Skip to content
2000
image of Harnessing Nanocarriers to Overcome Bioavailability Barriers of Herbal Actives: A Comprehensive Review

Abstract

Plant-derived constituents (phytoconstituents) exhibit diverse pharmacological activities and have significant therapeutic potential for various diseases. However, their clinical application is often hindered by their poor solubility, instability, and low bioavailability (<10% in many cases). Nanotechnology-driven drug delivery systems provide innovative solutions to overcome these limitations and enhance the therapeutic efficacy of herbal compounds. However, major challenges remain, including concerns about long-term safety, potential toxicity, regulatory approval pathways, and reproducibility. Bridging the gap between preclinical promise and clinical translation remains a significant hurdle. A comprehensive review of studies (2019–2024) indexed in PubMed, Web of Science, Google Scholar, and ScienceDirect was conducted using keywords: “Phytoconstituents”, “Bioavailability Enhancement”, “Herbal Nanoformulations”, “Nanocarriers”, and “Herbal Medicine”.

Nanoformulations, such as solid lipid nanoparticles, polymeric nanoparticles, nanosuspensions, and phytosomes, have achieved significant improvements in pharmacokinetic profiles—for instance, a 9.17-fold increase in the oral bioavailability of curcumin, a 7-fold increase for naringenin, and a ~4.5-fold increase for piperine. These systems enhance solubility, stability, and targeted delivery, resulting in better therapeutic efficacy in preclinical studies. The findings highlight the potential of nanocarriers to transform the delivery of herbal actives by addressing traditional limitations. The observed multiple-fold enhancements in bioavailability affirm the promise of herbal nanoformulations. While nanotechnology significantly enhances the bioavailability and pharmacological potential of phytoconstituents, challenges persist, including clinical translation barriers, a lack of standardization due to herbal variability, scalability issues, and regulatory approval hurdles. Future research should focus on developing smart, stimuli-responsive nanocarriers, employing eco-friendly green synthesis methods, and establishing robust standardization protocols to achieve reproducible, safe, and effective herbal nanoformulations for clinical use. Future efforts must systematically address toxicity, regulatory clarity, and the standardization of large-scale manufacture to realize clinical potential.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385412374251111045823
2026-01-22
2026-01-28
Loading full text...

Full text loading...

References

  1. Cos P. Vlietinck A.J. Berghe D.V. Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006 106 3 290 302 10.1016/j.jep.2006.04.003 16698208
    [Google Scholar]
  2. Duraipandiyan V. Ayyanar M. Ignacimuthu S. Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India. BMC Complement. Altern. Med. 2006 6 1 35 10.1186/1472‑6882‑6‑35 17042964
    [Google Scholar]
  3. Füllbeck M. Michalsky E. Dunkel M. Preissner R. Natural products: Sources and databases. Nat. Prod. Rep. 2006 23 3 347 356 10.1039/B513504B 16741583
    [Google Scholar]
  4. Yang L. Zhang D. Lu D. Plant-Derived Exosome-Like Nanovesicles-Created injectable hydrogel for augmented cancer immunotherapy. Chem. Eng. J. 2024 491 152032 10.1016/j.cej.2024.152032
    [Google Scholar]
  5. Ahmed H.M. Nabavi S. Behzad S. Herbal drugs and natural products in the light of nanotechnology and nanomedicine for developing drug formulations. Mini Rev. Med. Chem. 2021 21 3 302 313 10.2174/18755607MTA53OTYe3 32938347
    [Google Scholar]
  6. Yadav R. Pradhan M. Yadav K. Mahalvar A. Yadav H. Present scenarios and future prospects of herbal nanomedicine for antifungal therapy. J. Drug Deliv. Sci. Technol. 2022 74 103430 10.1016/j.jddst.2022.103430 35582019
    [Google Scholar]
  7. Ajazuddin Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia 2010 81 7 680 689 10.1016/j.fitote.2010.05.001 20471457
    [Google Scholar]
  8. Sahu T. Ratre Y.K. Chauhan S. Bhaskar L.V.K.S. Nair M.P. Verma H.K. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J. Drug Deliv. Sci. Technol. 2021 63 102487 10.1016/j.jddst.2021.102487
    [Google Scholar]
  9. Sabir F. Zeeshan M. Laraib U. DNA based and stimuli-responsive smart nanocarrier for diagnosis and treatment of cancer: Applications and challenges. Cancers 2021 13 14 3396 10.3390/cancers13143396 34298610
    [Google Scholar]
  10. Hosseini S.M. Mohammadnejad J. Salamat S. Beiram Zadeh Z. Tanhaei M. Ramakrishna S. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: A review. Mater. Today Chem. 2023 29 101400 10.1016/j.mtchem.2023.101400
    [Google Scholar]
  11. Edo GI Mafe AN Ali AB Eco-friendly nanoparticle phytosynthesis via plant extracts: Mechanistic insights, recent advances, and multifaceted uses. Nano TransMed 2025 4 100080.2790 6760 10.1016/j.ntm.2025.100080
    [Google Scholar]
  12. Rahman H.S. Othman H.H. Hammadi N.I. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int. J. Nanomedicine 2020 15 2439 2483 10.2147/IJN.S227805 32346289
    [Google Scholar]
  13. Sharma BR Kumar V Gat Y Kumar N Parashar A Pinakin DJ Microbial maceration: A sustainable approach for phytochemical extraction. 3 Biotech 2018 8 9 401 2483 10.1007/s13205‑018‑1423‑8 30221114 PMC6128812
    [Google Scholar]
  14. Frederich M. Tits M. Angenot L. Potential antimalarial activity of indole alkaloids. Trans. R. Soc. Trop. Med. Hyg. 2008 102 1 11 19 10.1016/j.trstmh.2007.10.002 18035385
    [Google Scholar]
  15. Ballard Cíntia Reis Maróstica Mário Roberto article 10 - Health Benefits of Flavonoids. Bioactive Compounds. Woodhead Publishing 2019 185 201 9780128147740 10.1016/B978‑0‑12‑814774‑0.00010‑4
    [Google Scholar]
  16. Ambrosy A.P. Butler J. Ahmed A. The use of digoxin in patients with worsening chronic heart failure: Reconsidering an old drug to reduce hospital admissions. J. Am. Coll. Cardiol. 2014 63 18 1823 1832 10.1016/j.jacc.2014.01.051 24613328
    [Google Scholar]
  17. Dawood M.A.O. El Basuini M.F. Zaineldin A.I. Antiparasitic and antibacterial functionality of essential oils: An alternative approach for sustainable aquaculture. Pathogens 2021 10 2 185 10.3390/pathogens10020185 33572193
    [Google Scholar]
  18. Manach C. Scalbert A. Morand C. Rémésy C. Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004 79 5 727 747 10.1093/ajcn/79.5.727 15113710
    [Google Scholar]
  19. Jia L. Zhao Y. Current evaluation of the millennium phytomedicine--ginseng (I): Etymology, pharmacognosy, phytochemistry, market and regulations. Curr. Med. Chem. 2009 16 19 2475 2484 10.2174/092986709788682146 19601793
    [Google Scholar]
  20. Singh V.K. Arora D. Ansari M.I. Sharma P.K. Phytochemicals based chemopreventive and chemotherapeutic strategies and modern technologies to overcome limitations for better clinical applications. Phytother. Res. 2019 33 12 3064 3089 10.1002/ptr.6508 31515899
    [Google Scholar]
  21. Khogta S. Patel J. Barve K. Londhe V. Herbal nano-formulations for topical delivery. J. Herb. Med. 2020 20 100300 10.1016/j.hermed.2019.100300
    [Google Scholar]
  22. Bonifácio B.V. Silva P.B. Ramos M.A. Negri K.M. Bauab T.M. Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine 2014 9 1 15 24363556
    [Google Scholar]
  23. Sousa de Almeida M. Susnik E. Drasler B. Taladriz-Blanco P. Petri-Fink A. Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem. Soc. Rev. 2021 50 9 5397 5434 10.1039/D0CS01127D 33666625
    [Google Scholar]
  24. Natarajan J.V. Nugraha C. Ng X.W. Venkatraman S. Sustained-release from nanocarriers: A review. J. Control. Release 2014 193 122 138 10.1016/j.jconrel.2014.05.029 24862321
    [Google Scholar]
  25. Ng P.Q. Ling L.S.C. Chellian J. Applications of nanocarriers as drug delivery vehicles for active phytoconstituents. Curr. Pharm. Des. 2020 26 36 4580 4590 10.2174/1381612826666200610111013 32520681
    [Google Scholar]
  26. Abdifetah O. Na-Bangchang K. Pharmacokinetic studies of nanoparticles as a delivery system for conventional drugs and herb-derived compounds for cancer therapy: A systematic review. Int. J. Nanomedicine 2019 14 5659 5677 10.2147/IJN.S213229 31632004
    [Google Scholar]
  27. Haripriyaa M. Suthindhiran K. Pharmacokinetics of nanoparticles: Current knowledge, future directions and its implications in drug delivery. Future J. Pharm. Sci. 2023 9 1 113 10.1186/s43094‑023‑00569‑y
    [Google Scholar]
  28. Dutt Y. Pandey R.P. Dutt M. Liposomes and phytosomes: Nanocarrier systems and their applications for the delivery of phytoconstituents. Coord. Chem. Rev. 2023 491 215251 10.1016/j.ccr.2023.215251
    [Google Scholar]
  29. Kaushal N. Chen Z.S. Lin S. Double-coated poly (butyl cyanoacrylate) nanoparticles as a potential carrier for overcoming P-Gp-and BCRP-mediated multidrug resistance in cancer cells. Frontiers in Nanotechnology 2021 3 753857 10.3389/fnano.2021.753857
    [Google Scholar]
  30. Suk JS Xu Q Kim N Hanes J Ensign LM PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 2016 99 Pt A 28 51 10.1016/j.addr.2015.09.012 26456916
    [Google Scholar]
  31. Čerpnjak K. Zvonar A. Gašperlin M. Vrečer F. Lipid-based systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Acta Pharm. 2013 63 4 427 445 10.2478/acph‑2013‑0040 24451070
    [Google Scholar]
  32. Chaudhuri A. Kumar D.N. Shaik R.A. Lipid-based nanoparticles as a pivotal delivery approach in triple negative breast cancer (TNBC) therapy. Int. J. Mol. Sci. 2022 23 17 10068 10.3390/ijms231710068 36077466
    [Google Scholar]
  33. El Moukhtari S.H. Rodríguez-Nogales C. Blanco-Prieto M.J. Oral lipid nanomedicines: Current status and future perspectives in cancer treatment. Adv. Drug Deliv. Rev. 2021 173 238 251 10.1016/j.addr.2021.03.004 33774117
    [Google Scholar]
  34. Daima HK Navya PN Ranjan S Dasgupta N Lichtfouse E Nanoscience in Medicine Vol. 10.1007/978‑3‑030‑29207‑2
    [Google Scholar]
  35. Sakai-Kato K. Yoshida K. Izutsu K. Effect of surface charge on the size-dependent cellular internalization of liposomes. Chem. Phys. Lipids 2019 224 104726 10.1016/j.chemphyslip.2019.01.004 30660745
    [Google Scholar]
  36. Wahi A. Bishnoi M. Raina N. Recent updates on nano-phyto-formulations based therapeutic intervention for cancer treatment. Oncol. Res. 2024 32 1 19 47 10.32604/or.2023.042228 38188681
    [Google Scholar]
  37. Chavda V.P. Vihol D. Mehta B. Phytochemical-loaded liposomes for anticancer therapy: An updated review. Nanomedicine 2022 17 8 547 568 10.2217/nnm‑2021‑0463 35259920
    [Google Scholar]
  38. Kyriakoudi A. Spanidi E. Mourtzinos I. Gardikis K. Innovative delivery systems loaded with plant bioactive ingredients: Formulation approaches and applications. Plants 2021 10 6 1238 10.3390/plants10061238 34207139
    [Google Scholar]
  39. Lu M. Qiu Q. Luo X. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J. Pharm. Sci. 2019 14 3 265 274
    [Google Scholar]
  40. Martins S. Costa-Lima S. Carneiro T. Cordeiro-da-Silva A. Souto E.B. Ferreira D.C. Solid lipid nanoparticles as intracellular drug transporters: An investigation of the uptake mechanism and pathway. Int. J. Pharm. 2012 430 1-2 216 227 10.1016/j.ijpharm.2012.03.032 22465548
    [Google Scholar]
  41. Puri A. Loomis K. Smith B. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst. 2009 26 6 523 580 10.1615/critrevtherdrugcarriersyst.v26.i6.10 20402623 PMC2885142
    [Google Scholar]
  42. Scioli Montoto S. Muraca G. Ruiz M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci. 2020 7 587997 10.3389/fmolb.2020.587997 33195435
    [Google Scholar]
  43. Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C 2016 60 569 578 (Suppl. C) 10.1016/j.msec.2015.11.067 26706565
    [Google Scholar]
  44. Nagavarma B.V. Yadav H.K. Ayaz A.V. Vasudha L.S. Shivakumar H.G. Different techniques for preparation of polymeric nanoparticles-a review. Asian J. Pharm. Clin. Res. 2012 5 3 16 23
    [Google Scholar]
  45. Ayala-Fuentes J.C. Chavez-Santoscoy R.A. Nanotechnology as a key to enhance the benefits and improve the bioavailability of flavonoids in the food Industry. Foods 2021 10 11 2701 10.3390/foods10112701 34828981
    [Google Scholar]
  46. Liu Q. Huang H. Chen H. Lin J. Wang Q. Food-grade nanoemulsions: Preparation, stability and application in encapsulation of bioactive compounds. Molecules 2019 24 23 4242 10.3390/molecules24234242 31766473
    [Google Scholar]
  47. Hong J. Liu Y. Xiao Y. High drug payload curcumin nanosuspensions stabilized by mPEG-DSPE and SPC: in vitro and in vivo evaluation. Drug Deliv. 2017 24 1 109 120 10.1080/10717544.2016.1233589 28155567
    [Google Scholar]
  48. Guo M. Qin S. Wang S. Herbal medicine nanocrystals: A potential novel therapeutic strategy. Molecules 2023 28 17 6370 10.3390/molecules28176370 37687199
    [Google Scholar]
  49. Malamatari M. Taylor K.M.G. Malamataris S. Douroumis D. Kachrimanis K. Pharmaceutical nanocrystals: Production by wet milling and applications. Drug Discov. Today 2018 23 3 534 547 10.1016/j.drudis.2018.01.016 29326082
    [Google Scholar]
  50. Zhou Y. Du J. Wang L. Wang Y. Nanocrystals technology for improving bioavailability of poorly soluble drugs: A mini-review. J. Nanosci. Nanotechnol. 2017 17 1 18 28 10.1166/jnn.2017.13108 29616786
    [Google Scholar]
  51. Yaqoob A.A. Ahmad H. Parveen T. Recent advances in metal decorated nanomaterials and their various biological applications: A review. Front Chem. 2020 8 341 10.3389/fchem.2020.00341 32509720
    [Google Scholar]
  52. Bertoncini-Silva C. Vlad A. Ricciarelli R. Giacomo Fassini P. Suen V.M.M. Zingg J.M. Enhancing the bioavailability and bioactivity of curcumin for disease prevention and treatment. Antioxidants 2024 13 3 331 10.3390/antiox13030331 38539864
    [Google Scholar]
  53. Ai C. Zhao C. Xiang C. Gum arabic as a sole wall material for constructing nanoparticle to enhance the stability and bioavailability of curcumin. Food Chem. X 2023 18 100724 10.1016/j.fochx.2023.100724 37397193
    [Google Scholar]
  54. Kanwal Q. Ahmed M. Hamza M. Curcumin nanoparticles: Physicochemical fabrication, characterization, antioxidant, enzyme inhibition, molecular docking and simulation studies. RSC Advances 2023 13 32 22268 22280 10.1039/D3RA01432K 37492507
    [Google Scholar]
  55. Yeo S. Kim M.J. Shim Y.K. Yoon I. Lee W.K. Solid lipid nanoparticles of curcumin designed for enhanced bioavailability and anticancer efficiency. ACS Omega 2022 7 40 35875 35884 10.1021/acsomega.2c04407 36249382
    [Google Scholar]
  56. Quirós-Fallas M.I. Wilhelm-Romero K. Quesada-Mora S. Curcumin hybrid lipid polymeric nanoparticles: Antioxidant activity, immune cellular response, and cytotoxicity evaluation. Biomedicines 2022 10 10 2431 10.3390/biomedicines10102431 36289694
    [Google Scholar]
  57. Brotons-Canto A. González-Navarro C.J. Gil A.G. Asin-Prieto E. Saiz M.J. Llabrés J.M. Zein nanoparticles improve the oral bioavailability of curcumin in Wistar rats. Pharmaceutics 2021 13 3 361 10.3390/pharmaceutics13030361 33803271
    [Google Scholar]
  58. Carrillo-Martinez E.J. Flores-Hernández F.Y. Salazar-Montes A.M. Nario-Chaidez H.F. Hernández-Ortega L.D. Quercetin, a flavonoid with great pharmacological capacity. Molecules 2024 29 5 1000 10.3390/molecules29051000 38474512
    [Google Scholar]
  59. Xu D. Gao L.N. Song X.J. Enhanced antidepressant effects of BDNF-quercetin alginate nanogels for depression therapy. J. Nanobiotechnology 2023 21 1 379 10.1186/s12951‑023‑02150‑4 37848975
    [Google Scholar]
  60. Campión R. Gonzalez-Navarro C.J. Luisa Martínez López A. Zein-based nanospheres and nanocapsules for the encapsulation and oral delivery of quercetin. Int. J. Pharm. 2023 643 123216 10.1016/j.ijpharm.2023.123216 37423375
    [Google Scholar]
  61. Chen Y.B. Zhang Y.B. Wang Y.L. A novel inhalable quercetin-alginate nanogel as a promising therapy for acute lung injury. J. Nanobiotechnology 2022 20 1 272 10.1186/s12951‑022‑01452‑3 35690763
    [Google Scholar]
  62. Kim T. Cho A.Y. Lee S.W. Lee H.J. Controlled quercetin release by fluorescent Mesoporous Nanocarriers for Effective Anti-adipogenesis. Int. J. Nanomedicine 2024 19 5441 5458 10.2147/IJN.S463765 38868593
    [Google Scholar]
  63. Imran M. Samal M. Qadir D.A. Ali A. Mir S.R. A critical review on the extraction and pharmacotherapeutic activity of piperine. Polim. Med. 2022 52 1 31 36 10.17219/pim/145512 35196422
    [Google Scholar]
  64. Ren T. Hu M. Cheng Y. Piperine-loaded nanoparticles with enhanced dissolution and oral bioavailability for epilepsy control. Eur. J. Pharm. Sci. 2019 137 104988 10.1016/j.ejps.2019.104988 31291598
    [Google Scholar]
  65. Singh A. Thotakura N. Singh B. Delivery of docetaxel to brain employing piperine-tagged PLGA-aspartic acid polymeric micelles: Improved cytotoxic and pharmacokinetic profiles. AAPS PharmSciTech 2019 20 6 220 10.1208/s12249‑019‑1426‑8 31201588
    [Google Scholar]
  66. Kazmi I. Al-Abbasi F.A. Imam S.S. Formulation of piperine nanoparticles: In vitro breast cancer cell line and in vivo evaluation. Polymers 2022 14 7 1349 10.3390/polym14071349 35406223
    [Google Scholar]
  67. Zafar F. Jahan N. Bhatti H. Increased oral bioavailability of piperine from an optimized piper nigrum nanosuspension. Planta Med. 2019 85 3 249 257 10.1055/a‑0759‑2208 30357764
    [Google Scholar]
  68. Zafar A. Alruwaili N.K. Imam S.S. Formulation of chitosan-coated piperine NLCs: Optimization, in vitro characterization, and in vivo preclinical assessment. AAPS PharmSciTech 2021 22 7 231 10.1208/s12249‑021‑02098‑4 34477999
    [Google Scholar]
  69. Wang Y. Wang S. Firempong C.K. Enhanced solubility and bioavailability of naringenin via liposomal nanoformulation: Preparation and in vitro and in vivo evaluations. AAPS PharmSciTech 2017 18 3 586 594 10.1208/s12249‑016‑0537‑8 27151135
    [Google Scholar]
  70. Khan A.W. Kotta S. Ansari S.H. Sharma R.K. Ali J. Enhanced dissolution and bioavailability of grapefruit flavonoid Naringenin by solid dispersion utilizing fourth generation carrier. Drug Dev. Ind. Pharm. 2015 41 5 772 779 10.3109/03639045.2014.902466 24669978
    [Google Scholar]
  71. Dong Z. Wang R. Wang M. Preparation of naringenin nanosuspension and its antitussive and expectorant effects. Molecules 2022 27 3 741 10.3390/molecules27030741 35164006
    [Google Scholar]
  72. Yang F. Hu S. Sheng X. Liu Y. Naringenin loaded multifunctional nanoparticles to enhance the chemotherapeutic efficacy in hepatic fibrosis. Biomed. Microdevices 2020 22 4 68 10.1007/s10544‑020‑00524‑1 32955605
    [Google Scholar]
  73. Santos A.C. Veiga F.J. Sequeira J.A.D. First-time oral administration of resveratrol-loaded layer-by-layer nanoparticles to rats – a pharmacokinetics study. Analyst 2019 144 6 2062 2079 10.1039/C8AN01998C 30724915
    [Google Scholar]
  74. Salehi B. Mishra A.P. Nigam M. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018 6 3 91 10.3390/biomedicines6030091 30205595
    [Google Scholar]
  75. Bandiwadekar A. Jose J. Gopan G. Augustin V. Ashtekar H. Khot K.B. Transdermal delivery of resveratrol loaded solid lipid nanoparticle as a microneedle patch: A novel approach for the treatment of Parkinson’s disease. Drug Deliv. Transl. Res. 2025 15 3 1043 1073 10.1007/s13346‑024‑01656‑0 38949746
    [Google Scholar]
  76. Wang B. Shan X. Lv S. Preparation, Characterization, and In VitroIn Vivo Evaluation of 3-O-β-D-Galactosylated Resveratrol-Loaded Polydopamine Nanoparticles. AAPS PharmSciTech 2021 22 7 220 10.1208/s12249‑021‑02079‑7 34405290
    [Google Scholar]
  77. Thatyana M. Dube N.P. Kemboi D. Manicum A.L.E. Mokgalaka-Fleischmann N.S. Tembu J.V. Advances in phytonanotechnology: A plant-mediated green synthesis of metal nanoparticles using phyllanthus plant extracts and their antimicrobial and anticancer applications. Nanomaterials 2023 13 19 2616 10.3390/nano13192616 37836257
    [Google Scholar]
  78. Shahzadi S. Fatima S. ul ain Q, Shafiq Z, Janjua MRSA. A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: A multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC Advances 2025 15 5 3858 3903 10.1039/D4RA07519F 39917042
    [Google Scholar]
  79. Amini S.M. Kakolvand R. Taeb S. Valizadeh H. Investigating the synthesis of tellurium nanoparticles and investigating its physicochemical and toxicological properties on fibroblast cells. Nanomedicine Research Journal 2024 9 4 373 380
    [Google Scholar]
  80. Cooperstone J.L. Schwartz S.J. Recent insights into health benefits of carotenoids. Handbook on Natural Pigments in Food and Beverages. Carle Reinhold Schweiggert Ralf M Woodhead Publishing 2016 473 497 9780081003718 10.1016/B978‑0‑08‑100371‑8.00020‑8
    [Google Scholar]
  81. Eggersdorfer M. Wyss A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018 652 18 26 10.1016/j.abb.2018.06.001 29885291
    [Google Scholar]
  82. Eisenhauer B. Natoli S. Liew G. Flood V. Lutein and zeaxanthin—Food sources, bioavailability and dietary variety in age-related macular degeneration protection. Nutrients 2017 9 2 120 10.3390/nu9020120 28208784
    [Google Scholar]
  83. Li L.H. Lee J.C.Y. Leung H.H. Lam W.C. Fu Z. Lo A.C.Y. Lutein supplementation for eye diseases. Nutrients 2020 12 6 1721 10.3390/nu12061721 32526861
    [Google Scholar]
  84. Rowles J.L. Erdman J.W. Carotenoids and their role in cancer prevention. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020 1865 11 158613 10.1016/j.bbalip.2020.158613 31935448
    [Google Scholar]
  85. D’Archivio M. Filesi C. Di Benedetto R. Gargiulo R. Giovannini C. Masella R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanita 2007 43 4 348 361 18209268
    [Google Scholar]
  86. Barreca D. Gattuso G. Bellocco E. Flavanones: Citrus phytochemical with health‐promoting properties. Biofactors 2017 43 4 495 506 10.1002/biof.1363 28497905
    [Google Scholar]
  87. Musial C. Siedlecka-Kroplewska K. Kmiec Z. Gorska-Ponikowska M. Modulation of autophagy in cancer cells by dietary polyphenols. Antioxidants 2021 10 1 123 10.3390/antiox10010123 33467015
    [Google Scholar]
  88. Achan J. Talisuna A.O. Erhart A. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J. 2011 10 1 144 10.1186/1475‑2875‑10‑144 21609473
    [Google Scholar]
  89. Bhambhani S. Kondhare K.R. Giri A.P. Diversity in chemical structures and biological properties of plant alkaloids. Molecules 2021 26 11 3374 10.3390/molecules26113374 34204857
    [Google Scholar]
  90. Dhyani P. Quispe C. Sharma E. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022 22 1 206 10.1186/s12935‑022‑02624‑9 35655306
    [Google Scholar]
  91. Kaiti R. Shyangbo R. Sharma I.P. Role of Atropine in the control of Myopia Progression- A Review. Beyoglu Eye J. 2022 7 3 157 166 10.14744/bej.2022.07742 36185981 PMC9522992
    [Google Scholar]
  92. Jaeger R. Cuny E. Terpenoids with Special Pharmacological Significance: A Review. Nat. Prod. Commun. 2016 11 9 1373 1390 30807045
    [Google Scholar]
  93. Stinson R.J. Morice A.H. Sadofsky L.R. Modulation of transient receptor potential (TRP) channels by plant derived substances used in over-the-counter cough and cold remedies. Respir. Res. 2023 24 1 45 10.1186/s12931‑023‑02347‑z 36755306
    [Google Scholar]
  94. Abu Samaan T.M. Samec M. Liskova A. Kubatka P. Büsselberg D. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules 2019 9 12 789 10.3390/biom9120789 31783552
    [Google Scholar]
  95. Suresh N. Haldar K. Mechanisms of artemisinin resistance in Plasmodium falciparum malaria. Curr. Opin. Pharmacol. 2018 42 46 54 10.1016/j.coph.2018.06.003 30077118
    [Google Scholar]
  96. Villegas C. Perez R. Petiz L.L. Glaser T. Ulrich H. Paz C. Ginkgolides and Huperzine A for complementary treatment of Alzheimer’s disease. IUBMB Life 2022 74 8 763 779 10.1002/iub.2613 35384262
    [Google Scholar]
  97. Bot A. Phytosterols. Reference Module in Food Science. Elsevier 2018
    [Google Scholar]
  98. Poli A. Marangoni F. Corsini A. Phytosterols, cholesterol control, and cardiovascular disease. Nutrients 2021 13 8 2810 10.3390/nu13082810 34444970
    [Google Scholar]
  99. Sohn S.I. Rathinapriya P. Balaji S. Phytosterols in seaweeds: An overview on biosynthesis to biomedical applications. Int. J. Mol. Sci. 2021 22 23 12691 10.3390/ijms222312691 34884496
    [Google Scholar]
  100. Akihisa T. Zhang J. Tokuda H. Potentially chemopreventive triterpenoids and other secondary metabolites from plants and fungi. Studies in Natural Products Chemistry 2016 51 1 50 10.1016/B978‑0‑444‑63932‑5.00001‑2
    [Google Scholar]
  101. Chen K. Wang N. Zhang X. Wang M. Liu Y. Shi Y. Potentials of saponins-based adjuvants for nasal vaccines. Front. Immunol. 2023 14 1153042 10.3389/fimmu.2023.1153042 37020548
    [Google Scholar]
  102. Elekofehinti O.O. Iwaloye O. Olawale F. Ariyo E.O. Saponins in cancer treatment: Current progress and future prospects. Pathophysiology 2021 28 2 250 272 10.3390/pathophysiology28020017 35366261
    [Google Scholar]
  103. Hamdi M. Feki A. Bardaa S. A novel blue crab chitosan/protein composite hydrogel enriched with carotenoids endowed with distinguished wound healing capability: In vitro characterization and in vivo assessment. Mater. Sci. Eng. C 2020 113 110978 10.1016/j.msec.2020.110978 32487393
    [Google Scholar]
  104. Kang Z. Zhonga Y. Wu T. Huang J. Zhao H. Liu D. Ginsenoside from ginseng: A promising treatment for inflammatory bowel disease. Pharmacol. Rep. 2021 73 3 700 711 10.1007/s43440‑020‑00213‑z 33462754
    [Google Scholar]
  105. Kumar A.P.N. Kumar M. Major phytochemicals: Recent advances in health benefits and extraction method. Molecules 2023 28 2 887 10.3390/molecules28020887 36677944
    [Google Scholar]
  106. Patravale V.B. Date A.A. Kulkarni R.M. Nanosuspensions: A promising drug delivery strategy. J. Pharm. Pharmacol. 2004 56 7 827 840 10.1211/0022357023691 15233860
    [Google Scholar]
  107. Ahmad R. Srivastava S. Ghosh S. Khare S.K. Phytochemical delivery through nanocarriers: A review. Colloids Surf. B Biointerfaces 2021 197 111389 10.1016/j.colsurfb.2020.111389 33075659
    [Google Scholar]
  108. Yap K.M. Sekar M. Fuloria S. Drug delivery of natural products through nanocarriers for effective breast cancer therapy: A comprehensive review of literature. Int. J. Nanomedicine 2021 16 7891 7941 10.2147/IJN.S328135 34880614
    [Google Scholar]
  109. Petrovic S.M. Barbinta-Patrascu M.E. Organic and biogenic nanocarriers as bio-friendly systems for bioactive compounds’ delivery: State-of-the art and challenges. Materials 2023 16 24 7550 10.3390/ma16247550 38138692
    [Google Scholar]
  110. Joudeh N. Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnology 2022 20 1 262 10.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  111. Fathi-Achachelouei M. Knopf-Marques H. Ribeiro da Silva C.E. Use of nanoparticles in tissue engineering and regenerative medicine. Front. Bioeng. Biotechnol. 2019 7 113 10.3389/fbioe.2019.00113 31179276
    [Google Scholar]
  112. Li M. Tang Q. Wan H. Functional inorganic nanoparticles in cancer: Biomarker detection, imaging, and therapy. APL Mater. 2024 12 10 100601 10.1063/5.0231279
    [Google Scholar]
  113. Yang W. Wang B. Lei G. Chen G. Liu D. Advances in nanocarriers to improve the stability of dsRNA in the environment. Front. Bioeng. Biotechnol. 2022 10 974646 10.3389/fbioe.2022.974646 36051593
    [Google Scholar]
  114. Krishna P.G. Chandra Mishra P. Naika M.M. Photocatalytic activity induced by metal nanoparticles synthesized by sustainable approaches: A comprehensive review. Front Chem. 2022 10 917831 10.3389/fchem.2022.917831 36118313
    [Google Scholar]
  115. Chopra H. Bibi S. Singh I. Green metallic nanoparticles: Biosynthesis to applications. Front. Bioeng. Biotechnol. 2022 10 874742 10.3389/fbioe.2022.874742 35464722
    [Google Scholar]
  116. Chavda V.P. Nalla L.V. Balar P. Advanced phytochemical-based nanocarrier systems for the treatment of breast cancer. Cancers 2023 15 4 1023 10.3390/cancers15041023 36831369
    [Google Scholar]
  117. Morillas-Becerill L. De Cola L. Zuidema J.M. Inorganic nanoparticle empowered biomaterial hybrids: Engineered payload release. Frontiers in Nanotechnology 2022 4 999923 10.3389/fnano.2022.999923
    [Google Scholar]
  118. Patra J.K. Das G. Fraceto L.F. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  119. Aigbe Uyiosa Osagie Osibote Otolorin Adelaja Green synthesis of metal oxide nanoparticles, and their various applications. J Hazard Mater Adv 2024 13 100401.2772 4166 10.1016/j.hazadv.2024.100401
    [Google Scholar]
  120. Gera S. Pooladanda V. Godugu C. Rutin nanosuspension for potential management of osteoporosis: Effect of particle size reduction on oral bioavailability, in vitro and in vivo activity. Pharm. Dev. Technol. 2020 25 8 971 988 10.1080/10837450.2020.1765378 32403972
    [Google Scholar]
  121. Radwan R.R. Ali H.E. Radiation-synthesis of chitosan/poly (acrylic acid) nanogel for improving the antitumor potential of rutin in hepatocellular carcinoma. Drug Deliv. Transl. Res. 2021 11 1 261 278 10.1007/s13346‑020‑00792‑7 32488816
    [Google Scholar]
  122. Li J. Ni W. Aisha M. Zhang J. Sun M. A rutin nanocrystal gel as an effective dermal delivery system for enhanced anti-photoaging application. Drug Dev. Ind. Pharm. 2021 47 3 429 439 10.1080/03639045.2021.1890113 33617404
    [Google Scholar]
  123. Yang M. Jin L. Wu Z. PLGA-PEG nanoparticles facilitate in vivo anti-Alzheimer’s effects of fucoxanthin, a marine carotenoid derived from edible brown algae. J. Agric. Food Chem. 2021 69 34 9764 9777 10.1021/acs.jafc.1c00569 34404210
    [Google Scholar]
  124. Sui Y. Gu Y. Lu Y. Yu C. Zheng J. Qi H. Fucoxanthin@ polyvinylpyrrolidone nanoparticles promoted oxidative stress-induced cell death in Caco-2 human colon cancer cells. Mar. Drugs 2021 19 2 92 10.3390/md19020092 33562511
    [Google Scholar]
  125. Chen Y. He N. Yang T. Fucoxanthin loaded in palm stearin-and cholesterol-based solid lipid nanoparticle-microcapsules, with improved stability and bioavailability in vivo. Mar. Drugs 2022 20 4 237 10.3390/md20040237 35447909
    [Google Scholar]
  126. Morakul B. Teeranachaideekul V. Limwikrant W. Junyaprasert V.B. Dissolution and antioxidant potential of apigenin self nanoemulsifying drug delivery system (SNEDDS) for oral delivery. Sci. Rep. 2024 14 1 8851 10.1038/s41598‑024‑59617‑z 38632321
    [Google Scholar]
  127. Mabrouk Zayed M.M. Sahyon H.A. Hanafy N.A.N. El-Kemary M.A. The effect of encapsulated apigenin nanoparticles on HePG-2 cells through regulation of P53. Pharmaceutics 2022 14 6 1160 10.3390/pharmaceutics14061160 35745733
    [Google Scholar]
  128. Wu W. Wang L. Wang S. Amorphous silibinin nanoparticles loaded into porous starch to enhance remarkably its solubility and bioavailability in vivo. Colloids Surf. B Biointerfaces 2021 198 111474 10.1016/j.colsurfb.2020.111474 33257158
    [Google Scholar]
  129. Wang Y. Li H. Wang L. Mucoadhesive nanocrystal-in-microspheres with high drug loading capacity for bioavailability enhancement of silybin. Colloids Surf. B Biointerfaces 2021 198 111461 10.1016/j.colsurfb.2020.111461 33246779
    [Google Scholar]
  130. Tartari A.P.S. Peczek S.H. Fin M.T. Ziebarth J. Machado C.S. Mainardes R.M. Bovine serum albumin nanoparticles enhanced the intranasal bioavailability of silybin in rats. Pharmaceutics 2023 15 12 2648 10.3390/pharmaceutics15122648 38139990
    [Google Scholar]
  131. Dai Z. Song J. Chen Y. Study on the bioavailability of stevioside-encapsulized lutein and its mechanism. Food Chem. 2021 354 129528 10.1016/j.foodchem.2021.129528 33756320
    [Google Scholar]
  132. Toragall V. Jayapala N. Vallikannan B. Chitosan-oleic acid-sodium alginate a hybrid nanocarrier as an efficient delivery system for enhancement of lutein stability and bioavailability. Int. J. Biol. Macromol. 2020 150 578 594 10.1016/j.ijbiomac.2020.02.104 32057885
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385412374251111045823
Loading
/content/journals/pnt/10.2174/0122117385412374251111045823
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test