic risk model for cervical cancer based on immune checkpoint HLA-G-Driven differentially expressed genes.Front. Immunol.20221385162210.3389/fimmu.2022.85162235924232
    [Google Scholar]
  20. LiuM. LiJ. WangY. GhaffarM. YangY. WangM. LiC. MAGEA6 positively regulates MSMO1 and promotes the migration and invasion of oesophageal cancer cells.Exp. Ther. Med.202223320410.3892/etm.2022.1112735126707
    [Google Scholar]
  21. CaoR. ZhangZ. TianC. ShengW. DongQ. DongM. Down-regulation of MSMO1 promotes the development and progression of pancreatic cancer.J. Cancer202213103013302110.7150/jca.7311236046654
    [Google Scholar]
  22. XuJ. YuC. ZengX. TangW. XuS. TangL. HuangY. SunZ. YuT. Visualization of breast cancer-related protein synthesis from the perspective of bibliometric analysis.Eur. J. Med. Res.202328146110.1186/s40001‑023‑01364‑437885035
    [Google Scholar]
  23. LetelierP. RiquelmeI. HernándezA. GuzmánN. FaríasJ. RoaJ. Circulating microRNAs as biomarkers in biliary tract cancers.Int. J. Mol. Sci.201617579110.3390/ijms1705079127223281
    [Google Scholar]
  24. BraileM. LucianoN. CarlomagnoD. SalvatoreG. OrlandellaF.M. Insight into the role of the miR-584 family in human cancers.Int. J. Mol. Sci.20242513744810.3390/ijms2513744839000555
    [Google Scholar]
  25. AbdelfattahN. RajamanickamS. PanneerdossS. TimilsinaS. YadavP. OnyeaguchaB.C. GarciaM. VadlamudiR. ChenY. BrennerA. HoughtonP. RaoM.K. MiR-584-5p potentiates vincristine and radiation response by inducing spindle defects and DNA damage in medulloblastoma.Nat. Commun.201891454110.1038/s41467‑018‑06808‑830382096
    [Google Scholar]
  26. LiQ. LiZ. WeiS. WangW. ChenZ. ZhangL. ChenL. LiB. SunG. XuJ. Overexpression of miR-584-5p inhibits proliferation and induces apoptosis by targeting WW domain-containing E3 ubiquitin protein ligase 1 in gastric cancer.J. Experim. Clin. Canc. Res.201736159
    [Google Scholar]
  27. LuQ. WangY. JiangX. HuangS. miR-584-5p Inhibits osteosarcoma progression by targeting connective tissue growth factor.Cancer Biother. Radiopharm.202338963264010.1089/cbr.2021.034935041486
    [Google Scholar]
  28. AndersenG.B. KnudsenA. HagerH. HansenL.L. TostJ. mi RNA profiling identifies deregulated mi RNA s associated with osteosarcoma development and time to metastasis in two large cohorts.Mol. Oncol.201812111413110.1002/1878‑0261.1215429120535
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665339026250114070523
Loading
/content/journals/ppl/10.2174/0109298665339026250114070523
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test