Skip to content
2000
Volume 32, Issue 3
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Autophagy is a self-eating cellular process in which the cell breaks down worn-out organelles, damaged/defective proteins, and toxins. Impaired autophagy is a significant factor in the development of various metabolic disorders, along with oxidative stress, inflammation, mitochondrial and endoplasmic reticulum dysfunction. These disorders pose a significant health and economic burden on the global human population, owing to their steadily rising prevalence. Therefore, modulating the expression of proteins involved in the autophagy-related pathways can be a promising avenue for curbing the development and progression of these disorders. Humanin (HN) is a 24-amino acid mitochondrial-derived peptide. It possesses anti-oxidant, anti-inflammatory, and pro-apoptotic properties. The analogs of HN can be generated by replacing specific amino acids in the polypeptide chain, thereby functionally modifying the peptide. Among these, humanin-glycine (HNG) is the most widely studied analog in both and disease models. It is far more potent than HN, with a potency that is 1000 times greater. To the best of our knowledge, this review is the first to discuss and examine the available evidence regarding the potential involvement of HN or its analogs in regulating autophagy pathways. The review primarily highlights that HN is an autophagy inducer, which can promote cell survival in the presence of metabolic and oxidative stress, particularly the HNG analog. Future research is imperative to comprehensively evaluate the effects of HN and its analogs on autophagy. Further investigations are needed to correlate its levels with various autophagic markers in different metabolic diseases, offering the potential for groundbreaking discoveries in understanding disease mechanisms and developing novel therapeutic strategies.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665363711250112050930
2025-02-11
2025-06-13
Loading full text...

Full text loading...

References

  1. BulutF. AdamM. ÖzgenA. HekimM.G. OzcanS. CanpolatS. OzcanM. Protective effects of chronic humanin treatment in mice with diabetic encephalopathy: A focus on oxidative stress, inflammation, and apoptosis.Behav. Brain Res.202345211458410.1016/j.bbr.2023.11458437467966
    [Google Scholar]
  2. YenK. MehtaH.H. KimS.J. LueY. HoangJ. GuerreroN. PortJ. BiQ. NavarreteG. BrandhorstS. LewisK.N. WanJ. SwerdloffR. MattisonJ.A. BuffensteinR. BretonC.V. WangC. LongoV. AtzmonG. WallaceD. BarzilaiN. CohenP. The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan.Aging (Albany NY)20201212111851119910.18632/aging.10353432575074
    [Google Scholar]
  3. MillerB. KimS.J. KumagaiH. YenK. CohenP. Mitochondria-derived peptides in aging and healthspan.J. Clin. Invest.20221329e15844910.1172/JCI15844935499074
    [Google Scholar]
  4. KimS.K. TranL.T. NamKoongC. ChoiH.J. ChunH.J. LeeY. CheonM. ChungC. HwangJ. LimH.H. ShinD.M. ChoiY.H. KimK.W. Mitochondria-derived peptide SHLP2 regulates energy homeostasis through the activation of hypothalamic neurons.Nat. Commun.2023141432110.1038/s41467‑023‑40082‑737468558
    [Google Scholar]
  5. DabravolskiS.A. NikiforovN.G. StarodubovaA.V. PopkovaT.V. OrekhovA.N. The role of mitochondria-derived peptides in cardiovascular diseases and their potential as therapeutic targets.Int. J. Mol. Sci.20212216877010.3390/ijms2216877034445477
    [Google Scholar]
  6. RamanjaneyaM. BettahiI. JerobinJ. ChandraP. Abi KhalilC. SkarulisM. AtkinS.L. Abou-SamraA.B. Mitochondrial-derived peptides are down regulated in diabetes subjects.Front. Endocrinol. (Lausanne)20191033110.3389/fendo.2019.0033131214116
    [Google Scholar]
  7. CoradduzzaD. CongiargiuA. ChenZ. CrucianiS. ZinelluA. CarruC. MediciS. Humanin and its pathophysiological roles in aging: A systematic review.Biology (Basel)202312455810.3390/biology1204055837106758
    [Google Scholar]
  8. GruschusJ.M. MorrisD.L. TjandraN. Evidence of natural selection in the mitochondrial-derived peptides humanin and SHLP6.Sci. Rep.20231311411010.1038/s41598‑023‑41053‑037644144
    [Google Scholar]
  9. YamagishiY. HashimotoY. NiikuraT. NishimotoI. Identification of essential amino acids in Humanin, a neuroprotective factor against Alzheimer’s disease-relevant insults.Peptides200324458559510.1016/S0196‑9781(03)00106‑212860203
    [Google Scholar]
  10. JungJ.E. SunG. Bautista GarridoJ. ObertasL. MobleyA.S. TingS.M. ZhaoX. AronowskiJ. The mitochondria-derived peptide humanin improves recovery from intracerebral hemorrhage: Implication of mitochondria transfer and microglia phenotype change.J. Neurosci.202040102154216510.1523/JNEUROSCI.2212‑19.202031980585
    [Google Scholar]
  11. MatsuokaM. Humanin signal for Alzheimer’s disease.J. Alzheimers Dis.201124Suppl. 2273210.3233/JAD‑2011‑10207621335658
    [Google Scholar]
  12. ZhaoS.T. ZhaoL. LiJ.H. Neuroprotective Peptide humanin inhibits inflammatory response in astrocytes induced by lipopolysaccharide.Neurochem. Res.201338358158810.1007/s11064‑012‑0951‑623277413
    [Google Scholar]
  13. GongZ. TasE. MuzumdarR. Humanin and age-related diseases: A new link?Front. Endocrinol. (Lausanne)2014521010.3389/fendo.2014.0021025538685
    [Google Scholar]
  14. FukuN. Pareja-GaleanoH. ZempoH. AlisR. AraiY. LuciaA. HiroseN. The mitochondrial-derived peptide MOTS-c: A player in exceptional longevity?Aging Cell201514692192310.1111/acel.1238926289118
    [Google Scholar]
  15. KimS.J. XiaoJ. WanJ. CohenP. YenK. Mitochondrially derived peptides as novel regulators of metabolism.J. Physiol.2017595216613662110.1113/JP27447228574175
    [Google Scholar]
  16. RochetteL. MelouxA. ZellerM. CottinY. VergelyC. Role of humanin, a mitochondrial-derived peptide, in cardiovascular disorders.Arch. Cardiovasc. Dis.20201138-956457110.1016/j.acvd.2020.03.02032680738
    [Google Scholar]
  17. KitadaM. KoyaD. Autophagy in metabolic disease and ageing.Nat. Rev. Endocrinol.2021171164766110.1038/s41574‑021‑00551‑934508250
    [Google Scholar]
  18. HashimotoY. NiikuraT. TajimaH. YasukawaT. SudoH. ItoY. KitaY. KawasumiM. KouyamaK. DoyuM. SobueG. KoideT. TsujiS. LangJ. KurokawaK. NishimotoI. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Aβ.Proc. Natl. Acad. Sci. USA200198116336634110.1073/pnas.10113349811371646
    [Google Scholar]
  19. LeeC. YenK. CohenP. Humanin: A harbinger of mitochondrial-derived peptides?Trends Endocrinol. Metab.201324522222810.1016/j.tem.2013.01.00523402768
    [Google Scholar]
  20. YenK. LeeC. MehtaH. CohenP. The emerging role of the mitochondrial-derived peptide humanin in stress resistance.J. Mol. Endocrinol.2013501R11R1910.1530/JME‑12‑020323239898
    [Google Scholar]
  21. SreekumarP.G. IshikawaK. SpeeC. MehtaH.H. WanJ. YenK. CohenP. KannanR. HintonD.R. The mitochondrial-derived peptide humanin protects RPE cells from oxidative stress, senescence, and mitochondrial dysfunction.Invest. Ophthalmol. Vis. Sci.20165731238125310.1167/iovs.15‑1705326990160
    [Google Scholar]
  22. HashimotoY. KuritaM. AisoS. NishimotoI. MatsuokaM. Humanin inhibits neuronal cell death by interacting with a cytokine receptor complex or complexes involving CNTF receptor α/WSX-1/gp130.Mol. Biol. Cell200920122864287310.1091/mbc.e09‑02‑016819386761
    [Google Scholar]
  23. ChinY.P. KeniJ. WanJ. MehtaH. AneneF. JiaY. LueY.H. SwerdloffR. CobbL.J. WangC. CohenP. Pharmacokinetics and tissue distribution of humanin and its analogues in male rodents.Endocrinology2013154103739374410.1210/en.2012‑200423836030
    [Google Scholar]
  24. IkonenM. LiuB. HashimotoY. MaL. LeeK.W. NiikuraT. NishimotoI. CohenP. Interaction between the Alzheimer’s survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell survival and apoptosis.Proc. Natl. Acad. Sci. USA200310022130421304710.1073/pnas.213511110014561895
    [Google Scholar]
  25. YingG. IribarrenP. ZhouY. GongW. ZhangN. YuZ.X. LeY. CuiY. WangJ.M. Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor.J. Immunol.2004172117078708510.4049/jimmunol.172.11.707815153530
    [Google Scholar]
  26. ZhaiD. LucianoF. ZhuX. GuoB. SatterthwaitA.C. ReedJ.C. Humanin binds and nullifies Bid activity by blocking its activation of Bax and Bak.J. Biol. Chem.200528016158151582410.1074/jbc.M41190220015661737
    [Google Scholar]
  27. KuliawatR. KleinL. GongZ. Nicoletta-GentileM. NemkalA. CuiL. BastieC. SuK. HuffmanD. SuranaM. BarzilaiN. FleischerN. MuzumdarR. Potent humanin analog increases glucose-stimulated insulin secretion through enhanced metabolism in the β cell.FASEB J.201327124890489810.1096/fj.13‑23109223995290
    [Google Scholar]
  28. JiaY. OhanyanA. LueY.H. SwerdloffR.S. LiuP.Y. CohenP. WangC. The effects of humanin and its analogues on male germ cell apoptosis induced by chemotherapeutic drugs.Apoptosis201520455156110.1007/s10495‑015‑1105‑525666707
    [Google Scholar]
  29. BhattacharyaD. MukhopadhyayM. BhattacharyyaM. KarmakarP. Is autophagy associated with diabetes mellitus and its complications? A review.EXCLI J.20181770972010.17179%2Fexcli2018‑135330190661
    [Google Scholar]
  30. JakubekP. PakulaB. RossmeislM. PintonP. RimessiA. WieckowskiM.R. Autophagy alterations in obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease: the evidence from human studies.Intern. Emerg. Med.20241951473149110.1007/s11739‑024‑03700‑w38971910
    [Google Scholar]
  31. VargasJ.N.S. HamasakiM. KawabataT. YouleR.J. YoshimoriT. The mechanisms and roles of selective autophagy in mammals.Nat. Rev. Mol. Cell Biol.202324316718510.1038/s41580‑022‑00542‑236302887
    [Google Scholar]
  32. FanX.Y. TianC. WangH. XuY. RenK. ZhangB.Y. GaoC. ShiQ. MengG. ZhangL.B. ZhaoY.J. ShaoQ.X. DongX.P. Activation of the AMPK-ULK1 pathway plays an important role in autophagy during prion infection.Sci. Rep.2015511472810.1038/srep1472826423766
    [Google Scholar]
  33. FlemingA. BourdenxM. FujimakiM. KarabiyikC. KrauseG.J. LopezA. Martín-SeguraA. PuriC. ScrivoA. SkidmoreJ. SonS.M. StamatakouE. WrobelL. ZhuY. CuervoA.M. RubinszteinD.C. The different autophagy degradation pathways and neurodegeneration.Neuron2022110693596610.1016/j.neuron.2022.01.01735134347
    [Google Scholar]
  34. ParzychK.R. KlionskyD.J. An overview of autophagy: morphology, mechanism, and regulation.Antioxid. Redox Signal.201420346047310.1089/ars.2013.537123725295
    [Google Scholar]
  35. PietrocolaF. Bravo-San PedroJ.M. Targeting autophagy to counteract obesity-associated oxidative stress.Antioxidants202110110210.3390/antiox1001010233445755
    [Google Scholar]
  36. ZhaoX. BieL.Y. PangD.R. LiX. YangL.F. ChenD.D. WangY.R. GaoY. The role of autophagy in the treatment of type II diabetes and its complications: A review.Front. Endocrinol. (Lausanne)202314122804510.3389/fendo.2023.122804537810881
    [Google Scholar]
  37. AshrafizadehM. AhmadiZ. FarkhondehT. SamarghandianS. Autophagy regulation using luteolin: New insight into its anti-tumor activity.Cancer Cell Int.202020153710.1186/s12935‑020‑01634‑933292250
    [Google Scholar]
  38. WangN. ZhouY. Erasto NgowiE. QiaoA. Autophagy: Playing an important role in diabetes and its complications.Med. Drug Discov.20242210018810.1016/j.medidd.2024.100188
    [Google Scholar]
  39. YangY.Y. GaoZ.X. MaoZ.H. LiuD.W. LiuZ.S. WuP. Identification of ULK1 as a novel mitophagy-related gene in diabetic nephropathy.Front. Endocrinol. (Lausanne)202313107946510.3389/fendo.2022.107946536743936
    [Google Scholar]
  40. LevineB. KroemerG. Biological functions of autophagy genes: A disease perspective.Cell20191761-2114210.1016/j.cell.2018.09.04830633901
    [Google Scholar]
  41. KumarA.V. MillsJ. LapierreL.R. Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging.Front. Cell Dev. Biol.20221079332810.3389/fcell.2022.79332835237597
    [Google Scholar]
  42. HezamA.A.M. ShaghdarH.B.M. ChenL. The connection between hypertension and diabetes and their role in heart and kidney disease development.J. Res. Med. Sci.20242912210.4103/jrms.jrms_470_2338855561
    [Google Scholar]
  43. Obesity and overweight. Geneva: World Health Organization.2021Available from: https://www.who.int/ news-room/fact-sheets/detail/obesity-and-overweight
  44. ReedJ. BainS. KanamarlapudiV. A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives.Diabetes Metab. Syndr. Obes.2021143567360210.2147/DMSO.S31989534413662
    [Google Scholar]
  45. GolayA. YbarraJ. Link between obesity and type 2 diabetes.Best Pract. Res. Clin. Endocrinol. Metab.200519464966310.1016/j.beem.2005.07.01016311223
    [Google Scholar]
  46. ZhangY. SowersJ.R. RenJ. Targeting autophagy in obesity: From pathophysiology to management.Nat. Rev. Endocrinol.201814635637610.1038/s41574‑018‑0009‑129686432
    [Google Scholar]
  47. RendraE. RiabovV. MosselD.M. SevastyanovaT. HarmsenM.C. KzhyshkowskaJ. Reactive oxygen species (ROS) in macrophage activation and function in diabetes.Immunobiology2019224224225310.1016/j.imbio.2018.11.01030739804
    [Google Scholar]
  48. YaoR.Q. RenC. XiaZ.F. YaoY.M. Organelle-specific autophagy in inflammatory diseases: A potential therapeutic target underlying the quality control of multiple organelles.Autophagy202117238540110.1080/15548627.2020.172537732048886
    [Google Scholar]
  49. MuralidharanC. LinnemannA.K. β-Cell autophagy in the pathogenesis of type 1 diabetes.Am. J. Physiol. Endocrinol. Metab.20213213E410E41610.1152/ajpendo.00151.202134338043
    [Google Scholar]
  50. GeX. WangL. FeiA. YeS. ZhangQ. Research progress on the relationship between autophagy and chronic complications of diabetes.Front. Physiol.20221395634410.3389/fphys.2022.95634436003645
    [Google Scholar]
  51. SousaE.S.A. QueirozL.A.D. GuimarãesJ.P.T. PantojaK.C. BarrosR.S. EpiphanioS. MartinsJ.O. The influence of high glucose conditions on macrophages and its effect on the autophagy pathway.Front. Immunol.202314113066210.3389/fimmu.2023.113066237122742
    [Google Scholar]
  52. KangY.H. ChoM.H. KimJ.Y. KwonM.S. PeakJ.J. KangS.W. YoonS.Y. SongY. Impaired macrophage autophagy induces systemic insulin resistance in obesity.Oncotarget2016724355773559110.18632/oncotarget.959027229537
    [Google Scholar]
  53. YassinR. TadmorH. FarberE. IgbariyeA. Armaly-NakhoulA. DahanI. NakhoulF. NakhoulN. Alteration of autophagy-related protein 5 (ATG5) levels and Atg5 gene expression in diabetes mellitus with and without complications.Diab. Vasc. Dis. Res.20211861479164121106205010.1177/1479164121106205034903064
    [Google Scholar]
  54. NaguibM. TarabayA. ElSarafN. RashedL. ElMeligyA. Beclin1 circulating level as predictor of carotid intima-media thickness in patients with type 2 diabetes mellitus.Medicine (Baltimore)202110028e2663010.1097/MD.000000000002663034260553
    [Google Scholar]
  55. KimM.B. LeeJ. LeeJ.Y. Targeting mitochondrial dysfunction for the prevention and treatment of metabolic disease by bioactive food components.J. Lipid Atheroscler.202413330632710.12997/jla.2024.13.3.30639355406
    [Google Scholar]
  56. OguntibejuO.O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links.Int. J. Physiol. Pathophysiol. Pharmacol.2019113456331333808
    [Google Scholar]
  57. BoutariC. PappasP.D. TheodoridisT.D. VavilisD. Humanin and diabetes mellitus: A review of in vitro and in vivo studies.World J. Diabetes202213321322310.4239/wjd.v13.i3.21335432758
    [Google Scholar]
  58. Burgos-MorónE. Abad-JiménezZ. Martínez de MarañónA. IannantuoniF. Escribano-LópezI. López-DomènechS. SalomC. JoverA. MoraV. RoldanI. SoláE. RochaM. VíctorV.M. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: The battle continues.J. Clin. Med.201989138510.3390/jcm809138531487953
    [Google Scholar]
  59. VoigtA. JelinekH.F. Humanin: a mitochondrial signaling peptide as a biomarker for impaired fasting glucose-related oxidative stress.Physiol. Rep.201649e1279610.14814/phy2.1279627173674
    [Google Scholar]
  60. ConteM. SabbatinelliJ. ChiarielloA. MartucciM. SantoroA. MontiD. ArcaroM. GalimbertiD. ScarpiniE. BonfigliA.R. GiulianiA. OlivieriF. FranceschiC. SalvioliS. Disease-specific plasma levels of mitokines FGF21, GDF15, and Humanin in type II diabetes and Alzheimer’s disease in comparison with healthy aging.Geroscience2021432985100110.1007/s11357‑020‑00287‑w33131010
    [Google Scholar]
  61. MaY. LiS. WeiX. HuangJ. LaiM. WangN. HuangQ. ZhaoL. PengY. WangY. Comparison of serum concentrations of humanin in women with and without gestational diabetes mellitus.Gynecol. Endocrinol.201834121064106710.1080/09513590.2018.148286929909696
    [Google Scholar]
  62. WangY. ZengZ. ZhaoS. TangL. YanJ. LiN. ZouL. FanX. XuC. HuangJ. XiaW. ZhuC. RaoM. Humanin alleviates insulin resistance in polycystic ovary syndrome: A human and rat model–based study.Endocrinology20211628bqab05610.1210/endocr/bqab05633693742
    [Google Scholar]
  63. KalS. MahataS. JatiS. MahataS.K. Mitochondrial-derived peptides: Antidiabetic functions and evolutionary perspectives.Peptides202417217114710.1016/j.peptides.2023.17114738160808
    [Google Scholar]
  64. ChenX. YunC. ZhengH. ChenX. HanQ. PanH. WangY. ZhongJ. The protective effects of S14G-humanin (HNG) against streptozotocin (STZ)-induced cardiac dysfunction.Bioengineered20211215491550310.1080/21655979.2021.196489434506248
    [Google Scholar]
  65. MoinH. ShafiR. IshtiaqA. LiaquatA. MajeedS. ZaidiN.N. Effectiveness of analog of Humanin in ameliorating streptozotocin-induced diabetic nephropathy in Sprague Dawley rats.Peptides202316517101410.1016/j.peptides.2023.17101437119975
    [Google Scholar]
  66. AbozaidE.R. Abdel-KareemR.H. HabibM.A. A novel beneficial role of humanin on intestinal apoptosis and dysmotility in a rat model of ischemia reperfusion injury.Pflugers Arch.2023475565566610.1007/s00424‑023‑02804‑037020079
    [Google Scholar]
  67. GurunathanS. JeyarajM. KangM.H. KimJ.H. Mitochondrial peptide humanin protects silver nanoparticles-induced neurotoxicity in human neuroblastoma cancer cells (SH-SY5Y).Int. J. Mol. Sci.20192018443910.3390/ijms2018443931505887
    [Google Scholar]
  68. KimS.J. DevganA. MillerB. LeeS.M. KumagaiH. WilsonK.A. WassefG. WongR. MehtaH.H. CohenP. YenK. Humanin-induced autophagy plays important roles in skeletal muscle function and lifespan extension.Biochim. Biophys. Acta, Gen. Subj.20221866113001710.1016/j.bbagen.2021.13001734624450
    [Google Scholar]
  69. GongZ. TassetI. DiazA. AnguianoJ. TasE. CuiL. KuliawatR. LiuH. KühnB. CuervoA.M. MuzumdarR. Humanin is an endogenous activator of chaperone-mediated autophagy.J. Cell Biol.2018217263564710.1083/jcb.20160609529187525
    [Google Scholar]
  70. HanK. JiaN. ZhongY. ShangX. S14G-humanin alleviates insulin resistance and increases autophagy in neurons of APP/PS1 transgenic mouse.J. Cell. Biochem.201811943111311710.1002/jcb.2645229058763
    [Google Scholar]
  71. KwonC. SunJ.L. JeongJ.H. JungT.W. Humanin attenuates palmitate-induced hepatic lipid accumulation and insulin resistance via AMPK-mediated suppression of the mTOR pathway.Biochem. Biophys. Res. Commun.2020526253954510.1016/j.bbrc.2020.03.12832245619
    [Google Scholar]
  72. DingY. FengY. ZouY. WangF. LiuH. LiuC. ZhangY. [Gly14]-humanin restores cathepsin D function via FPRL1 and promotes autophagic degradation of Ox-LDL in HUVECs.Nutr. Metab. Cardiovasc. Dis.202030122406241610.1016/j.numecd.2020.07.02232917500
    [Google Scholar]
  73. HuangJ. FengQ. ZouL. LiuY. BaoM. XiaW. ZhuC. [Gly14]-humanin exerts a protective effect against D-galactose-induced primary ovarian insufficiency in mice.Reprod. Biomed. Online202448210333010.1016/j.rbmo.2023.10333038163419
    [Google Scholar]
  74. YangH. CuiY. TangY. TangX. YuX. ZhouJ. YinQ. ShentuX. Cytoprotective role of humanin in lens epithelial cell oxidative stress-induced injury.Mol. Med. Rep.20202221467147910.3892/mmr.2020.1120232627019
    [Google Scholar]
  75. ChenL. YangX. WangK. GuoL. ZouC. Humanin inhibits lymphatic endothelial cells dysfunction to alleviate myocardial infarction-reperfusion injury via BNIP3-mediated mitophagy.Free Radic. Res.202458318019310.1080/10715762.2024.233307438535980
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665363711250112050930
Loading
/content/journals/ppl/10.2174/0109298665363711250112050930
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Autophagy; diabetes; HNG; humanin; metabolic diseases; polypeptide chain
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test