Skip to content
2000
image of Exploring the Biomedical Potential of Carbon Dots from Banana Peel: An Anti-inflammatory Approach

Abstract

Introduction

Carbon-based nanomaterials, specifically carbon dots (CDs), are increasingly being explored for applications in the health sector. The goal of synthesizing CDs is to enhance the therapeutic effectiveness and reduce the toxicity of raw materials. Kepok banana ( L.) peel contains higher levels of flavonoids and phenols compared to other types of bananas. Flavonoids play a key role in inhibiting the formation of proinflammatory cytokines, making them effective as anti-inflammatory agents. This study aimed to explore the biomedical applications of banana peel-derived CDs as anti-inflammatory agents.

Methods

This research study utilized both pyrolysis (P-CDs) and hydrothermal (H-CDs) techniques to convert banana peels into CDs. The resulting CDs were tested for anti-inflammatory effectiveness using the carrageenan-induced inflammation model in Wistar rats, with doses of 25 mg/kg body weight (BW), 50 mg/kg BW, and 100 mg/kg BW, and compared to the standard drug, ibuprofen, at a dose of 36 mg/kg BW.

Results

Banana peel-derived CDs effectively exhibited anti-inflammatory activity in both preventive and curative modes, as measured by the volume of edema formed and the percentage of inhibition of inflammation in the paws of the rats. This activity was further supported by a decrease in IL-6 and TNF-α levels in rat serum.

Discussion

P-CDs (25 mg/kg BW) showed enhanced preventive anti-inflammatory effects versus H-CDs and ibuprofen, attributed to their optimized surface chemistry and nanoscale properties. Future studies should implement chromatographic purification to address residual precursors detected by FTIR, ensuring clinical-grade reproducibility.

Conclusion

Banana peel-derived CDs have the potential to serve as an active ingredient for anti-inflammatory therapy; however, further studies on their pharmacokinetics are needed in relation to their safety and effectiveness as medicinal materials.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385390984251120073622
2026-01-22
2026-01-28
Loading full text...

Full text loading...

References

  1. Ji R.R. Cheng J. Editors JJ. Neuroimmune Interactions in Pain Mechanisms and Therapeutics. Cham Springer Nature Switzerland AG 2023 10.1007/978‑3‑031‑29231‑6
    [Google Scholar]
  2. Wu J. Zhang M. Cheng J. Effect of lonicerae japonicae flos carbonisata-derived carbon dots on rat models of fever and hypothermia induced by lipopolysaccharide. Int. J. Nanomedicine 2020 15 4139 4149 10.2147/IJN.S248467 32606669
    [Google Scholar]
  3. de Siqueira Patriota L.L. de Brito Marques Ramos D. e Silva M.G. Inhibition of carrageenan-induced acute inflammation in mice by the microgramma vacciniifolia frond lectin (MvFL). Polymers 2022 14 8 1609 10.3390/polym14081609 35458359
    [Google Scholar]
  4. Regulation of the food and drug monitoring agency number 18 of 2021 concerning guidelines for preclinical pharmacodynamic testing of traditional medicines. 2021 Available from: https://peraturan.bpk.go.id/Details/181757/peraturan-bpom-no-18-tahun-2021
  5. Piro Di. Pharmacotherapy: A pathophysiologic approach. Access Phar 2020 11 1 6
    [Google Scholar]
  6. Lopes A.H. Silva R.L. Fonseca M.D. Molecular basis of carrageenan-induced cytokines production in macrophages. Cell Commun. Signal. 2020 18 1 141 10.1186/s12964‑020‑00621‑x 32894139
    [Google Scholar]
  7. Singh A. Kumar B. Pharmacological Evaluation of Anti-Inflammatory and Anti-Ulcer Potential of Heartwood of Santalum Album in Rats. 2014 Available from: https://www.researchgate.net/publication/264166755
  8. Aggarwal B.B. Prasad S. Reuter S. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: “Reverse pharmacology” and “bedside to bench” approach. Curr. Drug Targets 2011 12 11 1595 1653 10.2174/138945011798109464 21561421
    [Google Scholar]
  9. Barber K. Mendonca P. Evans J.A. Soliman K.F.A. Antioxidant and anti-inflammatory mechanisms of cardamonin through Nrf2 activation and NF-kB suppression in LPS-activated BV-2 microglial cells. Int. J. Mol. Sci. 2023 24 13 10872 10.3390/ijms241310872 37446045
    [Google Scholar]
  10. Olajide O.A. Sarker S.D. Chapter Five - Anti-inflammatory natural products. Annu Rep Med Chem. United States: Academic Press 2021 55 153 77 10.1016/bs.armc.2020.02.002
    [Google Scholar]
  11. Jang H.Y. Lee S.O. Heme oxygenase 1-mediated anti-inflammatory effect of extract from the aerial part of Heracleum moellendorffii hance. Foods 2023 12 17 3309 10.3390/foods12173309 37685243
    [Google Scholar]
  12. Huang X. He D. Pan Z. Luo G. Deng J. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater. Today Bio 2021 11 100124 10.1016/j.mtbio.2021.100124 34458716
    [Google Scholar]
  13. Mauricio M.D. Guerra-Ojeda S. Marchio P. Nanoparticles in medicine: A focus on vascular oxidative stress. Oxid. Med. Cell. Longev. 2018 2018 1 6231482 10.1155/2018/6231482 30356429
    [Google Scholar]
  14. Conte R. Marturano V. Peluso G. Calarco A. Cerruti P. Recent Advances in nanoparticle-mediated delivery of anti-inflammatory phytocompounds. Int. J. Mol. Sci. 2017 18 4 709 10.3390/ijms18040709 28350317
    [Google Scholar]
  15. Sharda D. Attri K. Choudhury D. Greener healing: Sustainable nanotechnology for advanced wound care. Discov. Nano 2024 19 1 127 10.1186/s11671‑024‑04061‑1 39136798
    [Google Scholar]
  16. Diez-Pascual A.M. Rahdar A. Functional nanomaterials in biomedicine: Current uses and potential applications. ChemMedChem 2022 17 16 202200142 10.1002/cmdc.202200142 35729066
    [Google Scholar]
  17. Mansuriya B.D. Altintas Z. Carbon dots: Classification, properties, synthesis, characterization, and applications in health care—An updated review (2018–2021). Nanomaterials 2021 11 10 2525 10.3390/nano11102525 34684966
    [Google Scholar]
  18. Wang B. Song H. Qu X. Chang J. Yang B. Lu S. Carbon dots as a new class of nanomedicines: Opportunities and challenges. Coord. Chem. Rev. 2021 442 214010 10.1016/j.ccr.2021.214010
    [Google Scholar]
  19. Molaei M.J. Carbon quantum dots and their biomedical and therapeutic applications: A review. RSC Advances 2019 9 12 6460 6481 10.1039/C8RA08088G 35518468
    [Google Scholar]
  20. Ghosal K. Ghosh A. Carbon dots: The next generation platform for biomedical applications. Mater. Sci. Eng. C 2019 96 887 903 10.1016/j.msec.2018.11.060 30606603
    [Google Scholar]
  21. Bandara S. Du H. Carson L. Bradford D. Kommalapati R. Agricultural and biomedical applications of chitosan-based nanomaterials. Nanomaterials 2020 10 10 1903 10.3390/nano10101903 32987697
    [Google Scholar]
  22. Nasrollahzadeh M. Atarod M. Sajjadi M. Sajadi S.M. Issaabadi Z. AChapter 6 - Plant-mediated green synthesis of nanostructures: Mechanisms, characterization, and applications. Interface Science and Technology. Amsterdam, Netherlands: Elsevier 2022 28 199 232 10.1016/B978‑0‑12‑813586‑0.00006‑7
    [Google Scholar]
  23. He X. Deng H. Hwang H. The current application of nanotechnology in food and agriculture. J Food Drug Anal 2019 27 1 1 21 10.1016/j.jfda.2018.12.002 30648562
    [Google Scholar]
  24. Bhardwaj V. Kaushik A. Biomedical applications of nanotechnology and nanomaterials. Micromachines 2017 8 10 298 10.3390/mi8100298 30400488
    [Google Scholar]
  25. de Oliveira B.P. da Silva Abreu F.O.M. Carbon quantum dots synthesis from waste and by-products: Perspectives and challenges. Mater. Lett. 2021 282 128764 10.1016/j.matlet.2020.128764
    [Google Scholar]
  26. Atchudan R. Jebakumar Immanuel Edison T.N. Shanmugam M. Perumal S. Somanathan T. Lee Y.R. Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Physica E 2021 126 114417 10.1016/j.physe.2020.114417
    [Google Scholar]
  27. Vandarkuzhali S.A.A. Jeyalakshmi V. Sivaraman G. Singaravadivel S. Krishnamurthy K.R. Viswanathan B. Highly fluorescent carbon dots from Pseudo-stem of banana plant: Applications as nanosensor and bio-imaging agents. Sens. Actuators B Chem. 2017 252 894 900 10.1016/j.snb.2017.06.088
    [Google Scholar]
  28. De B. Karak N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances 2013 3 22 8286 10.1039/c3ra00088e
    [Google Scholar]
  29. Rita W.S. Asih I.A.R.A. Swantara I.M.D. Damayanti N.L.Y. Antibacterial activity of flavonoids from ethyl acetate extract of milk banana peel (Musa x paradisiaca l.). Hayati J. Biosci. 2021 28 3 223 10.4308/hjb.28.3.223
    [Google Scholar]
  30. Sigiro M. Natural biowaste of banana peel-derived porous carbon for in-vitro antibacterial activity toward Escherichia coli. Ain Shams Eng. J. 2021 12 4 4157 4165 10.1016/j.asej.2021.03.021
    [Google Scholar]
  31. Singh A. Malhotra S. Subban R. Anti-inflammatory and analgesic agents from Indian medicinal plants. Int. J. Integr. Biol. 2008 3 1
    [Google Scholar]
  32. Chen L.G. Yang L.L. Wang C.C. Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem. Toxicol. 2008 46 2 688 693 10.1016/j.fct.2007.09.096 18029076
    [Google Scholar]
  33. Rakha A. Umar N. Rabail R. Anti-inflammatory and anti-allergic potential of dietary flavonoids: A review. Biomed. Pharmacother. 2022 156 113945 10.1016/j.biopha.2022.113945 36411631
    [Google Scholar]
  34. Catarino M.D. Talhi O. Rabahi A. Silva A.M.S. Cardoso S.M. The antiinflammatory potential of flavonoids. Stud Nat Prod Chem 2023 48 65 99 10.1016/B978‑0‑444‑63602‑7.00003‑5
    [Google Scholar]
  35. Sharma A. Choi H.K. Lee H.J. Carbon dots for the treatment of inflammatory diseases: An appraisal of in vitro and in vivo studies. Oxid. Med. Cell. Longev. 2023 2023 1 17 10.1155/2023/3076119 37273553
    [Google Scholar]
  36. Elwood P. Protty M. Morgan G. Pickering J. Delon C. Watkins J. Aspirin and cancer: Biological mechanisms and clinical outcomes. Open Biol. 2022 12 9 220124 10.1098/rsob.220124 36099932
    [Google Scholar]
  37. Šalamon Š. Kramar B. Marolt T.P. Poljšak B. Milisav I. Medical and dietary uses of N-acetylcysteine. Antioxidants 2019 8 5 111 10.3390/antiox8050111 31035402
    [Google Scholar]
  38. Xu X. Zhang K. Zhao L. Aspirin-based carbon dots, a good biocompatibility of material applied for bioimaging and anti-inflammation. ACS Appl. Mater. Interfaces 2016 8 48 32706 32716 10.1021/acsami.6b12252 27934165
    [Google Scholar]
  39. Peng N. Wang J. Zhu H. Protective effect of carbon dots as antioxidants on intestinal inflammation by regulating oxidative stress and gut microbiota in nematodes and mouse models. Int. Immunopharmacol. 2024 131 111871 10.1016/j.intimp.2024.111871 38492339
    [Google Scholar]
  40. Saputri F.C. Zahara R. Uji Aktivitas Anti-Inflamasi Minyak Atsiri Daun Kemangi (Ocimum americanum L.) pada Tikus Putih Jantan yang Diinduksi Karagenan. Pharm Sci Res 2016 3 3 123 130
    [Google Scholar]
  41. Rachmawati H. Safitri D. Pradana A. Adnyana I. TPGS-stabilized curcumin nanoparticles exhibit superior effect on carrageenan-induced inflammation in wistar rat. Pharmaceutics 2016 8 3 24 10.3390/pharmaceutics8030024 27537907
    [Google Scholar]
  42. Wijayanti N.P.A.D. Permatasari F.A. Damayanti S. Toxicity assessment and bioimaging potential of carbon dots synthesized from banana peel in zebrafish model. Narra J 2024 4 3 1228 10.52225/narra.v4i3.1228 39816108
    [Google Scholar]
  43. Mansjoer A. Suprohaita W.W.I. Setiowulan W. Selected Chapters in Medicine. Jakarta Media Aesculapius FKUI Jakarta Hal 2014 2
    [Google Scholar]
  44. Kurian M. Paul A. Recent trends in the use of green sources for carbon dot synthesis–A short review. Carbon Trends 2021 3 100032 10.1016/j.cartre.2021.100032
    [Google Scholar]
  45. Nguyen T.N. Le P.A. Phung V.B.T. Facile green synthesis of carbon quantum dots and biomass-derived activated carbon from banana peels: Synthesis and investigation. Biomass Convers. Biorefin. 2022 12 7 2407 2416 10.1007/s13399‑020‑00839‑2
    [Google Scholar]
  46. Chahal S. Macairan J.R. Yousefi N. Tufenkji N. Naccache R. Green synthesis of carbon dots and their applications. RSC Advances 2021 11 41 25354 25363 10.1039/D1RA04718C 35478913
    [Google Scholar]
  47. Nair A. Haponiuk J.T. Thomas S. Gopi S. Natural carbon-based quantum dots and their applications in drug delivery: A review. Biomed. Pharmacother. 2020 132 110834 10.1016/j.biopha.2020.110834 33035830
    [Google Scholar]
  48. Kumar M. Chinnathambi S. Bakhori N. Biomass-derived carbon dots as fluorescent quantum probes to visualize and modulate inflammation. Sci. Rep. 2024 14 1 12665 10.1038/s41598‑024‑62901‑7 38830927
    [Google Scholar]
  49. Lin X. Xiong M. Zhang J. Carbon dots based on natural resources: Synthesis and applications in sensors. Microchem. J. 2021 160 105604 10.1016/j.microc.2020.105604
    [Google Scholar]
  50. Wang H. Zhang M. Ma Y. Carbon dots derived from citric acid and glutathione as a highly efficient intracellular reactive oxygen species scavenger for alleviating the lipopolysaccharide-induced inflammation in macrophages. ACS Appl. Mater. Interfaces 2020 12 37 41088 41095 10.1021/acsami.0c11735 32805964
    [Google Scholar]
  51. Liu M.L. Chen B.B. Li C.M. Huang C.Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019 21 3 449 471 10.1039/C8GC02736F
    [Google Scholar]
  52. Vibhute A. Patil T. Gambhir R. Tiwari A.P. Fluorescent carbon quantum dots: Synthesis methods, functionalization and biomedical applications. Appl Surf Sci Adv 2022 11 100311 10.1016/j.apsadv.2022.100311
    [Google Scholar]
  53. Li S. Li L. Tu H. The development of carbon dots: From the perspective of materials chemistry. Mater. Today 2021 51 188 207 10.1016/j.mattod.2021.07.028
    [Google Scholar]
  54. Nazibudin N.A. Zainuddin M.F. Abdullah C.A.C. Hydrothermal synthesis of carbon quantum dots: An updated review. J Adv Res Fluid Mech Therm Sci 2023 101 1 192 206 10.37934/arfmts.101.1.192206
    [Google Scholar]
  55. Ng H.K.M. Lim G.K. Leo C.P. Comparison between hydrothermal and microwave-assisted synthesis of carbon dots from biowaste and chemical for heavy metal detection: A review. Microchem. J. 2021 165 106116 10.1016/j.microc.2021.106116
    [Google Scholar]
  56. Cui L. Ren X. Sun M. Liu H. Xia L. Carbon dots: Synthesis, properties and applications. Nanomaterials 2021 11 12 3419 10.3390/nano11123419 34947768
    [Google Scholar]
  57. Ozyurt D. Kobaisi M.A. Hocking R.K. Fox B. Properties, synthesis, and applications of carbon dots: A review. Carbon Trends 2023 12 100276 10.1016/j.cartre.2023.100276
    [Google Scholar]
  58. Dias C. Vasimalai N.P. Sárria M. Biocompatibility and bioimaging potential of fruit-based carbon dots. Nanomaterials 2019 9 2 199 10.3390/nano9020199 30717497
    [Google Scholar]
  59. Hou Y. Lu Q. Deng J. Li H. Zhang Y. One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal. Chim. Acta 2015 866 69 74 10.1016/j.aca.2015.01.039 25732694
    [Google Scholar]
  60. Liang W. Li Z. Li H. Liu Z. Wang X. Yang K. The influence of functional group on photoluminescence properties of carbon dots. ECS J. Solid State Sci. Technol. 2019 8 12 R176 R182 10.1149/2.0131912jss
    [Google Scholar]
  61. Zhu S. Zhang J. Tang S. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots: From fluorescence mechanism to up-conversion bioimaging applications. Adv. Funct. Mater. 2012 22 22 4732 4740 10.1002/adfm.201201499
    [Google Scholar]
  62. Wareing T.C. Gentile P. Phan A.N. Biomass-based carbon dots: Current development and future perspectives. ACS Nano 2021 15 10 15471 15501 10.1021/acsnano.1c03886 34559522
    [Google Scholar]
  63. Morris C.J. Carrageenan-induced paw edema in the rat and mouse. Methods Mol. Biol. 2003 225 115 122 10.1385/1‑59259‑374‑7:115 12769480
    [Google Scholar]
  64. Rao G. Kiran P.M. Ad V.R. Pharm M.D. Asian pacific journal of tropical medicine. 2012 Available from: www.elsevier.com/locate/apjtm
  65. Astuti K.W. Wijayanti N.P.A.D. Yustiantara P.S. Laksana K.P. Putra P.S.A. Anti-inflammatory activity of mangosteen (Garcinia mangostana Linn.) rind extract nanoemulgel and gel dosage forms. Biomed. Pharmacol. J. 2019 12 4 1767 1774 10.13005/bpj/1807
    [Google Scholar]
  66. Felix L.C. Ede J.D. Snell D.A. Physicochemical properties of functionalized carbon-based nanomaterials and their toxicity to fishes. Carbon 2016 104 78 89 10.1016/j.carbon.2016.03.041
    [Google Scholar]
  67. Meek I.L. Van de Laar M.A.F.J. E Vonkeman H. Non-steroidal anti-inflammatory drugs: An overview of cardiovascular risks. Pharmaceuticals 2010 3 7 2146 2162 10.3390/ph3072146 27713346
    [Google Scholar]
  68. Jaiswal K.S. Malka O. Shauloff N. Genistein carbon dots exhibit antioxidant and anti-inflammatory effects in vitro. Colloids Surf. B Biointerfaces 2023 223 113173 10.1016/j.colsurfb.2023.113173 36724562
    [Google Scholar]
  69. Hu J. Luo J. Zhang M. Protective effects of radix sophorae flavescentis carbonisata-based carbon dots against ethanol-induced acute gastric ulcer in rats: Anti-inflammatory and antioxidant activities. Int. J. Nanomedicine 2021 16 2461 2475 10.2147/IJN.S289515 33814910
    [Google Scholar]
  70. Kotta S. Aldawsari H.M. Badr-Eldin S.M. Exploring the potential of carbon dots to combat COVID-19. Front. Mol. Biosci. 2020 7 616575 10.3389/fmolb.2020.616575 33425995
    [Google Scholar]
  71. Wang S. Zhang Y. Kong H. Antihyperuricemic and anti-gouty arthritis activities of Aurantii fructus immaturus carbonisata-derived carbon dots. Nanomedicine 2019 14 22 2925 2939 10.2217/nnm‑2019‑0255 31418646
    [Google Scholar]
  72. He Z. Yu J. Chen X. Formulation and evaluation of anti-osteoarthritic, cytotoxicity and antioxidant effects of carbon dots derived Allium sativum L. leaf extract. Alex. Eng. J. 2024 92 231 237 10.1016/j.aej.2024.02.041
    [Google Scholar]
  73. Yu J. Huang X. Chen X. Antibacterial and anti-inflammatory Bi-functional carbon dots hydrogel dressing for robust promotion of wound healing. Carbon 2024 226 119202 10.1016/j.carbon.2024.119202
    [Google Scholar]
  74. Wang X. Zhang Y. Zhang M. Novel carbon dots derived from Puerariae lobatae radix and their anti-gout effects. Molecules 2019 24 22 4152 10.3390/molecules24224152 31744056
    [Google Scholar]
  75. Gudimella KK Gedda G Kumar PS Novel synthesis of fluorescent carbon dots from bio-based Carica papaya leaves: Optical and structural properties with antioxidant and anti-inflammatory activities. Environ Res 2022 204 (Pt A) 111854 10.1016/j.envres.2021.111854 34437850
    [Google Scholar]
  76. Wang X. Zhang Y. Kong H. Novel mulberry silkworm cocoon-derived carbon dots and their anti-inflammatory properties. Artif. Cells Nanomed. Biotechnol. 2020 48 1 68 76 10.1080/21691401.2019.1699810 31852285
    [Google Scholar]
  77. Wang B. Liu P. Huang H. Carbon dots up-regulate heme oxygenase-1 expression towards acute lung injury therapy. J. Mater. Chem. B Mater. Biol. Med. 2021 9 43 9005 9011 10.1039/D1TB01283E 34617947
    [Google Scholar]
  78. Zhao Y. Zhang Y. Kong H. Cheng G. Qu H. Zhao Y. Protective effects of carbon dots derived from Armeniacae Semen Amarum carbonisata against acute lung injury induced by lipopolysaccharides in rats. Int. J. Nanomedicine 2022 17 1 14 10.2147/IJN.S338886 35023915
    [Google Scholar]
  79. O’Shea J.J. Murray P.J. Cytokine signaling modules in inflammatory responses. Immunity 2008 28 4 477 487 10.1016/j.immuni.2008.03.002 18400190
    [Google Scholar]
  80. Blevins H.M. Xu Y. Biby S. Zhang S. The NLRP3 inflammasome pathway: A review of mechanisms and inhibitors for the treatment of inflammatory diseases. Front. Aging Neurosci. 2022 14 879021 10.3389/fnagi.2022.879021 35754962
    [Google Scholar]
  81. Hanada T. Yoshimura A. Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev. 2024 13 4–5 413 421 10.1016/s1359‑6101(02)00026‑6
    [Google Scholar]
  82. Leonard W.J. Lin J.X. Cytokine receptor signaling pathways. J. Allergy Clin. Immunol. 2000 105 5 877 888 10.1067/mai.2000.106899 10808165
    [Google Scholar]
  83. Zhang Y. Zhao J. Zhao Y. Protective effects of carbon dots derived from Rhei radix et rhizoma carbonisata on DSS (dextran sulfate sodium)-induced ulcerative colitis. Res Square 2022 1 6 10.21203/rs.3.rs‑1587244/v1
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385390984251120073622
Loading
/content/journals/pnt/10.2174/0122117385390984251120073622
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: banana peel ; pyrolysis ; anti-inflammatory ; Carbon dots ; hydrothermal
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test