Skip to content
2000
Volume 15, Issue 3
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Natural products have evolved to interact with specific protein targets within cells, making them valuable for various biological functions. Chemical proteomics, specifically the use of covalently linked probes in live cells, allows for the identification of protein-binding partners or targets of small molecules. Recent advancements in target identification of natural products have utilized affinity-based probes and photo-affinity labeling techniques, enabling the capture of potential cellular targets even when the interaction is reversible. This knowledge can aid in understanding molecular pathways and developing new therapeutics for diseases lacking treatment options. Several methods, including DARTS, SPROX, CETSA, TPP, and bioinformatics-based analysis, are employed for target identification of label-free natural products. Chemical probe design and synthesis are tailored to screen targets of molecules with diverse structures. The comprehensive proteomic analysis reported herein aims to investigate target sites contributing to biologically significant effects, considering both desirable phenotypes and potential toxicity or side effects.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155290163240528065607
2024-06-06
2025-11-06
Loading full text...

Full text loading...

References

  1. DixonN. WongL.S. GeerlingsT.H. MicklefieldJ. Cellular targets of natural products.Nat. Prod. Rep.200825324829410.1039/b702097f 18033580
    [Google Scholar]
  2. KnollA.H. Life on a Young Planet: The First Three Billion Years of Evolution on Earth.PrincetonPrinceton University Press2003
    [Google Scholar]
  3. BreinbauerR. VetterI.R. WablmannH. Angew. Chem. Int. Ed.200342242878289010.1002/anie.200301636
    [Google Scholar]
  4. ChenX. WangY. MaN. TianJ. ShaoY. ZhuB. WongY.K. LiangZ. ZouC. WangJ. Target identification of natural medicine with chemical proteomics approach: Probe synthesis, target fishing and protein identification.Signal Transduct. Target. Ther.2020517210.1038/s41392‑020‑0186‑y 32435053
    [Google Scholar]
  5. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the last 25 years.J. Nat. Prod.200770346147710.1021/np068054v 17309302
    [Google Scholar]
  6. GuoZ. The modification of natural products for medical use.Acta Pharm. Sin. B20177211913610.1016/j.apsb.2016.06.003 28303218
    [Google Scholar]
  7. BantscheffM. ScholtenA. HeckA.J.R. Revealing promiscuous drug–target interactions by chemical proteomics.Drug Discov. Today20091421-221021102910.1016/j.drudis.2009.07.001 19596079
    [Google Scholar]
  8. PanS. ZhangH. WangC. YaoS.C. Target identification of natural products and bioactive compounds using affinity-based probes.Nat. Rev. Chem.202151355210.1038/s41570‑020‑00262‑x
    [Google Scholar]
  9. EvansM.J. CravattB.F. Activity-based protein profiling: From enzyme chemistry to proteomic chemistry.Chem. Rev.200610683279330110.1021/cr050288g 16895328
    [Google Scholar]
  10. CravattB.F. WrightA.T. KozarichJ.W. Activity-based protein profiling: From enzyme chemistry to proteomic chemistry.Annu. Rev. Biochem.200877138341410.1146/annurev.biochem.75.101304.124125 18366325
    [Google Scholar]
  11. KhanA.R. JamesM.N. Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons.Protein Sci.1998781583610.1002/pro.5560070401 9568890
    [Google Scholar]
  12. DuttaS. AbeH. AoyagiS. KibayashiC. GatesK.S. Novel DNA binding agents based on a heterocyclic cyclopropyl group.J. Am. Chem. Soc.200512742150041500510.1021/ja053735i 16248621
    [Google Scholar]
  13. HübscherU. MagaG. SpadariS. Eukaryotic DNA polymerases.Annu. Rev. Biochem.200271113316310.1146/annurev.biochem.71.090501.150041 12045093
    [Google Scholar]
  14. Shin-yaK. WierzbaK. MatsuoK.I. OhtaniT. YamadaY. FurihataK. Haya KawaV. SetoH. Design, synthesis, and biological evaluation of hexacyclinol-based protein tyrosine phosphatase inhibitors.J. Am. Chem. Soc.200112361262126310.1021/ja005780q 11456694
    [Google Scholar]
  15. KimM.Y. VankayalapatiH. Shin-yaK. WierzbaK. HurleyL.H. Synthesis and evaluation of macrocyclic hexacyclinols as G-Quadruplex stabilizing ligands.J. Am. Chem. Soc.200212482098209910.1021/ja017308q 11878947
    [Google Scholar]
  16. ClementJ.A. LiM. HechtS.M. KingstonD.G.I. Total synthesis and confirmation of the structure of venturicidin B.J. Nat. Prod.200669337337610.1021/np0504107 16562838
    [Google Scholar]
  17. LiW. ZhangM. ZhangJ.I. LiH.Q. ZhangX.C. SunQ. QiuC.M. Crystal structure of a DNA decamer containing an intrastrand thymine-adenine cross-link derived from 1,N6-ethenoadenine.FEBS Lett.2006580224905491010.1016/j.febslet.2006.08.007 16989816
    [Google Scholar]
  18. NakaiR. IshidaH. AsaiA. OgawaH. YamamotoY. KawasakiH. AkinagaS. MizukamiT. YamashitaY. Telomerase inhibitors identified by a forward chemical genetics approach using a yeast strain with shortened telomere length.Chem. Biol.200613218319010.1016/j.chembiol.2005.11.010 16492566
    [Google Scholar]
  19. WadaS.I. IidaA. TanakaR. Biological activity and pharmacological prospectus of lupane derivatives.J. Nat. Prod.2001641545154710.1021/np010176u 11754608
    [Google Scholar]
  20. MizushinaY. AkihisaT. UkiyaM. MurakamiC. KuriyamaI. XuX. YoshidaH. SakaguchiK. Specific inhibitors of mammalian DNA polymerase species.Cancer Sci.20049535436010.1111/j.1349‑7006.2004.tb03215.x 15072595
    [Google Scholar]
  21. UkiyaM. HayakawaT. OkazakiK. HikawaM. AkazawaH. LiW. KoikeK. FukatsuM. Synthesis of Lanostane‐Type Triterpenoid N ‐Glycosides and their cytotoxicity against human cancer cell lines.Chem. Biodivers.2018157e180011310.1002/cbdv.201800113 29734526
    [Google Scholar]
  22. ChenL.F. GreeneW.C. GreeneW.C. Shaping the nuclear action of NF-κB.Nat. Rev. Mol. Cell Biol.20045539240110.1038/nrm1368 15122352
    [Google Scholar]
  23. López-AntónN. RudyA. BarthN. SchmitzL.M. PettitG.R. Schulze-OsthoffK. DirschV.M. VollmarA.M. The marine product cephalostatin 1 activates an endoplasmic reticulum stress-specific and apoptosome-independent apoptotic signaling pathway.J. Biol. Chem.200628144330783308610.1074/jbc.M607904200 16945918
    [Google Scholar]
  24. ParkH.R. FurihataK. HayakawaY. Shin-yaK. Versipelostatin, a novel GRP78/Bip molecular chaperone down-regulator of microbial origin.Tetrahedron Lett.200243396941694510.1016/S0040‑4039(02)01624‑6
    [Google Scholar]
  25. GafniJ. MunschJ.A. LamT.H. CatlinM.C. CostaL.G. MolinskiT.F. PessahI.N. Xestospongins: Potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor.Neuron199719372373310.1016/S0896‑6273(00)80384‑0 9331361
    [Google Scholar]
  26. BradyT.P. WallaceE.K. KimS.H. GuizzuntiG. MalhotraV. TheodorakisE.A. Fragmentation of Golgi membranes by norrisolide and designed analogues.Bioorg. Med. Chem. Lett.200414205035503910.1016/j.bmcl.2004.08.003 15380194
    [Google Scholar]
  27. KatzL. AshleyG.W. Translation and protein synthesis.Macrolides. Chem. Rev.2005105249952810.1021/cr030107f 15700954
    [Google Scholar]
  28. TaT.A. FengW. MolinskiT.F. PessahI.N. Hydroxylated xestospongins block inositol-1,4,5-trisphosphate-induced Ca2+ release and sensitize Ca2+-induced Ca2+ release mediated by ryanodine receptors.Mol. Pharmacol.200669253253810.1124/mol.105.019125 16249374
    [Google Scholar]
  29. LuibrandR.T. ErdmanT.R. VollmaxJ.J. ScheverP.J. FinerJ. ClardyJ. Quinone sesquiterpenoid: A challenge for the development of a new synthetic methodology.Tetrahedron19783560961210.1016/0040‑4020(79)87004‑0
    [Google Scholar]
  30. WrightM.H. SieberS.A. Chemical proteomics approaches for identifying the cellular targets of natural products.Nat. Prod. Rep.201633568170810.1039/C6NP00001K 27098809
    [Google Scholar]
  31. LiG. PengX. GuoY. GongS. CaoS. QiuF. Currently available strategies for target identification of bioactive natural products.J. Pharm. Anal.2019201931510.1016/j.jpha.2018.11.004
    [Google Scholar]
  32. SongY. LiuL. WanK. Off-target identification by chemical proteomics for the understanding of drug side effects.Chem. Res. Toxicol.2016291353135910.1021/acs.chemrestox.6b00096
    [Google Scholar]
  33. HaJ. ParkH. ParkJ. ParkS.B. Recent advances in identifying protein targets in drug discovery.Cell Chem. Biol.2021283394423
    [Google Scholar]
  34. WangS. TianY. WangM. SunG.B. SunX.B. Generative topographic mapping in drug design.Drug Discov. Today. Technol.201932-339910710.1016/j.ddtec.2020.06.003
    [Google Scholar]
  35. MuraleD.P. HongS.C. HaqueM.M. LeeJ.S. Photoaffinity Labeling (PAL) in chemical proteomics: A handy tool to investigate protein-protein interactions.Bioorg. Med. Chem.20212911581810.1016/j.bmc.2021.115818
    [Google Scholar]
  36. TakemoriA. ButcherD.S. HarmanV.M. BrownridgeP. ShimaK. HigoD. IshizatoJ. HasegawaH. SuzukiJ. LooJ.A. Gorzalek LooR.R. BeynonR.J. PEPPI-MS: Polyacrylamide-gel-based prefractions for analysis of intact proteoforms and protein complexes by mass spectrometry.J. Proteome Res.202019937793791
    [Google Scholar]
  37. RomoD. LiuJ.O. Editorial: Strategies for cellular target identification of natural products.Nat. Prod. Rep.201633559259410.1039/C6NP90016J 27118358
    [Google Scholar]
  38. BerradeW. GarciaA.E. Camarero, JA Protein microarrays: Novel developments and applications.Pharm. Res.201128714801499
    [Google Scholar]
  39. ZieglerS. PriesV. HedbergC. WaldmannH. Target identification for small bioactive molecules: Finding the needle in the haystack.Angew. Chem. Int. Ed.201352102744279210.1002/anie.201208749 23418026
    [Google Scholar]
  40. NodwellM.B. SieberS.A. ABPP methodology: Introduction and overview.Top. Curr. Chem.201232414110.1007/128_2012_313 22160389
    [Google Scholar]
  41. DubinskyL. KromB.P. MeijlerM.M. Diazirine based photoaffinity labeling.Bioorg. Med. Chem.201220255457010.1016/j.bmc.2011.06.066 21778062
    [Google Scholar]
  42. XuJ. ZengC. ChuW. PanF. RothfussJ.M. ZhangF. TuZ. ZhouD. ZengD. VangveravongS. JohnstonF. SpitzerD. ChangK.C. HotchkissR.S. HawkinsW.G. WheelerK.T. MachR.H. Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site.Nat. Commun.20112138010.1038/ncomms1386 21730960
    [Google Scholar]
  43. TakeoK. TanimuraS. ShinoharaT. OsawaS. ZaharievI.K. TakegamiN. Ishizuka-KatsuraN. Allosteric regulation of γ-secretase activity by a phenylimidazole-type γ-secretase modulator.Proc. Natl. Acad. Sci. USA2014111291054410549
    [Google Scholar]
  44. EirichJ. OrthR. SieberS.A. Unraveling the protein targets of vancomycin in living S. aureus and E. faecalis cells.J. Am. Chem. Soc.201113331121441215310.1021/ja2039979 21736328
    [Google Scholar]
  45. CraggG.M. NewmanD.J. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.2020833770803
    [Google Scholar]
  46. NewmanD.J. CraggG.M. SnaderK.M. Natural products as sources of new drugs over the period 1981−2002.J. Nat. Prod.200366102210.1021/np030096l 12880330
    [Google Scholar]
  47. BriekeC. OrthR. WaldmannH. Activity-based protein profiling: From enzyme chemistry to proteomic chemistry.Angew. Chem. Int. Ed.200241287810.1002/1521‑3773(20020816)41:16<2878::AID‑ANIE2878>3.0.CO;2‑Q
    [Google Scholar]
  48. DrahlC. CravattB.F. SorensenE.J. Protein-reactive natural products.Angew. Chem. Int. Ed.200544365788580910.1002/anie.200500900 16149114
    [Google Scholar]
  49. MacKinnonA.L. GarrisonJ.L. HedgeR.S. TauntonJ. Small molecule inhibitors targeting protein biogenesis at the endoplasmic reticulum.J. Am. Chem. Soc.20071291456010.1021/ja076250y 17983236
    [Google Scholar]
  50. OhanaR.F. KirklandT.A. WoodroofeC.C. LevinS. UyedaH.T. OttoP. HurstR. RobersM.B. ZimmermanK. EncellL.P. WoodK.V. Deciphering the cellular targets of bioactive compounds using a chloralkane capture tag.J. Am. Chem. Soc.201914130119811198710.1021/jacs.9b03606
    [Google Scholar]
  51. TymiakA.A. CuvierC.A. MalleyM.F. GougoutasJ.Z. Activity-based protein profiling: From enzyme chemistry to proteomic chemistry.J. Org. Chem.198550549110.1021/jo00350a010
    [Google Scholar]
  52. LiN. XieS. LiL. Activity-based protein profiling: An enabling technology in chemical biology research.Curr. Opin. Chem. Biol.202271768410.1016/j.cbpa.2021.12.007 22325363
    [Google Scholar]
  53. WeibelE.K. HadvaryP. HochuliE. KupferE. LengsfeldH. Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity.J. Antibiot. (Tokyo)19874081081108510.7164/antibiotics.40.1081 3680018
    [Google Scholar]
  54. HadváryP. LengsfeldH. WolferH. Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin.Biochem. J.1988256235736110.1042/bj2560357 3223916
    [Google Scholar]
  55. BöttcherT. PitscheiderM. SieberS.A. Natural products and their biological targets: Proteomic and metabolomic labeling strategies.Angew. Chem. Int. Ed.201049152680269810.1002/anie.200905352 20333627
    [Google Scholar]
  56. WangZ. GuC. ColbyT. ShindoT. BalamuruganR. WaldmannH. KaiserM. van der HoornR.A.L. β-Lactone probes identify a papain-like peptide ligase in Arabidopsis thaliana.Nat. Chem. Biol.20084955756310.1038/nchembio.104 18660805
    [Google Scholar]
  57. SaghatelianA. TraugerS.A. WantE.J. HawkinsE.G. SiuzdakG. CravattB.F. Assignment of endogenous substrates to enzymes by global metabolite profiling.Biochemistry20044345143321433910.1021/bi0480335 15533037
    [Google Scholar]
  58. SaghatelianA. CravattB.F. Discovery metabolite profiling — forging functional connections between the proteome and metabolome.Life Sci.200577141759176610.1016/j.lfs.2005.05.019 15964030
    [Google Scholar]
  59. SmithC.A. WantE.J. O’MailleG. AbagyanR. SiuzdakG. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification.Anal. Chem.200678377978710.1021/ac051437y 16448051
    [Google Scholar]
  60. GobbiG. BambicoF.R. MangieriR. BortolatoM. CampolongoP. SolinasM. CassanoT. MorgeseM.G. DebonnelG. DurantiA. TontiniA. TarziaG. MorM. TrezzaV. GoldbergS.R. CuomoV. PiomelliD. Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis.Proc. Natl. Acad. Sci. USA200510251186201862510.1073/pnas.0509591102 16352709
    [Google Scholar]
  61. NomuraD.K. LeungD. ChiangK.P. QuistadG.B. CravattB.F. CasidaJ.E. A brain detoxifying enzyme for organophosphorus nerve poisons.Proc. Natl. Acad. Sci. USA2005102176195620010.1073/pnas.0501915102 15840715
    [Google Scholar]
  62. TagoreD.M. NolteW.M. NeveuJ.M. RangelR. Guzman-RojasL. PasqualiniR. ArapW. LaneW.S. SaghatelianA. Peptidase substrates via global peptide profiling.Nat. Chem. Biol.200951232510.1038/nchembio.126 19011639
    [Google Scholar]
  63. ChiangK.P. NiessenS. SaghatelianA. CravattB.F. An enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling.Chem. Biol.200613101041105010.1016/j.chembiol.2006.08.008 17052608
    [Google Scholar]
  64. HiraiM.Y. KleinM. FujikawaY. YanoM. GoodenoweD.B. YamazakiY. KanayaS. NakamuraY. KitayamaM. SuzukiH. SakuraiN. ShibataD. TokuhisaJ. ReicheltM. GershenzonJ. PapenbrockJ. SaitoK. Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics.J. Biol. Chem.200528027255902559510.1074/jbc.M502332200 15866872
    [Google Scholar]
  65. SimonG.M. DixM.M. CravattB.F. Comparative assessment of large-scale proteomic studies of apoptotic proteolysis.ACS Chem. Biol.20094640140810.1021/cb900082q 19415908
    [Google Scholar]
  66. DixM.M. SimonG.M. CravattB.F. Global mapping of the topography and magnitude of proteolytic events in apoptosis.Cell2008134467969110.1016/j.cell.2008.06.038 18724940
    [Google Scholar]
  67. TagoreR. ThomasH.R. HomanE.A. MunawarA. SaghatelianA. A global metabolite profiling approach to identify protein-metabolite interactions.J. Am. Chem. Soc.200813043141111411310.1021/ja806463c 18831549
    [Google Scholar]
  68. BrettL. Target identification using drug affinity responsive target stability (DARTS).Nat. Protoc.20116338939810.1038/nprot.2010.198
    [Google Scholar]
  69. LomenickB. JungG. WohlschlegelJ.A. HuangJ. Target identification using drug affinity responsive target stability (DARTS).Curr. Protoc. Chem. Biol.20113416318010.1002/9780470559277.ch110180 22229126
    [Google Scholar]
  70. WestG.M. TangL. FitzgeraldM.C. Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass spectrometry-based strategy.Anal. Chem.200880114175418510.1021/ac702610a 18457414
    [Google Scholar]
  71. MateusA. KurzawaN. BecherI. SridharanS. HelmD. SteinF. TypasA. SavitskiM.M. Thermal proteome profiling for interrogating protein interactions.Mol. Syst. Biol.2020163e923210.15252/msb.20199232 32133759
    [Google Scholar]
  72. CaoJ. LinG. GongY. PanP. MaY. HuangP. YingM. HouT. HeQ. YangB. DNA-PKcs, a novel functional target of acriflavine, mediates acriflavine’s p53-dependent synergistic anti-tumor efficiency with melphalan.Cancer Lett.2016383111512410.1016/j.canlet.2016.09.029 27693638
    [Google Scholar]
  73. del GaudioF. PollastroF. MozzicafreddoM. RiccioR. MinassiA. MontiM.C. Chemoproteomic fishing identifies arzanol as a positive modulator of brain glycogen phosphorylase.Chem. Commun. (Camb.)20185491128631286610.1039/C8CC07692H 30375590
    [Google Scholar]
  74. WuR. MuraliR. KabeY. FrenchS.W. ChiangY.M. LiuS. SherL. WangC.C. LouieS. TsukamotoH. Baicalein targets GTPase mediated autophagy to eliminate liver tumor-initiating stem cell-like cells resistant to mTORC1 inhibition.Hepatology20186851726174010.1002/hep.30071 29729190
    [Google Scholar]
  75. YoonY.J. HanY.M. ChoiJ. LeeY.J. YunJ. LeeS.K. LeeC.W. KangJ.S. ChiS.W. MoonJ.H. LeeS. HanD.C. KwonB.M. Benproperine, an ARPC2 inhibitor, suppresses cancer cell migration and tumor metastasis.Biochem. Pharmacol.2019163465910.1016/j.bcp.2019.01.017 30710516
    [Google Scholar]
  76. ZhaoS.Y. LiaoL.X. TuP.F. LiW.W. ZengK.W. Icariin inhibits AGE-induced injury in PC12 cells by directly targeting apoptosis regulator bax.Oxid. Med. Cell. Longev.2019201911210.1155/2019/7940808 31178973
    [Google Scholar]
  77. ChenF. ZhuK. ChenL. OuyangL. ChenC. GuL. JiangY. WangZ. LinZ. ZhangQ. ShaoX. DaiJ. ZhaoY. Protein target identification of ginsenosides in skeletal muscle tissues: Discovery of natural small-molecule activators of muscle-type creatine kinase.J. Ginseng Res.202044346147410.1016/j.jgr.2019.02.005 32372868
    [Google Scholar]
  78. KimB.S. LeeK. JungH.J. BhattaraiD. KwonH.J. HIF-1α suppressing small molecule, LW6, inhibits cancer cell growth by binding to calcineurin b homologous protein 1.Biochem. Biophys. Res. Commun.20154581142010.1016/j.bbrc.2015.01.031 25603055
    [Google Scholar]
  79. PalrasuM. KnapinskaA.M. DiezJ. SmithL. LaVoiT. GiulianottiM. HoughtenR.A. FieldsG.B. MinondD. A novel probe for spliceosomal proteins that induces autophagy and death of melanoma cells revealsnew targets for melanoma drug discovery.Cell. Physiol. Biochem.201953465668610.33594/000000164 31573152
    [Google Scholar]
  80. GotsbacherM.P. ChoS. KwonH.J. KarusoP. Daptomycin, a last-resort antibiotic, binds ribosomal protein S19 in humans.Proteome Sci.20161511610.1186/s12953‑017‑0124‑2 28680364
    [Google Scholar]
  81. YamaguchiD. ImaizumiT. YagiK. MatsumotoY. NakashimaT. HiroseA. KashimaN. NosakaY. HamadaT. OkawaK. NishiyaY. KuboK. Nicotinamide phosphoribosyltransferase is a molecular target of potent anticancer agents identified from phenotype-based drug screening.Sci. Rep.201991774210.1038/s41598‑019‑43994‑x 31123329
    [Google Scholar]
  82. BassiouniR. NemecK.N. IketaniA. FloresO. ShowalterA. KhaledA.S. VishnubhotlaP. SprungR.W.Jr KaittanisC. PerezJ.M. KhaledA.R. Chaperonin containing TCP-1 protein level in breast cancer cells predicts therapeutic application of a cytotoxic peptide.Clin. Cancer Res.201622174366437910.1158/1078‑0432.CCR‑15‑2502 27012814
    [Google Scholar]
  83. KitagawaM. LiaoP.J. LeeK.H. WongJ. ShangS.C. MinamiN. SampetreanO. SayaH. LingyunD. PrabhuN. DiamG.K. SobotaR. LarssonA. NordlundP. McCormickF. GhoshS. EpsteinD.M. DymockB.W. LeeS.H. Dual blockade of the lipid kinase PIP4Ks and mitotic pathways leads to cancer-selective lethality.Nat. Commun.201781220010.1038/s41467‑017‑02287‑5 29259156
    [Google Scholar]
  84. KitamuraK. ItohH. SakuraiK. DanS. InoueM. Target identification of yaku’amide B and its two distinct activities against mitochondrial F0F1-ATP synthase.J. Am. Chem. Soc.201814038121891219910.1021/jacs.8b07339 30156840
    [Google Scholar]
  85. DejongheW. SharmaI. DenooB. De MunckS. LuQ. MishevK. BulutH. MylleE. De RyckeR. VasilevaM. SavatinD.V. NerinckxW. StaesA. DrozdzeckiA. AudenaertD. YpermanK. MadderA. FrimlJ. Van DammeD. GevaertK. HauckeV. SavvidesS.N. WinneJ. RussinovaE. Disruption of endocytosis through chemical inhibition of clathrin heavy chain function.Nat. Chem. Biol.201915664164910.1038/s41589‑019‑0262‑1 31011214
    [Google Scholar]
  86. TakeuchiT. SchumackerP.T. KozminS.A. Identification of fumarate hydratase inhibitors with nutrient-dependent cytotoxicity.J. Am. Chem. Soc.2015137256456710.1021/ja5101257 25469852
    [Google Scholar]
  87. AraiM.A. TaguchiS. KomatsuzakiK. UchiyamaK. MasudaA. SampeiM. SatohM. KadoS. IshibashiM. Valosin-containing protein is a target of 5′-l fuligocandin B and enhances trail resistance in cancer cells.ChemistryOpen20165657457910.1002/open.201600081 28032027
    [Google Scholar]
  88. CaiY. ZhengY. GuJ. WangS. WangN. YangB. ZhangF. WangD. FuW. WangZ. Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78.Cell Death Dis.2018963610.1038/s41419‑018‑0669‑8
    [Google Scholar]
  89. FungS.K. ZouT. CaoB. LeeP.Y. FungY.M.E. HuD. LokC.N. CheC.M. Cyclometalated gold(III) complexes containing N-heterocyclic carbene ligands engage multiple anti-cancer molecular targets.Angew. Chem. Int. Ed.201756143892389610.1002/anie.201612583 28247451
    [Google Scholar]
  90. LimB. LeeJ. KimB. LeeR. ParkJ. OhD.C. GamJ. LeeJ. Target identification of a 1,3,4-oxadiazin-5(6H)-one anticancer agent via photoaffinity labelling.Asian J. Org. Chem.2019891626163010.1002/ajoc.201900258
    [Google Scholar]
  91. LiuF. FitzgeraldM.C. Large-scale analysis of breast cancerrelated conformational changes in proteins using limited proteolysis.J. Proteome Res.201615124666467410.1021/acs.jproteome.6b00755 27794609
    [Google Scholar]
  92. TullochL.B. MenziesS.K. FraserA.L. GouldE.R. KingE.F. ZacharovaM.K. FlorenceG.J. SmithT.K. Photo-affinity labelling and biochemical analyses identify the target of trypanocidal simplified natural product analogues.PLoS Negl. Trop. Dis.2017119e000588610.1371/journal.pntd.0005886 28873407
    [Google Scholar]
  93. LubinA.S. Rueda-ZubiaurreA. MatthewsH. BaumannH. FisherF.R. Morales-SanfrutosJ. HadavizadehK.S. NardellaF. TateE.W. BaumJ. ScherfA. FuchterM.J. Development of a photo-cross-linkable diaminoquinazoline inhibitor for target identification in Plasmodium falciparum.ACS Infect. Dis.20184452353010.1021/acsinfecdis.7b00228 29377668
    [Google Scholar]
  94. GaetaniM. SabatierP. SaeiA.A. BeuschC.M. YangZ. LundströmS.L. ZubarevR.A. Proteome integral solubility alteration: A highthroughput proteomics assay for target deconvolution.J. Proteome Res.201918114027403710.1021/acs.jproteome.9b00500 31545609
    [Google Scholar]
  95. LiB.X. ChenJ. ChaoB. DavidL.L. XiaoX. Anticancer pyrroloquinazoline LBL1 targets nuclear lamins.ACS Chem. Biol.20181351380138710.1021/acschembio.8b00266 29648791
    [Google Scholar]
  96. ZhuD. GuoH. ChangY. NiY. LiL. ZhangZ.M. HaoP. XuY. DingK. LiZ. Cell- and tissue-based proteome profiling and dual imaging of apoptosis markers with probes derived from venetoclax and idasanutlin.Angew. Chem. Int. Ed.201857309284928910.1002/anie.201802003 29768700
    [Google Scholar]
  97. LeeK. BanH.S. NaikR. HongY.S. SonS. KimB.K. XiaY. SongK.B. LeeH.S. WonM. Identification of malate dehydrogenase 2 as a target protein of the HIF-1 inhibitor LW6 using chemical probes.Angew. Chem. Int. Ed.20135239102861028910.1002/anie.201304987 23934700
    [Google Scholar]
  98. LeeS. NamY. KooJ.Y. LimD. ParkJ. OckJ. KimJ. SukK. ParkS.B. A small molecule binding HMGB1 and HMGB2 inhibits microglia-mediated neuroinflammation.Nat. Chem. Biol.201410121055106010.1038/nchembio.1669 25306442
    [Google Scholar]
  99. KohM. ParkJ. KooJ.Y. LimD. ChaM.Y. JoA. ChoiJ.H. ParkS.B. Phenotypic screening to identify small-molecule enhancers for glucose uptake: Target identification and rational optimization of their efficacy.Angew. Chem. Int. Ed.201453205102510610.1002/anie.201310618 24692390
    [Google Scholar]
  100. ShenoyV.M. ThompsonB.R. ShiJ. ZhuH.J. SmithD.E. AmidonG.L. Chemoproteomic identification of serine hydrolase RBBP9 as a valacyclovir-activating enzyme.Mol. Pharm.20201751706171410.1021/acs.molpharmaceut.0c00131 32196348
    [Google Scholar]
/content/journals/npj/10.2174/0122103155290163240528065607
Loading
/content/journals/npj/10.2174/0122103155290163240528065607
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test