Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Nanoparticles have received more and more attention in the vaccine and drug delivery systems field due to their specific properties. In particular, alginate and chitosan have been known as the most promising nano-carries. Digoxin-specific antibodies effectively manage acute and chronic digitalis poisoning using sheep antiserum.

The present study aimed to develop alginate/chitosan nanoparticles as a carrier of Digoxin-KLH to promote the immune response by improving the hyper-immunization of animals.

The nanoparticles were produced by the ionic gelation method in mild conditions and the aqueous environment, which leads to the production of particles with favorable size, shape, high entrapment efficiency, and controlled release characteristics.

The synthesized nanoparticles of 52 nm in diameter, 0.19 in PDI, and -33mv in zeta potential were considerably unparalleled and characterized by SEM, FTIR, and DSC. Nanoparticles resembled a spherical shell, smooth morphology, and homogeneous structure shown by SEM images. FTIR and DSC analyses confirmed conformational changes. Entrapment efficiency and loading capacity were 96% and 50%, respectively, direct and indirect methods. The conjugate release profile, release kinetics, and mechanism of conjugate release from the nanoparticles were studied under simulated physiological conditions for various incubation periods. An initial burst effect revealed the release profile, followed by a continuous and controlled release phase. The compound release mechanism from the polymer was due to Fickian diffusion.

Our results indicated the prepared nanoparticles could be appropriate for the convenient delivery of the desired conjugate.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/2211738511666230522142410
2024-02-01
2025-09-24
Loading full text...

Full text loading...

References

  1. Currò D. The role of gut microbiota in the modulation of drug action: A focus on some clinically significant issues.Expert Rev. Clin. Pharmacol.201811217118310.1080/17512433.2018.141459829210311
    [Google Scholar]
  2. MorrillP. Pharmacotherapeutics of positive inotropes.AORN J.200071117118510.1016/S0001‑2092(06)62180‑710686650
    [Google Scholar]
  3. Felicilda-ReynaldoR.F. Cardiac glycosides, digoxin toxicity, and the antidote.Medsurg Nurs.201322425826124147325
    [Google Scholar]
  4. EnglandT.N. The effect of digoxin on mortality and morbidity in patients with heart failure.N. Engl. J. Med.1997336852553310.1056/NEJM1997022033608019036306
    [Google Scholar]
  5. VamosM. ErathJ.W. HohnloserS.H. Digoxin-associated mortality: A systematic review and meta-analysis of the literature.Eur. Heart J.201536281831183810.1093/eurheartj/ehv14325939649
    [Google Scholar]
  6. HauptmanP.J. BlumeS.W. LewisE.F. WardS. Digoxin toxicity and use of digoxin immune fab.JACC Heart Fail.20164535736410.1016/j.jchf.2016.01.01127039127
    [Google Scholar]
  7. ChanB.S.H. BuckleyN.A. Digoxin-specific antibody fragments in the treatment of digoxin toxicity.Clin. Toxicol.201452882483610.3109/15563650.2014.94390725089630
    [Google Scholar]
  8. EhleM. PatelC. GiuglianoR.P. Digoxin: Clinical highlights.Crit. Pathw. Cardiol.2011102939810.1097/HPC.0b013e318221e7dd21988950
    [Google Scholar]
  9. LamG.K. Hopoate-SitakeM. AdairC.D. Digoxin antibody fragment, antigen binding (Fab), treatment of preeclampsia in women with endogenous digitalis-like factor: A secondary analysis of the DEEP Trial.Am. J. Obstet. Gynecol.20132092119.e1119.e610.1016/j.ajog.2013.04.01023583219
    [Google Scholar]
  10. PullenM.A. BrooksD.P. EdwardsR.M. Characterization of the neutralizing activity of digoxin-specific Fab toward ouabain-like steroids.J. Pharmacol. Exp. Ther.2004310131932510.1124/jpet.104.06525014982968
    [Google Scholar]
  11. MohammadpourdounighiN. BehfarA. EzabadiA. ZolfagharianH. HeydariM. Preparation of chitosan nanoparticles containing Naja naja oxiana snake venom.Nanomedicine20106113714310.1016/j.nano.2009.06.00219616121
    [Google Scholar]
  12. Mohammadpour DounighiN. EskandariR. AvadiM.R. ZolfagharianH. Mir Mohammad SadeghiA. RezayatM. Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system.J. Venom. Anim. Toxins Incl. Trop. Dis.2012181445210.1590/S1678‑91992012000100006
    [Google Scholar]
  13. Mohammadpour DounighiN. DamavandiM. ZolfagharianH. MoradiS. Preparing and characterizing chitosan nanoparticles containing hemiscorpius lepturus scorpion venom as an antigen delivery system.Arch. Razi Inst.2012672145153
    [Google Scholar]
  14. SaraeiF. Mohamadpour DounighiN. ZolfagharianH. Moradi BidhendiS. KhakiP. InanlouF. Design and evaluate alginate nanoparticles as a protein delivery system.Arch. Razi Inst.2013682139146
    [Google Scholar]
  15. RamiA. Kazemi-LomedashtF. MirjaliliA. NoofeliM. ShahcheraghiF. DounighiN.M. Outer membrane vesicles of bordetella pertussis encapsulated into sodium alginate nanoparticles as novel vaccine delivery system.Curr. Pharm. Des.202127424341435410.2174/138161282766621090715471534493192
    [Google Scholar]
  16. MoradhaseliS. MirakabadiA.Z. SarzaeemA. dounighi NM, Soheily S, Borumand MR. Preparation and characterization of sodium alginate nanoparticles containing ICD-85 (Venom Derived Peptides).Int. J. Innov. Appl. Stud.201343534542
    [Google Scholar]
  17. FriedmanA.J. PhanJ. SchairerD.O. Antimicrobial and anti-inflammatory activity of chitosan-alginate nanoparticles: A targeted therapy for cutaneous pathogens.J. Invest. Dermatol.201313351231123910.1038/jid.2012.39923190896
    [Google Scholar]
  18. FarhadianA. DounighiN.M. AvadiM. Enteric trimethyl chitosan nanoparticles containing hepatitis B surface antigen for oral delivery.Hum. Vaccin. Immunother.201511122811281810.1080/21645515.2015.105366326158754
    [Google Scholar]
  19. Mohammadpour DounighiN. MehrabiM. AvadiM.R. ZolfagharianH. RezayatM. Preparation, characterization and stability investigation of chitosan nanoparticles loaded with the Echis carinatus snake venom as a novel delivery system.Arch. Razi Inst.2015704269277
    [Google Scholar]
  20. MehrabiM. Development and physicochemical, toxicity and immunogenicity assessments of recombinant hepatitis B surface antigen (rHBsAg) entrapped in chitosan and mannosylated chitosan nanoparticles: as a novel vaccine delivery system and adjuvant.Artif. Cells Nanomed. Biotechnol.20170011129260901
    [Google Scholar]
  21. MirzaeiF. Mohammadpour DounighiN. AvadiM.R. RezayatM. A new approach to antivenom preparation using chitosan nanoparticles containing echiscarinatus venom as a novel antigen delivery system.Iran. J. Pharm. Res.201716385886729201077
    [Google Scholar]
  22. MikolaH. Hedlِf E. Syntheses of europium-labeled digoxin derivatives and their use in time-resolved fluoroimmunoassay.Steroids199459847247810.1016/0039‑128X(94)90060‑47985208
    [Google Scholar]
  23. ErlangerB.F. Principles and methods for the preparation of drug protein conjugates for immunological studies.Pharmacol. Rev.19732522712804581044
    [Google Scholar]
  24. SarmentoB. RibeiroA.J. VeigaF. FerreiraD.C. NeufeldR.J. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation.J. Nanosci. Nanotechnol.2007782833284110.1166/jnn.2007.60917685304
    [Google Scholar]
  25. SarmentoB. MartinsS. RibeiroA. VeigaF. NeufeldR. FerreiraD. Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers.Int. J. Pept. Res. Ther.200612213113810.1007/s10989‑005‑9010‑3
    [Google Scholar]
  26. SankaliaM.G. MashruR.C. SankaliaJ.M. SutariyaV.B. Reversed chitosan–alginate polyelectrolyte complex for stability improvement of alpha-amylase: Optimization and physicochemical characterization.Eur. J. Pharm. Biopharm.200765221523210.1016/j.ejpb.2006.07.01416982178
    [Google Scholar]
  27. MehrabiM. Sadeghi-SourehS. Mohammadpour DounighiN. Development and optimisation of hepatitis B recombinant antigen loaded chitosan nanoparticles as an adjuvant using the response surface methodology.Micro & Nano Lett.2020151173674110.1049/mnl.2019.0355
    [Google Scholar]
  28. LowryO. RosebroughN. FarrA.L. RandallR. Protein measurement with the Folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑614907713
    [Google Scholar]
  29. PaulzagadeO. BorkarA. Simultaneous estimation of drug digoxin in tablet dosage form by UV spectrophotometric method.Int. J. Pharma Bio Sci.2021112195203
    [Google Scholar]
  30. NaserM. RezvanY. HosseinZ. A new antigen delivery vehicle candidate: Orthochirus iranus scorpion venom entrapped in chitosan nanoparticles.Br. J. Pharm. Res.20157426427510.9734/BJPR/2015/16667
    [Google Scholar]
  31. EmamiJ. BoushehriM.S.S. VarshosazJ. Preparation, characterization and optimization of glipizide controlled release nanoparticlesRes Pharm Sci.20149530114
    [Google Scholar]
  32. BorgesO. BorchardG. VerhoefJ.C. de SousaA. JungingerH.E. Preparation of coated nanoparticles for a new mucosal vaccine delivery system.Int. J. Pharm.20052991-215516610.1016/j.ijpharm.2005.04.03715998569
    [Google Scholar]
  33. AvadiM.R. SadeghiA.M.M. DounighiN.M. DinarvandR. AtyabiF. Ex Vivo Evaluation of Insulin Nanoparticles Using Chitosan and Arabic Gum.ISRN Pharm.2011201117
    [Google Scholar]
  34. SinghM. PilaniS. Review: In vitro drug release characterization models.Int J Pharm Stud Res202127784
    [Google Scholar]
  35. SarmentoB. RibeiroA. VeigaF. SampaioP. NeufeldR. FerreiraD. Alginate/chitosan nanoparticles are effective for oral insulin delivery.Pharm. Res.200724122198220610.1007/s11095‑007‑9367‑417577641
    [Google Scholar]
  36. LiX. QiJ. XieY. Nanoemulsions coated with alginate/chitosan as oral insulin delivery systems: Preparation, characterization, and hypoglycemic effect in rats.Int. J. Nanomedicine20138233223293517
    [Google Scholar]
  37. AzevedoM.A. BourbonA.I. VicenteA.A. CerqueiraM.A. Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2.Int. J. Biol. Macromol.20147114114610.1016/j.ijbiomac.2014.05.03624863916
    [Google Scholar]
  38. LoquercioA. Castell-PerezE. GomesC. MoreiraR.G. Preparation of chitosan-alginate nanoparticles for Trans -cinnamaldehyde entrapment.J. Food Sci.20158010N2305N231510.1111/1750‑3841.1299726375302
    [Google Scholar]
  39. ZhaoZ. HuY. HarmonT. PentelP. EhrichM. ZhangC. Rationalization of a nanoparticle-based nicotine nanovaccine as an effective next-generation nicotine vaccine: A focus on hapten localization.Biomaterials20171384656
    [Google Scholar]
  40. KhanS.I. ChillawarR.R. TadiK.K. MotghareR.V. Molecular Imprinted Polymer Based Impedimetric Sensor for Trace Level Determination of Digoxin in Biological and Pharmaceutical Samples.Curr. Anal. Chem.201814547448210.2174/1573411013666171117163609
    [Google Scholar]
  41. GazoriT. KhoshayandM.R. AziziE. YazdizadeP. NomaniA. HaririanI. Evaluation of Alginate/Chitosan nanoparticles as antisense delivery vector: Formulation, optimization and in vitro characterization.Carbohydr. Polym.200977359960610.1016/j.carbpol.2009.02.019
    [Google Scholar]
/content/journals/pnt/10.2174/2211738511666230522142410
Loading
/content/journals/pnt/10.2174/2211738511666230522142410
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): alginate; anti-digoxin; chitosan; digoxin; KLH; Nanoparticles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test