Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

In-depth research is being carried out on mangrove communities, which are regarded as significant habitats for microorganisms’s, in order to find novel secondary metabolites with useful pharmaceutical and medicinal uses. According to a growing number of articles that point to the enormous potential of this ecological niche, mangrove-associated fungi are acknowledged as a rich source of bioactive chemicals. The fungi sp., sp., and sp., which are isolated from the plant's leaves, rhizosphere, rhizospheres’ soil, and pneumatophore, are mangrove-associated and derived, according to this review. The secondary metabolites produced by fungi originating from mangroves, including alkaloids and polyketides, are discussed in this research, along with how these fungi are the source of bioactive chemicals with potent bioactivities, including antibacterial, anti-inflammatory, antioxidant, antifungal, and anticancer properties.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/1570193X20666230718115115
2023-10-26
2025-09-27
Loading full text...

Full text loading...

References

  1. KathiresanK. Importance of mangrove ecosystem.Int. J. Mater. Sci.20122107089
    [Google Scholar]
  2. ThatoiH. BeheraB.C. MishraR.R. Ecological role and biotechnological potential of mangrove fungi: A review.Mycology2013415471
    [Google Scholar]
  3. ChenS. CaiR. LiuZ. CuiH. SheZ. Secondary metabolites from mangrove-associated fungi: Source, chemistry and bioactivities.Nat. Prod. Rep.202239356059510.1039/D1NP00041A 34623363
    [Google Scholar]
  4. JakubczykD. DussartF. Selected fungal natural products with antimicrobial properties.Molecules202025491110.3390/molecules25040911 32085562
    [Google Scholar]
  5. AncheevaE. El-NeketiM. DaletosG. EbrahimW. SongW. LinW. ProkschP. Anti-infective compounds from marine organisms.Grand Challeng Marine Biotechnol.20189715510.1007/978‑3‑319‑69075‑9_3
    [Google Scholar]
  6. RobertsM.F., Ed.; Alkaloids: biochemistry, ecology, and medicinal applications.Springer Science & Business Media2013
    [Google Scholar]
  7. PelletierS.W., Ed.; Alkaloids: Chemical and biological perspectives.New YorkWiley1983
    [Google Scholar]
  8. ElissawyA.M. EbadaS.S. AshourM.L. El-NeketiM. EbrahimW. SingabA.B. New secondary metabolites from the mangrove-derived fungus Aspergillus sp. AV-2.Phytochem. Lett.2019291510.1016/j.phytol.2018.10.014
    [Google Scholar]
  9. PengX. WangY. SunK. LiuP. YinX. ZhuW. Cerebrosides and 2-pyridone alkaloids from the halotolerant fungus Penicillium chrysogenum grown in a hypersaline medium.J. Nat. Prod.20117451298130210.1021/np1008976 21381678
    [Google Scholar]
  10. GuoW. KongX. ZhuT. GuQ. LiD. Penipyrols A-B and peniamidones A-D from the mangrove derived Penicillium solitum GWQ-143.Arch. Pharm. Res.20153881449145410.1007/s12272‑014‑0513‑3 25370608
    [Google Scholar]
  11. ZhangP. MengL.H. MándiA. KurtánT. LiX.M. LiuY. LiX. LiC.S. WangB.G. Brocaeloids A-C, 4-oxoquinoline and indole alkaloids with C-2 reversed prenylation from the mangrove-derived endophytic fungus Penicillium brocae.Eur. J. Org. Chem.20142014194029403610.1002/ejoc.201400067
    [Google Scholar]
  12. ZhuX. WuZ. LiangF. GanS. HuangQ. DingW. LiC. A new L-alanine derivative from the mangrove fungus Penicillium chrysogenum V11.Chem. Nat. Compd.201854352052210.1007/s10600‑018‑2394‑z
    [Google Scholar]
  13. DingL. DahseH.M. HertweckC. Cytotoxic alkaloids from Fusarium incarnatum associated with the mangrove tree Aegiceras corniculatum.J. Nat. Prod.201275461762110.1021/np2008544 22439674
    [Google Scholar]
  14. HaidleA.M. MyersA.G. An enantioselective, modular, and general route to the cytochalasins: Synthesis of L-696,474 and cytochalasin B.Proc. Natl. Acad. Sci. USA200410133120481205310.1073/pnas.0402111101 15208404
    [Google Scholar]
  15. LinZ.J. ZhangG.J. ZhuT.J. LiuR. WeiH.J. GuQ.Q. Bioactive cytochalasins from Aspergillus flavipes, an endophytic fungus associated with the mangrove plant Acanthus ilicifolius.Helv. Chim. Acta20099281538154410.1002/hlca.200800455
    [Google Scholar]
  16. HuangS. ChenH. LiW. ZhuX. DingW. LiC. Bioactive chaetoglobosins from the mangrove endophytic fungus Penicillium chrysogenum.Mar. Drugs2016141017210.3390/md14100172 27690061
    [Google Scholar]
  17. ShangX.F. Morris-NatschkeS.L. LiuY.Q. GuoX. XuX.S. GotoM. LiJ.C. YangG.Z. LeeK.H. Biologically active quinoline and quinazoline alkaloids part I.Med. Res. Rev.201838377582810.1002/med.21466 28902434
    [Google Scholar]
  18. ZhuF. ChenG. ChenX. HuangM. WanX. Aspergicin, a new antibacterial alkaloid produced by mixed fermentation of two marine-derived mangrove epiphytic fungi.Chem. Nat. Compd.201147576776910.1007/s10600‑011‑0053‑8
    [Google Scholar]
  19. AnC.Y. LiX.M. LiC.S. WangM.H. XuG.M. WangB.G. Aniquinazolines A-D, four new quinazolinone alkaloids from marine-derived endophytic fungus Aspergillus nidulans.Mar. Drugs20131172682269410.3390/md11072682 23880937
    [Google Scholar]
  20. AnC.Y. LiX.M. LuoH. LiC.S. WangM.H. XuG.M. WangB.G. 4-Phenyl-3,4-dihydroquinolone derivatives from Aspergillus nidulans MA-143, an endophytic fungus isolated from the mangrove plant Rhizophora stylosa.J. Nat. Prod.201376101896190110.1021/np4004646 24099304
    [Google Scholar]
  21. ShaoC.L. WangC.Y. GuY.C. WeiM.Y. PanJ.H. DengD.S. SheZ.G. LinY.C. Penicinoline, a new pyrrolyl 4-quinolinone alkaloid with an unprecedented ring system from an endophytic fungus Penicillium sp.Bioorg. Med. Chem. Lett.201020113284328610.1016/j.bmcl.2010.04.043 20452770
    [Google Scholar]
  22. LeeJ.H. LeeJ. Indole as an intercellular signal in microbial communities.FEMS Microbiol. Rev.201034442644410.1111/j.1574‑6976.2009.00204.x 20070374
    [Google Scholar]
  23. CuiH. LiuY. LiT. ZhangZ. DingM. LongY. SheZ. 3-Arylisoindolinone and sesquiterpene derivatives from the mangrove endophytic fungi Aspergillus versicolor SYSU-SKS025.Fitoterapia201812417718110.1016/j.fitote.2017.11.006 29126957
    [Google Scholar]
  24. CaiS. LuanY. KongX. ZhuT. GuQ. LiD. Isolation and photoinduced conversion of 6-epi-stephacidins from Aspergillus taichungensis.Org. Lett.20131592168217110.1021/ol400694h 23550798
    [Google Scholar]
  25. YangB. DongJ. LinX. ZhouX. ZhangY. LiuY. New prenylated indole alkaloids from fungus Penicillium sp. derived of mangrove soil sample.Tetrahedron201470253859386310.1016/j.tet.2014.04.043
    [Google Scholar]
  26. ZhangP. LiX.M. LiuH. LiX. WangB.G. Two new alkaloids from Penicillium oxalicum EN-201, an endophytic fungus derived from the marine mangrove plant Rhizophora stylosa.Phytochem. Lett.20151316016410.1016/j.phytol.2015.06.009
    [Google Scholar]
  27. ZhengY.Y. ShenN.X. LiangZ.Y. ShenL. ChenM. WangC.Y. Paraherquamide J, a new prenylated indole alkaloid from the marine-derived fungus Penicillium janthinellum HK1-6.Nat. Prod. Res.202034337838410.1080/14786419.2018.1534105 30623670
    [Google Scholar]
  28. LiL.Y. DingY. GrothI. MenzelK.D. PeschelG. VoigtK. DengZ.W. SattlerI. LinW.H. Pyrrole and indole alkaloids from an endophytic Fusarium incarnatum (HKI00504) isolated from the mangrove plant Aegiceras corniculatum.J. Asian Nat. Prod. Res.2008107-8775780 18696331
    [Google Scholar]
  29. ZhouG. QiaoL. ZhangX. SunC. CheQ. ZhangG. ZhuT. GuQ. LiD. Fusaricates H-K and fusolanones A-B from a mangrove endophytic fungus Fusarium solani HDN15-410.Phytochemistry2019158131910.1016/j.phytochem.2018.10.035 30447545
    [Google Scholar]
  30. TanN. PanJ.H. PengG.T. MouC.B. SheZ.G. YangZ.L. ZhouS.N. LinY.C. A copper coordination compound produced by a marine fungus Fusarium sp. ZZF51 with biosorption of Cu (II) ions.Chin. J. Chem.200826351652110.1002/cjoc.200890097
    [Google Scholar]
  31. GribbleGW Pyrroles and their benzo derivatives: Applications.,10.1016/B978‑008096518‑5.00043‑5
    [Google Scholar]
  32. LinZ.J. LuZ.Y. ZhuT.J. FangY.C. GuQ.Q. ZhuW.M. Penicillenols from Penicillium sp. GQ-7, an endophytic fungus associated with Aegiceras corniculatum.Chem. Pharm. Bull. (Tokyo)200856221722110.1248/cpb.56.217 18239314
    [Google Scholar]
  33. ZhouZ.F. KurtánT. YangX.H. MándiA. GengM.Y. YeB.P. Taglialatela-ScafatiO. GuoY.W. Penibruguieramine A, a novel pyrrolizidine alkaloid from the endophytic fungus Penicillium sp. GD6 associated with Chinese mangrove Bruguiera gymnorrhiza.Org. Lett.20141651390139310.1021/ol5001523 24533828
    [Google Scholar]
  34. MengL.H. LiX.M. LiuY. WangB.G. Polyoxygenated dihydropyrano[2,3-c]pyrrole-4,5-dione derivatives from the marine mangrove-derived endophytic fungus Penicillium brocae MA-231 and their antimicrobial activity.Chin. Chem. Lett.201526561061210.1016/j.cclet.2015.01.024
    [Google Scholar]
  35. MengL.H. LiX.M. LiuY. XuG.M. WangB.G. Antimicrobial alkaloids produced by the mangrove endophyte Penicillium brocae MA-231 using the OSMAC approach.RSC Advances2017787550265503310.1039/C7RA12081H
    [Google Scholar]
  36. CoxRJ SkellamE WilliamsK Biosynthesis of fungal polyketides.201810.1007/978‑3‑319‑71740‑1_13
    [Google Scholar]
  37. HangL. LiuN. TangY. Coordinated and iterative enzyme catalysis in fungal polyketide biosynthesis.ACS Catal.2016695935594510.1021/acscatal.6b01559 28529817
    [Google Scholar]
  38. ValenteS. ComettoA. PiomboE. MeloniG.R. BallesterA.R. González-CandelasL. SpadaroD. Elaborated regulation of griseofulvin biosynthesis in Penicillium griseofulvum and its role on conidiation and virulence.Int. J. Food Microbiol.202032810868710.1016/j.ijfoodmicro.2020.108687 32474227
    [Google Scholar]
  39. TobertJ.A. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors.Nat. Rev. Drug Discov.20032751752610.1038/nrd1112 12815379
    [Google Scholar]
  40. KeatingG.J. O’kennedyR. The chemistry and occurrence of coumarins. Coumarins: Biology, applications and mode of action. ThornesR.D. O’kennedyR. Wiley1997
    [Google Scholar]
  41. NoorA.O. AlmasriD.M. BagalagelA.A. AbdallahH.M. MohamedS.G.A. MohamedG.A. IbrahimS.R.M. Naturally occurring isocoumarins derivatives from endophytic fungi: Sources, isolation, structural characterization, biosynthesis, and biological activities.Molecules202025239510.3390/molecules25020395 31963586
    [Google Scholar]
  42. LiW. XiongP. ZhengW. ZhuX. SheZ. DingW. LiC. Identification and antifungal activity of compounds from the mangrove endophytic fungus Aspergillus clavatus R7.Mar. Drugs201715825910.3390/md15080259 28825634
    [Google Scholar]
  43. WangH. LuZ. QuH.J. LiuP. MiaoC. ZhuT. LiJ. HongK. ZhuW. Antimicrobial aflatoxins from the marine-derived fungus Aspergillus flavus 092008.Arch. Pharm. Res.20123581387139210.1007/s12272‑012‑0808‑1 22941481
    [Google Scholar]
  44. WuY. ChenS. LiuH. HuangX. LiuY. TaoY. SheZ. Cytotoxic isocoumarin derivatives from the mangrove endophytic fungus Aspergillus sp. HN15-5D.Arch. Pharm. Res.201942432633110.1007/s12272‑018‑1019‑1 29594840
    [Google Scholar]
  45. LiuY. ChenS. LiuZ. LuY. XiaG. LiuH. HeL. SheZ. Bioactive metabolites from mangrove endophytic fungus Aspergillus sp. 16-5B.Mar. Drugs20151353091310210.3390/md13053091 25996099
    [Google Scholar]
  46. LiS. WeiM. ChenG. LinY. Two new dihydroisocoumarins from the endophytic fungus Aspergillus sp. collected from the south china sea.Chem. Nat. Compd.201248337137310.1007/s10600‑012‑0254‑9
    [Google Scholar]
  47. LiuP. WangC. LuZ. ZhuT. HongK. ZhuW. New isochromane derivatives from the mangrove fungus Aspergillus ustus 094102.Nat. Prod. Commun.2015101221232126 26882680
    [Google Scholar]
  48. XiaoZ. ChenS. CaiR. LinS. HongK. SheZ. New furoisocoumarins and isocoumarins from the mangrove endophytic fungus Aspergillus sp. 085242.Beilstein J. Org. Chem.20161212077208510.3762/bjoc.12.196 27829913
    [Google Scholar]
  49. HanZ. MeiW. ZhaoY. DengY. DaiH. A new cytotoxic isocoumarin from endophytic fungus Penicillium SP. 091402 of the mangrove plant Bruguiera sexangula.Chem. Nat. Compd.200945680580710.1007/s10600‑010‑9503‑y
    [Google Scholar]
  50. CaoJ. LiX.M. LiX. LiH.L. MengL.H. WangB.G. New lactone and isocoumarin derivatives from the marine mangrove-derived endophytic fungus Penicillium coffeae MA-314.Phytochem. Lett.2019321510.1016/j.phytol.2019.04.018
    [Google Scholar]
  51. BaiM. ZhengC.J. HuangG.L. MeiR.Q. WangB. LuoY.P. ZhengC. NiuZ.G. ChenG.Y. Bioactive meroterpenoids and isocoumarins from the mangrove-derived fungus Penicillium sp. TGM112.J. Nat. Prod.20198251155116410.1021/acs.jnatprod.8b00866 30990038
    [Google Scholar]
  52. DarsihC. PrachyawarakornV. WiyakruttaS. MahidolC. RuchirawatS. KittakoopP. Cytotoxic metabolites from the endophytic fungus Penicillium chermesinum: Discovery of a cysteine-targeted Michael acceptor as a pharmacophore for fragment-based drug discovery, bioconjugation and click reactions.RSC Advances2015586705957060310.1039/C5RA13735G
    [Google Scholar]
  53. CaiR. WuY. ChenS. CuiH. LiuZ. LiC. SheZ. Peniisocoumarins A-J: Isocoumarins from Penicillium commune QQF-3, an endophytic fungus of the mangrove plant Kandelia candel.J. Nat. Prod.20188161376138310.1021/acs.jnatprod.7b01018 29792702
    [Google Scholar]
  54. HuangZ. YangJ. CaiX. SheZ. LinY. A new furanocoumarin from the mangrove endophytic fungus Penicillium sp. (ZH16).Nat. Prod. Res.201226141291129510.1080/14786419.2011.569502 21972976
    [Google Scholar]
  55. HuangG.L. ZhouX.M. BaiM. LiuY.X. ZhaoY.L. LuoY.P. NiuY.Y. ZhengC.J. ChenG.Y. Dihydroisocoumarins from the mangrove-derived fungus Penicillium citrinum.Mar. Drugs2016141017710.3390/md14100177 27735855
    [Google Scholar]
  56. QiuP. CaiR.L. LiL. SheZ.G. Three new isocoumarin derivatives from the mangrove endophytic fungus Penicillium sp. YYSJ-3.Chin. J. Nat. Med.202018425626010.1016/S1875‑5364(20)30031‑5 32402401
    [Google Scholar]
  57. XuR. LiX.M. WangB.G. Penicisimpins A-C, three new dihydroisocoumarins from Penicillium simplicissimum MA-332, a marine fungus derived from the rhizosphere of the mangrove plant Bruguiera sexangula var. rhynchopetala.Phytochem. Lett.20161711411810.1016/j.phytol.2016.07.003
    [Google Scholar]
  58. ThomsonRH Naturally occurring quinonesElsevier2012
    [Google Scholar]
  59. El-NajjarN. Gali-MuhtasibH. KetolaR.A. VuorelaP. UrttiA. VuorelaH. The chemical and biological activities of quinones: Overview and implications in analytical detection.Phytochem. Rev.201110335337010.1007/s11101‑011‑9209‑1
    [Google Scholar]
  60. DuL. ZhuT. FangY. LiuH. GuQ. ZhuW. Aspergiolide A, a novel anthraquinone derivative with naphtho[1,2,3-de]chromene-2,7-dione skeleton isolated from a marine-derived fungus Aspergillus glaucus.Tetrahedron20076351085108810.1016/j.tet.2006.11.074
    [Google Scholar]
  61. DengC.M. LiuS.X. HuangC.H. PangJ.Y. LinY.C. Secondary metabolites of a mangrove endophytic fungus Aspergillus terreus (No. GX7-3B) from the South China Sea.Mar. Drugs20131172616262410.3390/md11072616 23877026
    [Google Scholar]
  62. XiaoZ. LinS. TanC. LuY. HeL. HuangX. SheZ. Asperlones A and B, dinaphthalenone derivatives from a mangrove endophytic fungus Aspergillus sp. 16-5C.Mar. Drugs201513136637810.3390/md13010366 25591039
    [Google Scholar]
  63. DuL. ZhuT. LiuH. FangY. ZhuW. GuQ. Cytotoxic polyketides from a marine-derived fungus Aspergillus glaucus.J. Nat. Prod.200871111837184210.1021/np800303t 18986198
    [Google Scholar]
  64. SunS.W. JiC.Z. GuQ.Q. LiD.H. ZhuT.J. Three new polyketides from marine-derived fungus Aspergillus glaucus HB1-19.J. Asian Nat. Prod. Res.201315995696110.1080/10286020.2013.826205 23947932
    [Google Scholar]
  65. YangS.Q. LiX.M. XuG.M. LiX. AnC.Y. WangB.G. Antibacterial anthraquinone derivatives isolated from a mangrove-derived endophytic fungus Aspergillus nidulans by ethanol stress strategy.J. Antibiot. (Tokyo)201871977878410.1038/s41429‑018‑0063‑x 29717199
    [Google Scholar]
  66. ChenM. ZhengY.Y. ChenZ.Q. ShenN.X. ShenL. ZhangF.M. ZhouX.J. WangC.Y. NaBr-induced production of brominated azaphilones and related tricyclic polyketides by the marine-derived fungus Penicillium janthinellum HK1-6.J. Nat. Prod.201982236837410.1021/acs.jnatprod.8b00930 30693772
    [Google Scholar]
  67. LiX. ZhengY. SattlerI. LinW. Griseusin C, and novel quinone derivative from a marine-derived fungus Penicillium sp.Arch. Pharm. Res.2006291194294510.1007/BF02969275 17146960
    [Google Scholar]
  68. HeK.Y. ZhangC. DuanY.R. HuangG.L. YangC.Y. LuX.R. ZhengC.J. ChenG.Y. New chlorinated xanthone and anthraquinone produced by a mangrove-derived fungus Penicillium citrinum HL-5126.J. Antibiot. (Tokyo)201770782382710.1038/ja.2017.52 28465625
    [Google Scholar]
  69. JinY. QinS. GaoH. ZhuG. WangW. ZhuW. WangY. An anti-HBV anthraquinone from aciduric fungus Penicillium sp. OUCMDZ-4736 under low pH stress.Extremophiles2018221394510.1007/s00792‑017‑0975‑6 29103183
    [Google Scholar]
  70. LiH. JiangJ. LiuZ. LinS. XiaG. XiaX. DingB. HeL. LuY. SheZ. Peniphenones A-D from the mangrove fungus Penicillium dipodomyicola HN4-3A as inhibitors of Mycobacterium tuberculosis phosphatase MptpB.J. Nat. Prod.201477480080610.1021/np400880w 24597756
    [Google Scholar]
  71. ShaoC. WangC. ZhengC. SheZ. GuY. LinY. A new anthraquinone derivative from the marine endophytic fungus Fusarium sp. (No. b77).Nat. Prod. Res.2010241818510.1080/14786410902836701 20013477
    [Google Scholar]
  72. SupratmanU. HiraiN. SatoS. WatanabeK. MalikA. AnnasS. HarnetiD. MaharaniR. KosekiT. ShionoY. New naphthoquinone derivatives from Fusarium napiforme of a mangrove plant.Nat. Prod. Res.20213591406141210.1080/14786419.2019.1650358 31402713
    [Google Scholar]
  73. The chemistry of heterocyclic compounds.Wiley-Interscience1950
    [Google Scholar]
  74. SilvaC.F.M. PintoD.C.G.A. SilvaA.M.S. Chromones: A promising ring system for new anti-inflammatory drugs.ChemMedChem201611202252226010.1002/cmdc.201600359 27630077
    [Google Scholar]
  75. DuanY. JiangY. GuoF. ChenL. XuL. ZhangW. LiuB. The antitumor activity of naturally occurring chromones: A review.Fitoterapia201913511412910.1016/j.fitote.2019.04.012 31029639
    [Google Scholar]
  76. HuangH.B. XiaoZ.E. FengX.J. HuangC.H. ZhuX. JuJ.H. LiM.F. LinY.C. LiuL. SheZ.G. Cytotoxic naphtho-γ-pyrones from the mangrove endophytic fungus Aspergillus tubingensis (GX1-5E).Helv. Chim. Acta20119491732174010.1002/hlca.201100050
    [Google Scholar]
  77. YangB. TaoH. QinX.C. WangZ. DongJ. LinX. ZhouX. LiJ.L. TuZ.C. LiuY. Aspergone, a new chromanone derivative from fungus Aspergillus sp. SCSIO41002 derived of mangrove soil sample.J. Antibiot. (Tokyo)201770678879010.1038/ja.2016.169 28119517
    [Google Scholar]
  78. ZhengY.Y. LiangZ.Y. ShenN.X. LiuW.L. ZhouX.J. FuX.M. ChenM. WangC.Y. New naphtho-γ-pyrones isolated from marine-derived fungus Penicillium sp. HK1-22 and their antimicrobial activities.Mar. Drugs201917632210.3390/md17060322 31159234
    [Google Scholar]
  79. ZhengC.J. HuangG.L. XuY. SongX.M. YaoJ. LiuH. WangR.P. SunX.P. A new benzopyrans derivatives from a mangrove-derived fungus Penicillium citrinum from the South China Sea.Nat. Prod. Res.201630782182510.1080/14786419.2015.1072712 26930107
    [Google Scholar]
  80. HuangH. LiuT. WuX. GuoJ. LanX. ZhuQ. ZhengX. ZhangK. A new antibacterial chromone derivative from mangrove-derived fungus Penicillium aculeatum (No. 9EB).Nat. Prod. Res.201731222593259810.1080/14786419.2017.1283498 28147702
    [Google Scholar]
  81. YangB. TaoH. LinX. WangJ. LiaoS. DongJ. ZhouX. LiuY. Prenylated indole alkaloids and chromone derivatives from the fungus Penicillium sp. SCSIO041218.Tetrahedron2018741778210.1016/j.tet.2017.11.038
    [Google Scholar]
  82. YangW. ChenY. CaiR. ZouG. WangB. SheZ. Benzopyran derivatives and an aliphatic compound from a mangrove endophytic fungus Penicillium citrinum QJF‐22.Chem. Biodivers.2020176e200019210.1002/cbdv.202000192 32267070
    [Google Scholar]
  83. HuangZ. YangJ. SheZ. LinY. Isoflavones from the mangrove endophytic fungus Fusarium sp. (ZZF41).Nat. Prod. Commun.201051117711773 21213977
    [Google Scholar]
  84. GaoJ.M. YangS.X. QinJ.C. Azaphilones: Chemistry and biology.Chem. Rev.201311374755481110.1021/cr300402y 23581812
    [Google Scholar]
  85. HuangH. FengX. XiaoZ. LiuL. LiH. MaL. LuY. JuJ. SheZ. LinY. Azaphilones and p-terphenyls from the mangrove endophytic fungus Penicillium chermesinum (ZH4-E2) isolated from the South China Sea.J. Nat. Prod.2011745997100210.1021/np100889v 21510637
    [Google Scholar]
  86. WangM. LuC. XuQ. SongS. HuZ. ZhengZ. Four new citrinin derivatives from a marine-derived Penicillium sp. fungal strain.Molecules20131855723573510.3390/molecules18055723 23681057
    [Google Scholar]
  87. MengL.H. LiuY. LiX.M. XuG.M. JiN.Y. WangB.G. Citrifelins A and B, citrinin adducts with a tetracyclic framework from cocultures of marine-derived isolates of Penicillium citrinum and Beauveria felina.J. Nat. Prod.20157892301230510.1021/acs.jnatprod.5b00450 26295595
    [Google Scholar]
  88. LiuY. YangQ. XiaG. HuangH. LiH. MaL. LuY. HeL. XiaX. SheZ. Polyketides with α-glucosidase inhibitory activity from a mangrove endophytic fungus, Penicillium sp. HN29-3B1.J. Nat. Prod.20157881816182210.1021/np500885f 26230970
    [Google Scholar]
  89. GuoW. LiD. PengJ. ZhuT. GuQ. LiD. Penicitols A-C and penixanacid A from the mangrove-derived Penicillium chrysogenum HDN11-24.J. Nat. Prod.201578230631010.1021/np500586r 25611519
    [Google Scholar]
  90. ChenM. ShenN.X. ChenZ.Q. ZhangF.M. ChenY. Penicilones A-D, anti-MRSA azaphilones from the marine-derived fungus Penicillium janthinellum HK1-6.J. Nat. Prod.20178041081108610.1021/acs.jnatprod.6b01179 28248508
    [Google Scholar]
  91. LattanzioV. Phenolic compounds: Introduction. Natural Products. RamawatK. MérillonJ.M. Berlin, HeidelbergSpringer201310.1007/978‑3‑642‑22144‑6_57
    [Google Scholar]
  92. CaiS. SunS. ZhouH. KongX. ZhuT. LiD. GuQ. Prenylated Polyhydroxy- p -terphenyls from Aspergillus taichungensis ZHN-7-07.J. Nat. Prod.20117451106111010.1021/np2000478 21486068
    [Google Scholar]
  93. GuoZ.K. ZhouY.Q. HanH. WangW. XiangL. DengX.Z. GeH.M. JiaoR.H. New antibacterial phenone derivatives asperphenone A-C from mangrove-derived fungus Aspergillus sp. YHZ-1.Mar. Drugs20181624510.3390/md16020045 29385686
    [Google Scholar]
  94. CaiR. JiangH. ZangZ. LiC. SheZ. New benzofuranoids and phenylpropanoids from the mangrove endophytic fungus, Aspergillus sp. ZJ-68.Mar. Drugs201917847810.3390/md17080478 31426620
    [Google Scholar]
  95. ZhouG. ChenX. ZhangX. CheQ. ZhangG. ZhuT. GuQ. LiD. Prenylated p-terphenyls from a mangrove endophytic fungus, Aspergillus candidus LDJ-5.J. Nat. Prod.202083181310.1021/acs.jnatprod.9b00004 31904949
    [Google Scholar]
  96. YanH.J. GaoS.S. LiC.S. LiX.M. WangB.G. Chemical constituents of a marine-derived endophytic fungus Penicillium commune G2M.Molecules20101553270327510.3390/molecules15053270 20657476
    [Google Scholar]
  97. WangY.N. TianL. HuaH.M. LuX. SunS. WuH.H. PeiY.H. Two new compounds from the broth of the marine fungus Penicillium griseofulvum Y19-07.J. Asian Nat. Prod. Res.2009111191291710.1080/10286020903219923 20183253
    [Google Scholar]
  98. ZhengC. ChenY. JiangL.L. ShiX.M. Antiproliferative metabolites from the endophytic fungus Penicillium sp. FJ-1 isolated from a mangrove Avicennia marina.Phytochem. Lett.20141027227510.1016/j.phytol.2014.10.011
    [Google Scholar]
  99. ZhangP. MengL.H. MándiA. LiX.M. KurtánT. WangB.G. Structure, absolute configuration, and conformational study of resorcylic acid derivatives and related congeners from the fungus Penicillium brocae.RSC Advances2015550398703987710.1039/C5RA02203G
    [Google Scholar]
  100. WuY.Z. QiaoF. XuG.W. ZhaoJ. TengJ.F. LiC. DengW.J. Neuroprotective metabolites from the endophytic fungus Penicillium citrinum of the mangrove Bruguiera gymnorrhiza.Phytochem. Lett.20151214815210.1016/j.phytol.2015.03.007
    [Google Scholar]
  101. LuZ. ZhuH. FuP. WangY. ZhangZ. LinH. LiuP. ZhuangY. HongK. ZhuW. Cytotoxic polyphenols from the marine-derived fungus Penicillium expansum.J. Nat. Prod.201073591191410.1021/np100059m 20415462
    [Google Scholar]
  102. WangJ. LuZ. LiuP. WangY. LiJ. HongK. ZhuW. Cytotoxic polyphenols from the fungus Penicillium expansum 091 006 endogenous with the mangrove plant Excoecaria agallocha.Planta Med.201278171861186610.1055/s‑0032‑1315395 23059631
    [Google Scholar]
  103. ZhangY. LiX.M. ShangZ. LiC.S. JiN.Y. WangB.G. Meroterpenoid and diphenyl ether derivatives from Penicillium sp. MA-37, a fungus isolated from marine mangrove rhizospheric soil.J. Nat. Prod.201275111888189510.1021/np300377b 23148724
    [Google Scholar]
  104. LuoH. LiX.M. LiC.S. WangB.G. Diphenyl ether and benzophenone derivatives from the marine mangrove-derived fungus Penicillium sp. MA-37.Phytochem. Lett.20149222510.1016/j.phytol.2014.03.012
    [Google Scholar]
  105. RobertsJ.C. Naturally occurring xanthones.Chem. Rev.196161659160510.1021/cr60214a003
    [Google Scholar]
  106. CarpenterI. LocksleyH.D. ScheinmannF. Xanthones in higher plants: Biogenetic proposals and a chemotaxonomic survey.Phytochemistry19698102013202510.1016/S0031‑9422(00)88089‑9
    [Google Scholar]
  107. WuG. YuG. KurtánT. MándiA. PengJ. MoX. LiuM. LiH. SunX. LiJ. ZhuT. GuQ. LiD. Versixanthones A-F, cytotoxic xanthone-chromanone dimers from the marine-derived fungus Aspergillus versicolor HDN1009.J. Nat. Prod.201578112691269810.1021/acs.jnatprod.5b00636 26506221
    [Google Scholar]
  108. LiF. GuoW. CheQ. ZhuT. GuQ. LiD. Versicones E-H and arugosin K produced by the mangrove-derived fungus Aspergillus versicolor HDN11-84.J. Antibiot. (Tokyo)201770217417810.1038/ja.2016.95 27460761
    [Google Scholar]
  109. WuG. QiX. MoX. YuG. WangQ. ZhuT. GuQ. LiuM. LiJ. LiD. Structure-based discovery of cytotoxic dimeric tetrahydroxanthones as potential topoisomerase I inhibitors from a marine-derived fungus.Eur. J. Med. Chem.201814826827810.1016/j.ejmech.2018.02.041 29466776
    [Google Scholar]
  110. YuG. WuG. SunZ. ZhangX. CheQ. GuQ. ZhuT. LiD. ZhangG. Cytotoxic tetrahydroxanthone dimers from the mangrove-associated fungus Aspergillus versicolor HDN1009.Mar. Drugs201816933510.3390/md16090335 30223483
    [Google Scholar]
  111. ShaoC. WangC. WeiM. GuY. XiaX. SheZ. LinY. Structure elucidation of two new xanthone derivatives from the marine fungus Penicillium sp. (ZZF 32#) from the South China Sea.Magn. Reson. Chem.200846111066106910.1002/mrc.2293 18759333
    [Google Scholar]
  112. TaoH. WeiX. LinX. ZhouX. DongJ. YangB. Penixanthones A and B, two new xanthone derivatives from fungus Penicillium sp. SYFz-1 derived of mangrove soil sample.Nat. Prod. Res.201731192218222210.1080/14786419.2017.1297442 28299980
    [Google Scholar]
  113. HuangJ. SheJ. YangX. LiuJ. ZhouX. YangB. A new macrodiolide and two new polycyclic chromones from the fungus Penicillium sp. SCSIO041218.Molecules2019249168610.3390/molecules24091686 31052174
    [Google Scholar]
  114. BaiM. ZhengC.J. NongX.H. ZhouX.M. LuoY.P. ChenG.Y. Four new insecticidal xanthene derivatives from the mangrove-derived fungus Penicillium sp. JY246.Mar. Drugs2019171264910.3390/md17120649 31756930
    [Google Scholar]
  115. GandiniA. BelgacemM.N. Furans in polymer chemistry.Prog. Polym. Sci.19972261203137910.1016/S0079‑6700(97)00004‑X
    [Google Scholar]
  116. KeayB.A. HopkinsJ.M. DibbleP.W. 3.08-furans and their benzo derivatives: Applications.Comprehen Heterocyclic Chem2008III571623
    [Google Scholar]
  117. GuoH.X. HuangC.Y. YanZ.Y. ChenT. HongK. LongY.H. New furo[3,2-h]isochroman from the mangrove endophytic fungus Aspergillus sp. 085242.Chin. J. Nat. Med.2020181185585910.1016/S1875‑5364(20)60028‑0 33308608
    [Google Scholar]
  118. LuZ. WangY. MiaoC. LiuP. HongK. ZhuW. Sesquiterpenoids and benzofuranoids from the marine-derived fungus Aspergillus ustus 094102.J. Nat. Prod.200972101761176710.1021/np900268z 19769341
    [Google Scholar]
  119. YangJ. HuangR. QiuS.X. SheZ. LinY. A new isobenzofuranone from the mangrove endophytic fungus Penicillium sp. (ZH58).Nat. Prod. Res.201327201902190510.1080/14786419.2013.784870 23581456
    [Google Scholar]
  120. LiuY. XiaG. LiH. MaL. DingB. LuY. HeL. XiaX. SheZ. Vermistatin derivatives with α-glucosidase inhibitory activity from the mangrove endophytic fungus Penicillium sp. HN29-3B1.Planta Med.2014801191291710.1055/s‑0034‑1382859 25116120
    [Google Scholar]
  121. HeF. LiX. YuJ.H. ZhangX. NongX. ChenG. ZhuK. WangY.Y. BaoJ. ZhangH. Secondary metabolites from the mangrove sediment-derived fungus Penicillium pinophilum SCAU037.Fitoterapia201913610417710.1016/j.fitote.2019.104177 31128244
    [Google Scholar]
  122. DinosG.P. The macrolide antibiotic renaissance.Br. J. Pharmacol.2017174182967298310.1111/bph.13936 28664582
    [Google Scholar]
  123. LiuD. LiX.M. MengL. LiC.S. GaoS.S. ShangZ. ProkschP. HuangC.G. WangB.G. Nigerapyrones A-H, α-pyrone derivatives from the marine mangrove-derived endophytic fungus Aspergillus niger MA-132.J. Nat. Prod.20117481787179110.1021/np200381u 21774474
    [Google Scholar]
  124. ShenY. ZouJ. XieD. GeH. CaoX. DaiJ. Butyrolactone and cycloheptanetrione from mangrove-associated fungus Aspergillus terreus.Chem. Pharm. Bull. (Tokyo)201260111437144110.1248/cpb.c12‑00616 23124567
    [Google Scholar]
  125. GaoH. GuoW. WangQ. ZhangL. ZhuM. ZhuT. GuQ. WangW. LiD. Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activity.Bioorg. Med. Chem. Lett.20132361776177810.1016/j.bmcl.2013.01.051 23411074
    [Google Scholar]
  126. BaiZ.Q. LinX. WangY. WangJ. ZhouX. YangB. LiuJ. YangX. WangY. LiuY. New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius.Fitoterapia20149519420210.1016/j.fitote.2014.03.021 24704337
    [Google Scholar]
  127. LiuY. LiX.M. MengL.H. WangB.G. Polyketides from the marine mangrove-derived fungus Aspergillus ochraceus MA-15 and their activity against aquatic pathogenic bacteria.Phytochem. Lett.20151223223610.1016/j.phytol.2015.04.009
    [Google Scholar]
  128. ElsbaeyM. TanakaC. MiyamotoT. Allantopyrone E, a rare α-pyrone metabolite from the mangrove derived fungus Aspergillus versicolor.Nat. Prod. Res.202236376076410.1080/14786419.2020.1803309 32762459
    [Google Scholar]
  129. HaoL. ZhouD. QinX. ZhangW. YangR. LiJ. HuangX. A new depsidone derivative from mangrove endophytic fungus Aspergillus sp. GXNU-A9.Nat. Prod. Res.20223671878188210.1080/14786419.2020.1809400 32851874
    [Google Scholar]
  130. MengL.H. LiX.M. LvC.T. LiC.S. XuG.M. HuangC.G. WangB.G. Sulfur-containing cytotoxic curvularin macrolides from Penicillium sumatrense MA-92, a fungus obtained from the rhizosphere of the mangrove Lumnitzera racemosa.J. Nat. Prod.201376112145214910.1021/np400614f 24195466
    [Google Scholar]
  131. WuC. ZhaoY. ChenR. LiuD. LiuM. ProkschP. GuoP. LinW. Phenolic metabolites from mangrove-associated Penicillium pinophilum fungus with lipid-lowering effects.RSC Advances2016626219692197810.1039/C6RA00033A
    [Google Scholar]
  132. BaiM. HuangG.L. MeiR.Q. WangB. LuoY.P. NongX.H. ChenG.Y. ZhengC.J. Bioactive lactones from the mangrove-derived fungus Penicillium sp. TGM112.Mar. Drugs201917843310.3390/md17080433 31344841
    [Google Scholar]
  133. PengJ. ZhangX. DuL. WangW. ZhuT. GuQ. LiD. Sorbicatechols A and B, antiviral sorbicillinoids from the marine-derived fungus Penicillium chrysogenum PJX-17.J. Nat. Prod.201477242442810.1021/np400977e 24495078
    [Google Scholar]
  134. FanY. ZhuG. WangY. ZhuX. GongQ. JiaQ. FuP. ZhuW. α-Pyronoids with quorum sensing inhibitory activity from the mangrove fungus Penicillium camemberti OUCMDZ-1492.Youji Huaxue20183810279810.6023/cjoc201803017
    [Google Scholar]
  135. ZhengY. ChenX. ChenL. ShenL. FuX. ChenQ. ChenM. WangC. Isolation and neuroprotective activity of phenolic derivatives from the marine-derived fungus Penicillium janthinellum.J. Ocean Univ. China202019370070610.1007/s11802‑020‑4286‑7
    [Google Scholar]
  136. LiuD. LiX.M. LiC.S. WangB.G. Sesterterpenes and 2 H -Pyran-2-ones (= α -Pyrones) from the mangrove-derived endophytic fungus Fusarium proliferatum MA-84.Helv. Chim. Acta201396343744410.1002/hlca.201200195
    [Google Scholar]
  137. ShionoY. ShibuyaF. KosekiT. Harizon SupratmanU. UesugiS. KimuraK. A new α-pyrone metabolite from a mangrove plant endophytic fungus, Fusarium sp.J. Asian Nat. Prod. Res.201517440340810.1080/10286020.2014.961919 25355135
    [Google Scholar]
  138. RustanA.C. DrevonCA Fatty acids: Structures and properties.Available from: https://www.uio.no/studier/emner/matnat/farmasi/nedlagte-emner/FRM2041/v06/undervisningsmateriale/fatty_acids.pdf 2001
  139. de CarvalhoC. CaramujoM. The various roles of fatty acids.Molecules20182310258310.3390/molecules23102583 30304860
    [Google Scholar]
  140. LiangZ.Y. ShenN.X. ZhengY.Y. WuJ.T. MiaoL. FuX.M. ChenM. WangC.Y. Two new unsaturated fatty acids from the mangrove rhizosphere soil-derived fungus Penicillium javanicum HK1-22.Bioorg. Chem.20199310333110.1016/j.bioorg.2019.103331 31622851
    [Google Scholar]
  141. DingL. PeschelG. HertweckC. Biosynthesis of archetypal plant self-defensive oxylipins by an endophytic fungus residing in mangrove embryos.ChemBioChem201213182661266410.1002/cbic.201200544 23165938
    [Google Scholar]
  142. LiuS.Z. YanX. TangX.X. LinJ.G. QiuY.K. New bis-alkenoic acid derivatives from a marine-derived fungus Fusarium solani H915.Mar. Drugs2018161248310.3390/md16120483 30513984
    [Google Scholar]
  143. TangX.X. YanX. FuW.H. YiL.Q. TangB.W. YuL.B. FangM.J. WuZ. QiuY.K. New β-Lactone with tea pathogenic fungus inhibitory effect from marine-derived fungus MCCC3A00957.J. Agric. Food Chem.201967102877288510.1021/acs.jafc.9b00228 30785752
    [Google Scholar]
  144. DevadathaB. JonesE.B.G. PangK.L. Abdel-WahabM.A. HydeK.D. SakayarojJ. BahkaliA.H. CalabonM.S. SarmaV.V. SutreongS. ZhangS.N. Occurrence and geographical distribution of mangrove fungi.Fungal Divers.2021106113722710.1007/s13225‑020‑00468‑0
    [Google Scholar]
/content/journals/mroc/10.2174/1570193X20666230718115115
Loading
/content/journals/mroc/10.2174/1570193X20666230718115115
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test