Skip to content
2000
image of Polymeric Nanoparticles: A Promising Pharmaceutical Approach for Advanced Drug Delivery Systems

Abstract

Nanotechnology has significantly advanced the field of drug delivery by enabling the development of systems that offer precise, controlled, and site-specific transport of therapeutic agents. Among the various nanocarriers, polymeric nanoparticles (PNPs) have gained substantial attention due to their biodegradability, biocompatibility, and the ability to overcome key physiological barriers that limit the effectiveness of conventional drug delivery methods. PNPs can encapsulate a wide variety of therapeutic agents—including small molecules, proteins, and nucleic acids—and facilitate their controlled and sustained release, thereby improving therapeutic outcomes while minimizing systemic toxicity and adverse effects. The unique physicochemical properties of polymeric nanoparticles, such as nanosize, surface charge, morphology, and surface functionalization, allow for enhanced bioavailability, cellular uptake, and targeted delivery to specific tissues or cells. These characteristics make PNPs especially suitable for treating complex diseases such as cancer, neurodegenerative disorders, and infections, where targeted and efficient drug delivery is essential.

This review comprehensively explores the synthesis techniques of PNPs, including solvent evaporation, nanoprecipitation, emulsification, and polymerization methods, and discusses key parameters affecting nanoparticle formulation. It also highlights advanced characterization tools used to determine particle size, surface charge, morphology, stability, and drug loading efficiency. Moreover, the paper delves into the biomedical applications of polymeric nanoparticles, with particular emphasis on brain targeting, cancer therapeutics, and regenerative medicine. Strategies such as surface modification, ligand functionalization, and stimuli-responsive systems are discussed for enhancing targeted delivery and therapeutic efficacy. Despite promising advancements, challenges related to large-scale production, regulatory compliance, long-term safety, and clinical translation remain. The review concludes by presenting future prospects and innovations in polymeric nanocarrier systems, emphasizing their potential to transform modern medicine by enabling personalized, efficient, and safer therapeutic interventions.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385360894251031063012
2026-01-26
2026-01-31
Loading full text...

Full text loading...

References

  1. Soppimath K.S. Aminabhavi T.M. Kulkarni A.R. Rudzinski W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 2001 70 1-2 1 20 10.1016/S0168‑3659(00)00339‑4 11166403
    [Google Scholar]
  2. Cano A. Ettcheto M. Chang J.H. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J. Control. Release 2019 301 62 75 10.1016/j.jconrel.2019.03.010 30876953
    [Google Scholar]
  3. Owens D. Peppas N. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006 307 1 93 102 10.1016/j.ijpharm.2005.10.010 16303268
    [Google Scholar]
  4. Schaffazick S.R. Pohlmann A.R. Dalla-Costa T. Guterres S.S. Freeze-drying polymeric colloidal suspensions: Nanocapsules, nanospheres and nanodispersion. A comparative study. Eur. J. Pharm. Biopharm. 2003 56 3 501 505 10.1016/S0939‑6411(03)00139‑5 14602195
    [Google Scholar]
  5. Guterres S.S. Alves M.P. Pohlmann A.R. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2007 ••• 2 10.1177/117739280700200002 21901071
    [Google Scholar]
  6. Kauffman K.J. Do C. Sharma S. Gallovic M.D. Bachelder E.M. Ainslie K.M. Synthesis and characterization of acetalated dextran polymer and microparticles with ethanol as a degradation product. ACS Appl. Mater. Interfaces 2012 4 8 4149 4155 10.1021/am3008888 22833690
    [Google Scholar]
  7. Lal N. Gaur P. Rastogi S. Lata K. Current novel nanocarriers in drug delivery: A review. Hacet Univ J Fac Pharm 2022 42 4 238 256 10.52794/hujpharm.1075668
    [Google Scholar]
  8. Webber S.E. Polymer micelles: An example of self-assembling polymers. J. Phys. Chem. B 1998 102 15 2618 2626 10.1021/jp980386o
    [Google Scholar]
  9. Lal N. Nair A. Verma N. The use of natural polymers in formation of polyelectrolyte complexation. Bull. Fac. Pharm. Cairo Univ. 2021 59 1 1 10 10.54634/2090‑9101.1020
    [Google Scholar]
  10. Jawahar N. Meyyanathan S.N. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int. J. Health Allied Sci. 2012 1 4 217 10.4103/2278‑344X.107832
    [Google Scholar]
  11. Vieira R. Souto S.B. Sánchez-López E. Sugar-lowering drugs for type 2 diabetes mellitus and metabolic syndrome - Review of classical and new compounds: Part-I. Pharmaceuticals 2019 12 4 152 10.3390/ph12040152 31658729
    [Google Scholar]
  12. Jose S. Sowmya S. Cinu T.A. Aleykutty N.A. Thomas S. Souto E.B. Surface modified PLGA nanoparticles for brain targeting of Bacoside-A. Eur. J. Pharm. Sci. 2014 63 29 35 10.1016/j.ejps.2014.06.024 25010261
    [Google Scholar]
  13. Grumezescu A.M. Design and Development of New Nanocarriers. Norwich, NY, USA William Andrew 2017
    [Google Scholar]
  14. Kumar S. Dilbaghi N. Saharan R. Bhanjana G. Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. Bionanoscience 2012 2 4 227 250 10.1007/s12668‑012‑0060‑7
    [Google Scholar]
  15. Farokhzad O.C. Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009 3 1 16 20 10.1021/nn900002m 19206243
    [Google Scholar]
  16. Bovone G. Cousin L. Steiner F. Tibbitt M.W. Solvent controls nanoparticle size during nanoprecipitation by limiting block copolymer assembly. Macromolecules 2022 55 18 8040 8048 10.1021/acs.macromol.2c00907
    [Google Scholar]
  17. Ragelle H. Danhier F. Préat V. Langer R. Anderson D.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures. Expert Opin. Drug Deliv. 2017 14 7 851 864 10.1080/17425247.2016.1244187 27730820
    [Google Scholar]
  18. Souto E.B. Souto S.B. Campos J.R. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules 2019 24 23 4209 10.3390/molecules24234209 31756981
    [Google Scholar]
  19. Adhikari C. Polymer nanoparticles-preparations, applications and future insights: A concise review. Polym-Plast Tech Mat 2021 60 1 29 10.1080/25740881.2021.1939715
    [Google Scholar]
  20. Lim K Hamid Z A A Polymer nanoparticle carriers in drug delivery systems: Research trend. Applications of Nanocomposite Materials in Drug Delivery 2018 217 37 10.1016/B978‑0‑12‑813741‑3.00010‑8
    [Google Scholar]
  21. Krishnamoorthy K. Mahalingam M. Selection of a suitable method for the preparation of polymeric nanoparticles: Multi-criteria decision making approach. Adv. Pharm. Bull. 2015 5 1 57 67 25789220
    [Google Scholar]
  22. Wang Y. Li P. Truong-Dinh Tran T. Zhang J. Kong L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials 2016 6 2 26 10.3390/nano6020026 28344283
    [Google Scholar]
  23. Mendoza-Muñoz N. Quintanar-Guerrero D. Allémann E. The impact of the salting-out technique on the preparation of colloidal particulate systems for pharmaceutical applications. Recent Pat. Drug Deliv. Formul. 2012 6 3 236 249 10.2174/187221112802652688 22734871
    [Google Scholar]
  24. Pinto Reis C. Neufeld R.J. Ribeiro A.J. Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2006 2 1 8 21 10.1016/j.nano.2005.12.003
    [Google Scholar]
  25. Alekhya A. Sailaja A.K. Formulation and evaluation of letrozole nanoparticles by salting out technique and determination of anti-cancer activity by MTT assay. Nano Biomed. Eng. 2022 14 3 246 253 10.5101/nbe.v14i3.p246‑253
    [Google Scholar]
  26. Lovell P.A. Schork F.J. Fundamentals of emulsion polymerization. Biomacromolecules 2020 21 11 4396 4441 10.1021/acs.biomac.0c00769 32543173
    [Google Scholar]
  27. Gurnani P. Perrier S. Controlled radical polymerization in dispersed systems for biological applications. Prog. Polym. Sci. 2020 102 101209 10.1016/j.progpolymsci.2020.101209
    [Google Scholar]
  28. Bennet D. Kim S. Polymer nanoparticles for smart drug delivery. Application of Nanotechnology in Drug Delivery. Sezer A.D. New York IntechOpen 2014 257 285 10.5772/58422
    [Google Scholar]
  29. Judge N. Heise A. Investigation of the effectiveness of photo deprotection of polypeptides in solution and within the core of miniemulsion-derived nanoparticles. Macromolecules 2024 57 5 1979 1987 10.1021/acs.macromol.3c02538 38495387
    [Google Scholar]
  30. Elaissari A. Colloidal Biomolecules, Biomaterials, and Biomedical Applications. New York Marcel Dekker, Inc. 2003
    [Google Scholar]
  31. Ray W.H. On the mathematical modeling of polymerization reactors. J Macromol Sci Polym Rev 1972 8 1 56
    [Google Scholar]
  32. Odian G. Principles of Polymerization. Hoboken, NJ 2004 10.1002/047147875X
    [Google Scholar]
  33. Wehrle P. Magenheim B. Benita S. Influence of process parameters on the PLA nanoparticle size distribution, evaluated by means of factorial design. Eur. J. Pharm. Biopharm. 1995 41 19 26
    [Google Scholar]
  34. a Arias J.L. Gallardo V. Gomez Lopera S.A. Plaza R.C. Delgado A.V. Synthesis and characterization of poly(ethyl-2-cyanoacrylate) nanoparticles with a magnetic core. J. Control. Release 2001 77 3 309 321 10.1016/S0168‑3659(01)00519‑3
    [Google Scholar]
  35. b Ziegler A. Landfester K. Musyanovych A. Synthesis of phosphonate functionalized polystyrene and poly(methyl methacrylate) particles and their kinetic behavior in miniemulsion polymerization. Colloid Polym. Sci. 2009 287 11 1261 1271 10.1007/s00396‑009‑2087‑z
    [Google Scholar]
  36. Perumal S. Polymer nanoparticles: Synthesis and applications. Polymers 2022 14 24 5449 10.3390/polym14245449 36559816
    [Google Scholar]
  37. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  38. Anselmo A.C. Mitragotri S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019 4 3 e10143 10.1002/btm2.10143 31572799
    [Google Scholar]
  39. Puig J.E. Microemulsion polymerization (oil-in water). Polymeric Materials encyclopedia. Salamone J.C. Boca Raton, FL CRC Press 1996 4333 4341
    [Google Scholar]
  40. Gasco M.R. Trotta M. Nanoparticles from microemulsions. Int. J. Pharm. 1986 29 2-3 267 268 10.1016/0378‑5173(86)90125‑0
    [Google Scholar]
  41. Matyjaszewski K. Xia J. Atom transfer radical polymerization. Chem. Rev. 2001 101 9 2921 2990 10.1021/cr940534g 11749397
    [Google Scholar]
  42. Silva A.M. Alvarado H.L. Abrego G. In vitro cytotoxicity of oleanolic/ursolic acids-loaded in PLGA nanoparticles in different cell lines. Pharmaceutics 2019 11 8 362 10.3390/pharmaceutics11080362 31344882
    [Google Scholar]
  43. Carbone C. Martins-Gomes C. Pepe V. Repurposing itraconazole to the benefit of skin cancer treatment: A combined azole-DDAB nanoencapsulation strategy. Colloids Surf. B Biointerfaces 2018 167 337 344 10.1016/j.colsurfb.2018.04.031 29684903
    [Google Scholar]
  44. Hickey J.W. Santos J.L. Williford J.M. Mao H.Q. Control of polymeric nanoparticle size to improve therapeutic delivery. J. Control. Release 2015 219 536 547 10.1016/j.jconrel.2015.10.006 26450667
    [Google Scholar]
  45. Brar S.K. Verma M. Measurement of nanoparticles by light-scattering techniques. Trends Analyt. Chem. 2011 30 1 4 17 10.1016/j.trac.2010.08.008
    [Google Scholar]
  46. Mansfield E. Kaiser D.L. Fujita D. Van de Voorde M. Metrology and Standardization for Nanotechnology: Protocols and Industrial Innovations. Hoboke NJ, USA 2017 10.1002/9783527800308
    [Google Scholar]
  47. Duong V.A. Polymer surface treatments for drug delivery and wound healing. Appl. Sci. 2023 13 16 9054 10.3390/app13169054
    [Google Scholar]
  48. Chhabra M. Biological therapeutic modalities. Translational Biotechnology. Academic Press 2021 137 164 10.1016/B978‑0‑12‑821972‑0.00015‑0
    [Google Scholar]
  49. Kumar M. Son J. Huang R.H. In situ, noncovalent labeling and stimulated emission depletion-based super-resolution imaging of supramolecular peptide nanostructures. ACS Nano 2020 14 11 15056 15063 10.1021/acsnano.0c05029 33169979
    [Google Scholar]
  50. Park J.K. Utsumi T. Seo Y.E. Cellular distribution of injected PLGA-nanoparticles in the liver. Nanomedicine 2016 12 5 1365 1374 10.1016/j.nano.2016.01.013 26961463
    [Google Scholar]
  51. Mazumdar S. Chitkara D. Mittal A. Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers. Acta Pharm. Sin. B 2021 11 4 903 924 10.1016/j.apsb.2021.02.019 33996406
    [Google Scholar]
  52. Dirisala A. Uchida S. Toh K. Transient stealth coating of liver sinusoidal wall by anchoring two-armed PEG for retargeting nanomedicines. Sci. Adv. 2020 6 26 eabb8133 10.1126/sciadv.abb8133 32637625
    [Google Scholar]
  53. Wallace S.J. Li J. Nation R.L. Boyd B.J. Drug release from nanomedicines: selection of appropriate encapsulation and release methodology. Drug Deliv. Transl. Res. 2012 2 4 284 292 10.1007/s13346‑012‑0064‑4 23110256
    [Google Scholar]
  54. Park J.H. Park J. Kim S. Characterization and application of porous gold nanoparticles as 2‐photon luminescence imaging agents: 20‐fold brighter than gold nanorods. J. Biophotonics 2018 11 2 e201700174 10.1002/jbio.201700174 28976643
    [Google Scholar]
  55. Wang Y. Strohm E.M. Sun Y. Biodegradable polymeric nanoparticles containing gold nanoparticles and paclitaxel for cancer imaging and drug delivery using photoacoustic methods. Biomed. Opt. Express 2016 7 10 4125 4138 10.1364/BOE.7.004125 27867720
    [Google Scholar]
  56. National nanotechnology initiative: Leading to the next industrial revolution 2000 Available from: https://clintonwhitehouse4.archives.gov/media/pdf/nni.pdf
  57. Wedel B. Hertle Y. Wrede O. Bookhold J. Hellweg T. Smart homopolymer microgels: Influence of the monomer structure on the particle properties. Polymers 2016 8 4 162 10.3390/polym8040162 30979256
    [Google Scholar]
  58. Raju R. Bandyopadhyay S. Sharma A. Synthesis, characterization and drug loading of multiresponsive p[NIPAm-co-PEGMA] (core)/p[NIPAm-co-AAc] (Shell) nanogels with monodisperse size distributions. Polymers (Basel) 2018 10 3 309 10.3390/polym10030309 30966344
    [Google Scholar]
  59. Anselmo A.C. Zhang M. Kumar S. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 2015 9 3 3169 3177 10.1021/acsnano.5b00147 25715979
    [Google Scholar]
  60. Gustafson H.H. Holt-Casper D. Grainger D.W. Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today 2015 10 4 487 510 10.1016/j.nantod.2015.06.006 26640510
    [Google Scholar]
  61. Sonavane G. Tomoda K. Sano A. Ohshima H. Terada H. Makino K. In vitro permeation of gold nanoparticles through rat skin and rat intestine: Effect of particle size. Colloids Surf. B Biointerfaces 2008 65 1 1 10 10.1016/j.colsurfb.2008.02.013 18499408
    [Google Scholar]
  62. Lal N. Dubey J. Gaur P. Verma N. Verma A. Chitosan based in situ forming polyelectrolyte complexes: A potential sustained drug delivery polymeric carrier for high dose drugs. Mater. Sci. Eng. C 2017 79 491 498 10.1016/j.msec.2017.05.051 28629045
    [Google Scholar]
  63. Cruz L.J. Stammes M.A. Que I. Effect of PLGA NP size on efficiency to target traumatic brain injury. J. Control. Release 2016 223 31 41 10.1016/j.jconrel.2015.12.029 26708021
    [Google Scholar]
  64. Alemdaroglu F.E. Alemdaroglu N.C. Langguth P. Herrmann A. Cellular uptake of DNA block copolymer micelles with different shapes. Macromol. Rapid Commun. 2008 29 4 326 329 10.1002/marc.200700779
    [Google Scholar]
  65. Pearce A.K. Wilks T.R. Arno M.C. O’Reilly R.K. Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nat. Rev. Chem. 2020 5 1 21 45 10.1038/s41570‑020‑00232‑7 37118104
    [Google Scholar]
  66. Fernández T.D. Pearson J.R. Leal M.P. Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials 2015 43 1 12 10.1016/j.biomaterials.2014.11.045 25591956
    [Google Scholar]
  67. Li W. Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine 2015 10 2 299 320 10.2217/nnm.14.169 25600972
    [Google Scholar]
  68. Moscariello P. Raabe M. Liu W. Unraveling in vivo brain transport of protein‐coated fluorescent nanodiamonds. Small 2019 15 42 1902992 10.1002/smll.201902992 31465151
    [Google Scholar]
  69. Parhi P. Mohanty C. Sahoo S.K. Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Discov. Today 2012 17 17-18 1044 1052 10.1016/j.drudis.2012.05.010 22652342
    [Google Scholar]
  70. Tran S. DeGiovanni P.J. Piel B. Rai P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med. 2017 6 1 e44 10.1186/s40169‑017‑0175‑0 29230567
    [Google Scholar]
  71. Guo P. Liu D. Subramanyam K. Nanoparticle elasticity directs tumor uptake. Nat. Commun. 2018 9 1 130 10.1038/s41467‑017‑02588‑9 29317633
    [Google Scholar]
  72. Singh R. Srinivas S.P. Kumawat M. Daima H.K. Ligand-based surface engineering of nanomaterials: Trends, challenges, and biomedical perspectives. OpenNano 2024 15 100194 10.1016/j.onano.2023.100194
    [Google Scholar]
  73. Elci S.G. Jiang Y. Yan B. Surface charge controls the suborganbiodistributions of gold nanoparticles. ACS Nano 2016 10 5 5536 5542 10.1021/acsnano.6b02086 27164169
    [Google Scholar]
  74. Alkilany A.M. Zhu L. Weller H. Ligand density on nanoparticles: A parameter with critical impact on nanomedicine. Adv. Drug Deliv. Rev. 2019 143 22 36 10.1016/j.addr.2019.05.010 31158406
    [Google Scholar]
  75. Abstiens K. Gregoritza M. Goepferich A.M. Ligand density and linker length are critical factors for multivalent nanoparticle–receptor interactions. ACS Appl. Mater. Interfaces 2019 11 1 1311 1320 10.1021/acsami.8b18843 30521749
    [Google Scholar]
  76. Lajoie J.M. Shusta E.V. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu. Rev. Pharmacol. Toxicol. 2015 55 1 613 631 10.1146/annurev‑pharmtox‑010814‑124852 25340933
    [Google Scholar]
  77. Fishman J.B. Rubin J.B. Handrahan J.V. Connor J.R. Fine R.E. Receptor‐mediated transcytosis of transferrin across the blood‐brain barrier. J. Neurosci. Res. 1987 18 2 299 304 10.1002/jnr.490180206 3694713
    [Google Scholar]
  78. Li L. Zhang Y. Wang J. Effects of ligand distribution on receptor-diffusion-mediated cellular uptake of nanoparticles. R. Soc. Open Sci. 2017 4 5 170063 10.1098/rsos.170063 28573012
    [Google Scholar]
  79. Deng H. Dutta P. Liu J. Stochastic modeling of nanoparticle internalization and expulsion through receptor-mediated transcytosis. Nanoscale 2019 11 23 11227 11235 10.1039/C9NR02710F 31157808
    [Google Scholar]
  80. Vinodh R. Atchudan R. Kim H.J. Yi M. Recent advancements in polysulfone based membranes for fuel cell (PEMFCs, DMFCs and AMFCs) applications: A critical review. Polymers 2022 14 2 300 10.3390/polym14020300 35054706
    [Google Scholar]
  81. Romero G. Moya S.E. Synthesis of organic nanoparticles. Frontiers of nanoscience. de la Fuente J.M. Grazu V. Amsterdam Elsevier 2012 115 141 10.1016/B978‑0‑12‑415769‑9.00004‑2
    [Google Scholar]
  82. Satpathy M. Wang L. Zielinski R. Active targeting using HER-2-affibody-conjugated nanoparticles enabled sensitive and specific imaging of orthotopic HER-2 positive ovarian tumors. Small 2014 10 3 544 555 10.1002/smll.201301593 24038985
    [Google Scholar]
  83. Bazak R. Houri M. El Achy S. Kamel S. Refaat T. Cancer active targeting by nanoparticles: A comprehensive review of literature. J. Cancer Res. Clin. Oncol. 2015 141 5 769 784 10.1007/s00432‑014‑1767‑3 25005786
    [Google Scholar]
  84. Haqqani A.S. Stanimirovic D.B. Brain delivery of therapeutics via transcytosis: Types and mechanisms of vesicle-mediated transport across the BBB. de Lange E.C.M. Hammarlund-Udenaes M. Thorne R.G. Drug Delivery to the Brain. Cham Springer 2022 71 91 10.1007/978‑3‑030‑88773‑5_3
    [Google Scholar]
  85. Neves A.R. van der Putten L. Queiroz J.F. Pinheiro M. Reis S. Transferrin-functionalized lipid nanoparticles for curcumin brain delivery. J. Biotechnol. 2021 331 108 117 10.1016/j.jbiotec.2021.03.010 33727082
    [Google Scholar]
  86. Yan X. Xu L. Bi C. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects. Int. J. Nanomedicine 2018 13 273 281 10.2147/IJN.S151475 29391788
    [Google Scholar]
  87. Habib S. Singh M. Angiopep-2-modified nanoparticles for brain-directed delivery of therapeutics: A review. Polymers 2022 14 4 712 10.3390/polym14040712 35215625
    [Google Scholar]
  88. Zhu X. Jin K. Huang Y. Pang Z. Brain drug delivery by adsorption-mediated transcytosis. Brain targeted drug delivery system. Academic Press 2019 159 183 10.1016/B978‑0‑12‑814001‑7.00007‑X
    [Google Scholar]
  89. Lu W. Adsorptive-mediated brain delivery systems. Curr. Pharm. Biotechnol. 2012 13 12 2340 2348 10.2174/138920112803341851 23016640
    [Google Scholar]
  90. Couvreur P. Kante B. Roland M. Guiot P. Bauduin P. Speiser P. Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: Preparation, morphological and sorptive properties. J. Pharm. Pharmacol. 1979 31 1 331 332 10.1111/j.2042‑7158.1979.tb13510.x 37304
    [Google Scholar]
  91. Desgouilles S. Vauthier C. Bazile D. The design of nanoparticles obtained by solvent evaporation: A comprehensive study. Langmuir 2003 19 22 9504 9510 10.1021/la034999q
    [Google Scholar]
  92. Marrache S. Pathak R. Darley K. Nanocarriers for tracking and treating diseases. Curr. Med. Chem. 2013 20 28 3500 3514 10.2174/0929867311320280007 23834187
    [Google Scholar]
  93. Zhang W. Mehta A. Tong Z. Esser L. Voelcker N.H. Development of polymeric nanoparticles for blood–brain barrier transfer—strategies and challenges. Adv. Sci. 2021 8 10 2003937 10.1002/advs.202003937 34026447
    [Google Scholar]
  94. Carradori D. Balducci C. Re F. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine 2018 14 2 609 618 10.1016/j.nano.2017.12.006 29248676
    [Google Scholar]
  95. van der Kant R. Goldstein L.S.B. Cellular functions of the amyloid precursor protein from development to dementia. Dev. Cell 2015 32 4 502 515 10.1016/j.devcel.2015.01.022 25710536
    [Google Scholar]
  96. Gentile P. Chiono V. Carmagnola I. Hatton P. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 2014 15 3 3640 3659 10.3390/ijms15033640 24590126
    [Google Scholar]
  97. Choi S.H. Park T.G. Synthesis and characterization of elastic PLGA/PCL/PLGA tri-block copolymers. J. Biomater. Sci. Polym. Ed. 2002 13 10 1163 1173 10.1163/156856202320813864 12484491
    [Google Scholar]
  98. Hoyos-Ceballos G.P. Ruozi B. Ottonelli I. PLGA-PEG-ANG-2 nanoparticles for blood–brain barrier crossing: Proof-of-concept study. Pharmaceutics 2020 12 1 72 10.3390/pharmaceutics12010072 31963430
    [Google Scholar]
  99. Rezvantalab S. Drude N.I. Moraveji M.K. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol. 2018 9 1260 10.3389/fphar.2018.01260 30450050
    [Google Scholar]
  100. Sinha V.R. Bansal K. Kaushik R. Kumria R. Trehan A. Poly-ϵ-caprolactone microspheres and nanospheres: An overview. Int. J. Pharm. 2004 278 1 1 23 10.1016/j.ijpharm.2004.01.044 15158945
    [Google Scholar]
  101. Haley B. Frenkel E. Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. 2008 26 1 57 64 10.1016/j.urolonc.2007.03.015 18190833
    [Google Scholar]
  102. Gu F.X. Karnik R. Wang A.Z. Targeted nanoparticles for cancer therapy. Nano Today 2007 2 3 14 21 10.1016/S1748‑0132(07)70083‑X
    [Google Scholar]
  103. Byrne J.D. Betancourt T. Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008 60 15 1615 1626 10.1016/j.addr.2008.08.005 18840489
    [Google Scholar]
  104. Joshi M.D. Patravale V. Prabhu R. Polymeric nanoparticles for targeted treatment in oncology: Current insights. Int. J. Nanomedicine 2015 10 1001 1018 10.2147/IJN.S56932 25678788
    [Google Scholar]
  105. Cheng L. Jin C. Lv W. Ding Q. Han X. Developing a highly stable PLGA-mPEG nanoparticle loaded with cisplatin for chemotherapy of ovarian cancer. PLoS One 2011 6 9 e25433 10.1371/journal.pone.0025433 21966528
    [Google Scholar]
  106. Zhao S. Tan S. Guo Y. pH-sensitive docetaxel-loaded D-α-tocopheryl polyethylene glycol succinate-poly(β-amino ester) copolymer nanoparticles for overcoming multidrug resistance. Biomacromolecules 2013 14 8 2636 2646 10.1021/bm4005113 23815156
    [Google Scholar]
  107. Danhier F. Lecouturier N. Vroman B. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. J. Control. Release 2009 133 1 11 17 10.1016/j.jconrel.2008.09.086 18950666
    [Google Scholar]
  108. Moreno D. Zalba S. Navarro I. Tros de Ilarduya C. Garrido M.J. Pharmacodynamics of cisplatin-loaded PLGA nanoparticles administered to tumor-bearing mice. Eur. J. Pharm. Biopharm. 2010 74 2 265 274 10.1016/j.ejpb.2009.10.005 19883755
    [Google Scholar]
  109. Alkahtani S. Alarifi S. Albasher G. Poly Lactic‐Co‐Glycolic Acid‐ (PLGA‐) loaded nanoformulation of cisplatin as a therapeutic approach for breast cancers. Oxid. Med. Cell. Longev. 2021 2021 1 5834418 10.1155/2021/5834418 34257812
    [Google Scholar]
  110. Kumar G.S.V. Nair L. Sankar J. Nair S.A. Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int. J. Nanomedicine 2011 6 1685 1697 10.2147/IJN.S20165 21980233
    [Google Scholar]
  111. Gahtani R.M. Alqahtani A. Alqahtani T. 5-Fluorouracil-loaded PLGA nanoparticles: Formulation, physicochemical characterisation, and in vitroanti-cancer activity. Bioinorg. Chem. Appl. 2023 2023 1 11 10.1155/2023/2334675 37102134
    [Google Scholar]
  112. Hassan Al-Saeedi R. Khalaj-Kondori M. Hosseinpour Feizi M.A. Hajavi J. DOX-PLGA nanoparticles effectively suppressed the expression of pro-inflammatory cytokines TNF-a, IL-6, iNOS, and IL-1β in MCF-7 breast cancer cell line. Rep. Biochem. Mol. Biol. 2024 12 4 530 539 10.61186/rbmb.12.4.530 39086585
    [Google Scholar]
  113. Betancourt T. Brown B. Brannon-Peppas L. Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: Preparation, characterization and in vitro evaluation. Nanomedicine 2007 2 2 219 232 10.2217/17435889.2.2.219 17716122
    [Google Scholar]
  114. Choi Y. Yoon H.Y. Kim J. Doxorubicin-loaded PLGA nanoparticles for cancer therapy: Molecular weight effect of PLGA in doxorubicin release for controlling immunogenic cell death. Pharmaceutics 2020 12 12 1165 10.3390/pharmaceutics12121165 33260446
    [Google Scholar]
  115. Paswan S.K. Saini T.R. Jahan S. Ganesh N. Designing and formulation optimization of hyaluronic acid conjugated PLGA nanoparticles of tamoxifen for tumor targeting. Pharm. Nanotechnol. 2021 9 3 217 235 10.2174/2211738509666210310155807 33745427
    [Google Scholar]
  116. Jaidev L.R. Krishnan U.M. Sethuraman S. Gemcitabine loaded biodegradable PLGA nanospheres for in vitro pancreatic cancer therapy. Mater. Sci. Eng. C 2015 47 40 47 10.1016/j.msec.2014.11.027 25492170
    [Google Scholar]
  117. Esim O. Ozkan C.K. Sarper M. Savaser A. Ozkan Y. Development of gemcitabine loaded PLGA/lecithin nanoparticles for non-small cell lung cancer therapy. Curr. Drug Deliv. 2020 17 7 622 628 10.2174/1567201817666200512094145 32394837
    [Google Scholar]
  118. Romero-Ben E. Goswami U. Soto-Cruz J. Polymer-based nanocarriers to transport therapeutic biomacromolecules across the blood-brain barrier. Acta Biomater. 2025 196 17 49 10.1016/j.actbio.2025.02.065 40032217
    [Google Scholar]
  119. Gryparis E.C. Hatziapostolou M. Papadimitriou E. Avgoustakis K. Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. Eur. J. Pharm. Biopharm. 2007 67 1 1 8 10.1016/j.ejpb.2006.12.017 17303395
    [Google Scholar]
  120. Cheng M. Dai D. Inhibitory of active dual cancer targeting 5-Fluorouracil nanoparticles on liver cancer in vitro and in vivo. Front. Oncol. 2022 12 971475 10.3389/fonc.2022.971475 35992879
    [Google Scholar]
  121. Liu W. Wang F. Zhu Y. Galactosylated chitosan-functionalized mesoporous silica nanoparticle loading by calcium leucovorin for colon cancer cell-targeted drug delivery. Molecules 2018 23 12 3082 10.3390/molecules23123082 30486276
    [Google Scholar]
  122. Yadav A.K. Mishra P. Mishra A.K. Mishra P. Jain S. Agrawal G.P. Development and characterization of hyaluronic acid–anchored PLGA nanoparticulate carriers of doxorubicin. Nanomedicine 2007 3 4 246 257 10.1016/j.nano.2007.09.004 18068091
    [Google Scholar]
  123. Almoustafa H.A. Alshawsh M.A. Al-Suede F.S.R. Alshehade S.A. Abdul Majid A.M.S. Chik Z. The chemotherapeutic efficacy of hyaluronic acid coated polymeric nanoparticles against breast cancer metastasis in female NCr-Nu/Nu Nude mice. Polymers 2023 15 2 284 10.3390/polym15020284 36679166
    [Google Scholar]
  124. Yang B. Mao Y. Zhang Y. HA-coated PLGA nanoparticles loaded with apigenin for colon cancer with high expression of CD44. Molecules 2023 28 22 7565 10.3390/molecules28227565 38005286
    [Google Scholar]
  125. Li S. Wang A. Jiang W. Guan Z. Pharmacokinetic characteristics and anticancer effects of 5-Fluorouracil loaded nanoparticles. BMC Cancer 2008 8 1 103 10.1186/1471‑2407‑8‑103 18412945
    [Google Scholar]
  126. Xia Y. Xu T. Zhao M. Delivery of doxorubicin for human cervical carcinoma targeting therapy by folic acid-modified selenium nanoparticles. Int. J. Mol. Sci. 2018 19 11 3582 10.3390/ijms19113582 30428576
    [Google Scholar]
  127. Li Q. Lv S. Tang Z. A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: Preparation, in vitro and in vivo evaluation. Int. J. Pharm. 2014 471 1-2 412 420 10.1016/j.ijpharm.2014.05.065 24905776
    [Google Scholar]
  128. Wohlfart S. Khalansky A.S. Gelperina S. Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers. PLoS One 2011 6 5 e19121 10.1371/journal.pone.0019121 21573151
    [Google Scholar]
  129. Alemrayat B. Elhissi A. Younes H.M. Preparation and characterization of letrozole-loaded poly(d,l-lactide) nanoparticles for drug delivery in breast cancer therapy. Pharm. Dev. Technol. 2019 24 2 235 242 10.1080/10837450.2018.1455698 29561210
    [Google Scholar]
  130. Pérez E. Benito M. Teijón C. Olmo R. Teijón J.M. Blanco M.D. Tamoxifen-loaded nanoparticles based on a novel mixture of biodegradable polyesters: Characterization and in vitro evaluation as sustained release systems. J. Microencapsul. 2012 29 4 309 322 10.3109/02652048.2011.651496 22251238
    [Google Scholar]
  131. Darbasizadeh B. Mortazavi S.A. Kobarfard F. Electrospun Doxorubicin-loaded PEO/PCL core/sheath nanofibers for chemopreventive action against breast cancer cells. J. Drug Deliv. Sci. Technol. 2021 64 102576 10.1016/j.jddst.2021.102576
    [Google Scholar]
  132. Devalapally H. Duan Z. Seiden M.V. Amiji M.M. Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles. Clin. Cancer Res. 2008 14 10 3193 3203 10.1158/1078‑0432.CCR‑07‑4973 18483388
    [Google Scholar]
  133. Jia L. Zheng J.J. Jiang S.M. Huang K.H. Preparation, physicochemical characterization and cytotoxicity in vitro of gemcitabine-loaded PEG-PDLLA nanovesicles. World J. Gastroenterol. 2010 16 8 1008 1013 10.3748/wjg.v16.i8.1008 20180242
    [Google Scholar]
  134. Yordanov G. Skrobanska R. Evangelatov A. Entrapment of epirubicin in poly(butyl cyanoacrylate) colloidal nanospheres by nanoprecipitation: Formulation development and in vitro studies on cancer cell lines. Colloids Surf. B Biointerfaces 2012 92 98 105 10.1016/j.colsurfb.2011.11.029 22154011
    [Google Scholar]
  135. Karabasz A. Bzowska M. Szczepanowicz K. Biomedical applications of multifunctional polymeric nanocarriers: A review of current literature. Int. J. Nanomedicine 2020 15 8673 8696 10.2147/IJN.S231477 33192061
    [Google Scholar]
  136. Andrade S. Ramalho M.J. Loureiro J.A. Polymeric nanoparticles for biomedical applications. Polymers 2024 16 2 249 10.3390/polym16020249 38257048
    [Google Scholar]
  137. Cardoso A.M. de Oliveira E.G. Coradini K. Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: Skin permeation/penetration and efficacy in wound healing. Mater. Sci. Eng. C 2019 96 205 217 10.1016/j.msec.2018.11.013 30606527
    [Google Scholar]
  138. Peleteiro M. Presas E. González-Aramundiz J.V. Polymeric nanocapsules for vaccine delivery: Influence of the polymeric shell on the interaction with the immune system. Front. Immunol. 2018 9 791 10.3389/fimmu.2018.00791 29725329
    [Google Scholar]
  139. Rani R. Dahiya S. Dhingra D. Antidiabetic activity enhancement in streptozotocin + nicotinamide–induced diabetic rats through combinational polymeric nanoformulation. Int. J. Nanomedicine 2019 14 4383 4395 10.2147/IJN.S205319 31354267
    [Google Scholar]
  140. Sun L. Liu Z. Tian H. Scalable manufacturing of enteric encapsulation systems for site-specific oral insulin delivery. Biomacromolecules 2019 20 1 528 538 10.1021/acs.biomac.8b01530 30537806
    [Google Scholar]
  141. Liu Y. Liu Q. Liu Y. Ju F. Ma Q. He Q. In vivo evaluation of enhanced drug carrier efficiency and cardiac anti-hypertrophy therapeutic potential of nano-curcumin encapsulated photo-plasmonic nanoparticles combined polymerized nano-vesicles: A novel strategy. J. Photochem. Photobiol. B 2019 199 111619 10.1016/j.jphotobiol.2019.111619 31622787
    [Google Scholar]
  142. Geroge J.K. Verma P.R.P. Venkatesan J. Studies on core-shell nanocapsules of felodipine: In vitro-in vivo evaluations. AAPS PharmSciTech 2017 18 8 2871 2888 10.1208/s12249‑017‑0770‑9 28424979
    [Google Scholar]
  143. Qelliny M.R. Aly U.F. Elgarhy O.H. Khaled K.A. Budesonide-loaded Eudragit S 100 nanocapsules for the treatment of acetic acid-induced colitis in animal model. AAPS PharmSciTech 2019 20 6 237 10.1208/s12249‑019‑1453‑5 31243601
    [Google Scholar]
  144. Marto J. Ruivo E. Lucas S.D. Starch nanocapsules containing a novel neutrophil elastase inhibitor with improved pharmaceutical performance. Eur. J. Pharm. Biopharm. 2018 127 1 11 10.1016/j.ejpb.2018.01.011 29409864
    [Google Scholar]
  145. Sadeghi Ghadi Z. Ebrahimnejad P. Curcumin entrapped hyaluronan containing niosomes: preparation, characterisation and in vitro/in vivo evaluation. J. Microencapsul. 2019 36 2 169 179 10.1080/02652048.2019.1617360 31104531
    [Google Scholar]
  146. Nishihira V.S.K. Fontana B.D. Ianiski F.R. PEGylated meloxicam-loaded nanocapsules reverse in vitro damage on caspase activity and do not induce toxicity in cultured human lymphocytes and mice. Biomed. Pharmacother. 2018 107 1259 1267 10.1016/j.biopha.2018.08.120 30257340
    [Google Scholar]
  147. Vidal-Romero G. Zambrano-Zaragoza M.L. Martínez-Acevedo L. Leyva-Gómez G. Mendoza-Elvira S.E. Quintanar-Guerrero D. Design and evaluation of pH-dependent nanosystems based on cellulose acetate phthalate, nanoparticles loaded with chlorhexidine for periodontal treatment. Pharmaceutics 2019 11 11 604 10.3390/pharmaceutics11110604 31766136
    [Google Scholar]
  148. Lucena P.A. Nascimento T.L. Gaeti M.P.N. In vivo vaginal fungal load reduction after treatment with itraconazole-loaded polycaprolactone-nanoparticles. J. Biomed. Nanotechnol. 2018 14 7 1347 1358 10.1166/jbn.2018.2574 29944108
    [Google Scholar]
  149. Gomes G.S. Maciel T.R. Piegas E.M. Optimization of curcuma oil/quinine-loaded nanocapsules for malaria treatment. AAPS PharmSciTech 2018 19 2 551 564 10.1208/s12249‑017‑0854‑6 28875471
    [Google Scholar]
  150. Ismail M. Du Y. Ling L. Li X. Artesunate-heparin conjugate based nanocapsules with improved pharmacokinetics to combat malaria. Int. J. Pharm. 2019 562 162 171 10.1016/j.ijpharm.2019.03.031 30902709
    [Google Scholar]
  151. Ferreira Soares D.C. Domingues S.C. Viana D.B. Tebaldi M.L. Polymer-hybrid nanoparticles: Current advances in biomedical applications. Biomed. Pharmacother. 2020 131 110695 10.1016/j.biopha.2020.110695 32920512
    [Google Scholar]
  152. Begines B. Ortiz T. Pérez-Aranda M. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020 10 7 1403 10.3390/nano10071403 32707641
    [Google Scholar]
  153. Ray S.S. Bandyopadhyay J. Nanotechnology-enabled biomedical engineering: Current trends, future scopes, and perspectives. Nanotechnol. Rev. 2021 10 1 728 743 10.1515/ntrev‑2021‑0052
    [Google Scholar]
  154. Lal N. Verma N. The effect of combination of functional and nonfunctional acrylic polymers on transdermal patches of: In vitro permeation, in vivo evaluation using biochemical parameters, and stability studies. Future J Pharm Sci 2021 7 1 127 10.1186/s43094‑021‑00272‑w
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385360894251031063012
Loading
/content/journals/pnt/10.2174/0122117385360894251031063012
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Drug delivery ; bioavailability ; diagnosis ; nanomedicine ; formulation ; polymeric nanocarriers
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test