Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Background

Fungi found in unique and competitive environments are abundant in bioactive compounds.

Objective

The objective of this study is to isolate and identify secondary metabolites from fungi of unique ecological niches and evaluate their cytotoxicity.

Methods

The compounds were isolated and purified using silica gel column chromatography, Sephadex LH-20 gel chromatography, and semi-preparative high-performance liquid chromatography (HPLC). The structures of the isolated compounds were determined using NMR and MS. The cytotoxic activities of these compounds were tested by the MTS assay.

Results

Three diphenyl ethers, dechlorodihydromaldoxin (), violaceol-I () and violaceol-II (), one quinolinone compound, 2-(2-heptenyl)-3-methyl-4(1)-quinolinone (), and one -pyrone nafuredin () were isolated from the fermented extracts of S161. Compound showed modest cytotoxicity against two human tumor cell lines A549 and MCF-7, with IC values of 87.12 and 51.07 μM, respectively.

Conclusion

Five compounds were isolated from the fungus S161. Compound showed moderate cytotoxicity. This study provided a basis for the development of antitumor drugs.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155302795240430043401
2024-05-06
2025-11-05
Loading full text...

Full text loading...

/deliver/fulltext/npj/15/3/NPJ-15-3-02.html?itemId=/content/journals/npj/10.2174/0122103155302795240430043401&mimeType=html&fmt=ahah

References

  1. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  2. SantosM.F.C. MoreiraM.A.M. MaioliniT.C.S. DiasD.F. Chagas-PaulaD.A. AzevedoL. SoaresM.G. In vivo anti-inflammatory activity of the crude extract, fractions, and ergosterol peroxide from Sclerotinia Sclerotiorum.Nat. Prod. J.2022127e05042220310410.2174/2210315512666220405084637
    [Google Scholar]
  3. GaoY. WangJ. MeesakulP. ZhouJ. LiuJ. LiuS. WangC. CaoS. Cytotoxic compounds from marine fungi: Sources, structures, and bioactivity.Mar. Drugs20242227010.3390/md22020070 38393041
    [Google Scholar]
  4. TongJ. ZhangY. XuY. HanY. LiC. ZhuangW. CheY. Spirocitrinols A and B, citrinin derivatives with a spiro[chromane-2,3′-isochromane] skeleton from Penicillium citrinum.RSC Advances20231396124612910.1039/D3RA00665D 36814878
    [Google Scholar]
  5. KankanamgeS. KhalilZ.G. SritharanT. CaponR.J. Noonindoles G–L: Indole diterpene glycosides from the Australian marine-derived fungus Aspergillus noonimiae CMB-M0339.J. Nat. Prod.202386350851610.1021/acs.jnatprod.2c01024 36662567
    [Google Scholar]
  6. LinJ. HuoR.Y. HouL. JiangS. WangS.L. DengY.L. LiuL. New polyketides from the basidiomycetous fungus Pholiota sp.J. Asian Nat. Prod. Res.202325767468210.1080/10286020.2022.2132481 36250229
    [Google Scholar]
  7. VillanuevaP. VásquezG. Gil-DuránC. OlivaV. DíazA. HenríquezM. ÁlvarezE. LaichF. ChávezR. VacaI. Description of the first four species of the genus Pseudogymnoascus from Antarctica.Front. Microbiol.20211271318910.3389/fmicb.2021.713189 34867840
    [Google Scholar]
  8. GomesE.C.Q. GodinhoV.M. SilvaD.A.S. de PaulaM.T.R. VitoreliG.A. ZaniC.L. AlvesT.M.A. JuniorP.A.S. MurtaS.M.F. BarbosaE.C. OliveiraJ.G. OliveiraF.S. CarvalhoC.R. FerreiraM.C. RosaC.A. RosaL.H. Cultivable fungi present in Antarctic soils: Taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites.Extremophiles201822338139310.1007/s00792‑018‑1003‑1 29332141
    [Google Scholar]
  9. GonçalvesV.N. CarvalhoC.R. JohannS. MendesG. AlvesT.M.A. ZaniC.L. JuniorP.A.S. MurtaS.M.F. RomanhaA.J. CantrellC.L. RosaC.A. RosaL.H. Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica.Polar Biol.20153881143115210.1007/s00300‑015‑1672‑5
    [Google Scholar]
  10. HenríquezM. VergaraK. NorambuenaJ. BeizaA. MazaF. UbillaP. ArayaI. ChávezR. San-MartínA. DariasJ. DariasM.J. VacaI. Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential.World J. Microbiol. Biotechnol.2014301657610.1007/s11274‑013‑1418‑x 23824664
    [Google Scholar]
  11. JulianoH.F. JulianaA.S. LaraD.S.H.F. DaianeC.S. Anti-Xanthomonas activity of Antarctic fungi crude extracts.Afr. J. Biotechnol.2019182871371810.5897/AJB2019.16886
    [Google Scholar]
  12. FigueroaL. JiménezC. RodríguezJ. ArecheC. ChávezR. HenríquezM. de la CruzM. DíazC. SegadeY. VacaI. 3-Nitroasterric acid derivatives from an Antarctic sponge-derived Pseudogymnoascus sp. fungus.J. Nat. Prod.201578491992310.1021/np500906k 25732560
    [Google Scholar]
  13. FujitaK. IkutaM. NishimuraS. SugiyamaR. YoshimuraA. KakeyaH. Amphiol, an antifungal fungal pigment from Pseudogymnoascus sp. PF1464.J. Nat. Prod.202184498699210.1021/acs.jnatprod.0c01010 33646775
    [Google Scholar]
  14. ShiT. LiX.Q. ZhengL. ZhangY.H. DaiJ.J. ShangE.L. YuY.Y. ZhangY.T. HuW.P. ShiD.Y. Sesquiterpenoids from the Antarctic fungus Pseudogymnoascus sp. HSX2#-11.Front. Microbiol.20211268820268821310.3389/fmicb.2021.688202 34177873
    [Google Scholar]
  15. ShiT. YuY.Y. DaiJ.J. ZhangY.T. HuW.P. ZhengL. ShiD.Y. New polyketides from the Antarctic fungus Pseudogymnoascus sp. HSX2#-11.Mar. Drugs202119316817610.3390/md19030168 33809861
    [Google Scholar]
  16. GuoY.Z. WeiQ. GaoJ. LiuB.Y. ZhangT. HuaH.M. HuY.C. Metabolites of the psychrophilic fungus Pseudogymnoascus pannorum.Nat. Prod. Res. Dev.2019313446449
    [Google Scholar]
  17. OgawaT. AndoK. AotaniY. ShinodaK. TanakaT. TsukudaE. YoshidaM. MatsudaY. RES-1214-1 and -2, novel non-peptidic endothelin type A receptor antagonists produced by Pestalotiopsis sp.J. Antibiot.199548121401140610.7164/antibiotics.48.1401 8557594
    [Google Scholar]
  18. TakenakaY. TanahashiT. NagakuraN. HamadaN. Phenyl ethers from cultured lichen mycobionts of Graphis scripta var. serpentina and G. rikuzensis.Chem. Pharm. Bull.200351779479710.1248/cpb.51.794 12843584
    [Google Scholar]
  19. MoonS.S. KangP.M. ParkK.S. KimC.H. Plant growth promoting and fungicidal 4-quinolinones from Pseudomonas cepacia.Phytochemistry199642236536810.1016/0031‑9422(95)00897‑7
    [Google Scholar]
  20. UiH. ShiomiK. YamaguchiY. MasumaR. NagamitsuT. TakanoD. SunazukaT. NamikoshiM. OmuraS. Nafuredin, a novel inhibitor of NADH-fumarate reductase, produced by Aspergillus niger FT-0554.J. Antibiot.200154323423810.7164/antibiotics.54.234 11372780
    [Google Scholar]
  21. ZhangN. ChenY. JiangR. LiE. ChenX. XiZ. GuoY. LiuX. ZhouY. CheY. JiangX. PARP and RIP 1 are required for autophagy induced by 11′-deoxyverticillin A, which precedes caspase-dependent apoptosis.Autophagy20117659861210.4161/auto.7.6.15103 21460625
    [Google Scholar]
  22. JeongC.H. BodeA.M. PuglieseA. ChoY.Y. KimH.G. ShimJ.H. JeonY.J. LiH. JiangH. DongZ. [6]-Gingerol suppresses colon cancer growth by targeting leukotriene A4 hydrolase.Cancer Res.200969135584559110.1158/0008‑5472.CAN‑09‑0491 19531649
    [Google Scholar]
/content/journals/npj/10.2174/0122103155302795240430043401
Loading
/content/journals/npj/10.2174/0122103155302795240430043401
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): biological activities; diphenyl ethers; fungi; quinolinone; structure elucidation; α-pyrone
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test