Skip to content
2000
Volume 7, Issue 5
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Background: Multi-walled carbon nanotubes (MWCNT) adjunct to molecularly imprinted polymers (MIP) have advantages of the large surface area of nanoparticles and selectivity of MIPs for selective extraction of tetradifon as a widely used pesticide in date palm. Objectives: The main aims were the use of experimental design, electrochemical synthesis and ultra-high performance liquid chromatography (UHPLC) to develop a simple, reliable and precise pesticide residue analysis method as an important aspect of food and drug quality control for the determination of tetradifon in date palms. Methods: An MIP in the presence of MWCNT was synthesized by cyclic voltammetric technique on a steel rod to produce a composite of MIP-MWCNTs for stir bar extraction of tetradifon residue in date samples. The experimental design was used to optimize MIPMWCNT composite synthesis through the screening of eight variables. The composite was characterized by scanning electron microscopy (SEM). Tetradifon was determined in extracted samples by UHPLC under optimum conditions. Results: A very thin film was made by MIP-MWCNT coated on a steel rod which was repeatable and had good adhesion and persistence. The detection limit (LOD) and the quantification limit (LOQ) of the method were measured as 16 and 49 ng/ml, respectively. Average recovery of tetradifon at the two spiked levels was observed to be as low as 86.5% to 90.7% (RSD from 0.79% to 1.04%). Conclusion: The low cost, high selectivity, good reproducibility, acceptable intra and inter day precision and accuracy developed method were successfully applied to determine tetradifon residue in date samples purchased from a local market.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/2211738507666190919113100
2019-12-01
2025-10-09
Loading full text...

Full text loading...

/content/journals/pnt/10.2174/2211738507666190919113100
Loading

  • Article Type:
    Research Article
Keyword(s): Date; electropolymerization; molecular imprinted polymer; residue; stir bar; tetradifon
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test