Skip to content
2000
Volume 7, Issue 5
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Background: Dronedarone HCl (DRD), owing to its poor aqueous solubility and extensive presystemic metabolism shows low oral bioavailability of about 4% without food, which increases to approximately 15% when administered with a high fat meal. Objective: Solid lipid nanoparticles (SLN) were designed with glyceryl monstearate (GMS) in order to improve oral bioavailability of DRD. Methods: Hot homogenization followed by probe sonication was used to prepare SLN dispersions. Box-Behnken design was used to optimize manufacturing conditions. SLN were characterized for particle size, zeta potential, entrapment efficiency, physical state and in vitro drug release. Pharmacokinetics and intestinal uptake study of dronedarone HCl loaded solid lipid nanoparticles (DRD-SLN) in the presence and absence of endocytic uptake inhibitor, chlorpromazine (CPZ) was performed with conscious male Wistar rats. Results: Optimized formulation of SLN showed particle size of 233 ± 42 nm and entrapment efficiency of 87.4 ± 1.29%. Results of pharmacokinetic studies revealed enhancement of bioavailability of DRD by 2.68 folds from SLN as compared to DRD suspension. Significantly reduced bioavailability of DRD-SLNs in the presence of chlorpromazine, demonstrated the role of endocytosis in uptake of SLN formulation. Conclusion: These results indicated that dronedarone HCl loaded SLN could potentially be exploited as a delivery system for improving oral bioavailability by minimizing first pass metabolism.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/2211738507666190802140607
2019-12-01
2025-10-09
Loading full text...

Full text loading...

/content/journals/pnt/10.2174/2211738507666190802140607
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test