Skip to content
2000
image of A Comprehensive Review on Thiazolidinones and their 5-ene Derivatives: Synthetic Methodologies and Pharmacological Profiles

Abstract

Thiazolidinones and their 5-ene derivatives have become pivotal in organic and medicinal chemistry due to their diverse pharmacological potential. These compounds have been widely explored for their therapeutic applications, with thiazolidine-based frameworks yielding numerous biologically active molecules. This review consolidates various synthetic approaches to thiazolidinone and 5-ene derivatives, including core modifications, one-pot or multistage syntheses, and transformations of related heterocycles. The manuscript highlights key pharmacological targets of thiazolidinones, ranging from initial hit compounds to fully developed drugs. Specifically, thiazolidinone-rhodanines often appear as frequent hitters or pan-assay interference compounds in high-throughput screens. Studies have shown that modifications at the C5 carbon, particularly through the addition of a 5-ene fraction, enhance the pharmacological profile of these compounds. Additionally, the review addresses substitutions at the C5 and N3 positions, including 5-ene and carboxyl groups, and discusses the biological utility of these modifications. Integrating pharmacologically active groups within a heterocyclic system often results in enhanced bioactivity. The review highlights innovative synthetic strategies for thiazolidinone derivatives, emphasizing the potential of these compounds to explore a broad spectrum of biological activities through structural diversity and targeted modifications.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298368489250325083742
2025-04-23
2025-09-14
Loading full text...

Full text loading...

References

  1. Jeyaraman R. Avila S. Chemistry of 3-azabicyclo[3.3.1]nonanes. Chem. Rev. 1981 81 2 149 174 10.1021/cr00042a002
    [Google Scholar]
  2. Nirwan S. Chahal V. Kakkar R. Thiazolidinones: Synthesis, reactivity, and their biological applications. J. Heterocycl. Chem. 2019 56 4 1239 1253 10.1002/jhet.3514
    [Google Scholar]
  3. Alam F. Islam M.A. Mohamed M. Ahmad I. Kamal M.A. Donnelly R. Idris I. Gan S.H. Efficacy and safety of pioglitazone monotherapy in type 2 diabetes mellitus: A systematic review and meta-analysis of randomised controlled trials. Sci. Rep. 2019 9 1 5389 10.1038/s41598‑019‑41854‑2 30926892
    [Google Scholar]
  4. Siddiqui N. Arshad M.F. Ahsan W. Alam M.S. Thiazoles, A valuable insight into the recent advances and biological activities. Int. J. Pharm. Sci. Drug Res. 2009 1 136 143 10.25004/IJPSDR.2009.010302
    [Google Scholar]
  5. de Moraes Gomes P.A.T. de Oliveira Barbosa M. Farias Santiago E. de Oliveira Cardoso M.V. Capistrano Costa N.T. Hernandes M.Z. Moreira D.R.M. da Silva A.C. dos Santos T.A.R. Pereira V.R.A. Brayner dos Santosd F.A. do Nascimento Pereira G.A. Ferreira R.S. Leite A.C.L. New 1,3-thiazole derivatives and their biological and ultrastructural effects on Trypanosoma cruzi. Eur. J. Med. Chem. 2016 121 387 398 10.1016/j.ejmech.2016.05.050 27295485
    [Google Scholar]
  6. de Oliveira Filho G.B. de Oliveira Cardoso M.V. Espíndola J.W.P. Ferreira L.F.G.R. de Simone C.A. Ferreira R.S. Coelho P.L. Meira C.S. Magalhaes Moreira D.R. Soares M.B.P. Lima Leite A.C. Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi. Bioorg. Med. Chem. 2015 23 23 7478 7486 10.1016/j.bmc.2015.10.048 26549870
    [Google Scholar]
  7. dos Santos T.A.R. da Silva A.C. Silva E.B. Gomes P.A.T.M. Espíndola J.W.P. Cardoso M.V.O. Moreira D.R.M. Leite A.C.L. Pereira V.R.A. Antitumor and immunomodulatory activities of thiosemicarbazones and 1,3-Thiazoles in Jurkat and HT-29 cells. Biomed. Pharmacother. 2016 82 555 560 10.1016/j.biopha.2016.05.038 27470396
    [Google Scholar]
  8. Brown F.C. 4-Thiazolidinones. Chem. Rev. 1961 61 5 463 521 10.1021/cr60213a002
    [Google Scholar]
  9. Newkome G.R. Nayak A. 4-Thiazolidinones. Adv. Heterocycl. Chem. 1980 25 83 112 10.1016/S0065‑2725(08)60690‑X
    [Google Scholar]
  10. Singh S.P. Chemistry and biological activity of thiazolidinones. Chem. Rev. 1981 81 175 203 10.1021/cr00042a003
    [Google Scholar]
  11. Abdel-Rahman R.M. Chemoselective heterocyclization and pharmacological activities of new heterocycles--A review. Part V-Synthesis of biocidal 4-thiazolidinones derivatives. Boll. Chim. Farm. 2001 140 6 401 410 11822229
    [Google Scholar]
  12. Verma A. Saraf S.K. 4-Thiazolidinone – A biologically active scaffold. Eur. J. Med. Chem. 2008 43 5 897 905 10.1016/j.ejmech.2007.07.017 17870209
    [Google Scholar]
  13. Hamama W.S. Gouda M.A. Badr M.H. Zoorob H.H. Synthesis of some new fused and binary 1,3,4-Thiadiazoles as potential antitumor and antioxidant agents. J. Heterocycl. Chem. 2013 50 4 787 794 10.1002/jhet.1569
    [Google Scholar]
  14. Jain A.K. Vaidya A. Ravichandran V. Kashaw S.K. Agrawal R.K. Recent developments and biological activities of thiazolidinone derivatives: A review. Bioorg. Med. Chem. 2012 20 11 3378 3395 10.1016/j.bmc.2012.03.069 22546204
    [Google Scholar]
  15. Bimoussa A. Hachim M.E. Laamari Y. Geesi M.H. Muhammed M.T. Alamri M.A. Riadi Y. Yildiz I. Oubella A. Alotaibi S.H. Auhmani A. Itto M.Y.A. Computational assessment of the reactivity and anticancer activity of 1,2,3-triazole-thiazolidinones derivatives: An approach combining DFT calculations, molecular dynamics simulations, molecular docking, and ADMET. J. Mol. Struct. 2025 1321 2 139756 10.1016/j.molstruc.2024.139756
    [Google Scholar]
  16. Laamari Y. Muhammed M.T. Irfan A. Oubella A. Alossaimi M.A. Geesi M.H. Riadi Y. Taha M.L. Morjani H. Auhmani A. Itto M.Y.A. New isoxazoline‐linked 1,3,4‐thiadiazole derivatives: Synthesis, antiproliferative activity, molecular docking, molecular dynamics and DFT. J. Mol. Struct. 2025 1319 2 139368 10.1016/j.molstruc.2024.139368
    [Google Scholar]
  17. Koyambo-Konzapa S-J. Geesi M.H. Oubella A. Alamri M.A. Ibrahim M.A.A. Akman F. Taha M. Riadi Y. Auhmani A. Ait Itto M.Y. Computational and experimental characterisation of a new (R)-camphor-Thiazolidinone derivative: A combined approach for structure optimisation and activity prediction. J. Mol. Liq. 2024 410 125615 10.1016/j.molliq.2024.125615
    [Google Scholar]
  18. Koyambo-Konzapa S-J. Oubella A. Issaoui N. Amolo G. Taha M.L. Geesi M.H. Aldakhil T. Riadi Y. Auhmani A. Itto M.Y.A. Molecular structure, spectroscopic (FT-IR, NMR and UV–Vis), electronic properties, molecular docking, and molecular dynamics studies on novel thiazolidinone derivative: A potent breast cancer drug. J. Mol. Struct. 2024 1318 2 139301 10.1016/j.molstruc.2024.139301
    [Google Scholar]
  19. Bimoussa A. Mourad F. Oubella A. Alossaimi M.A. Riadi Y. Ejaz S.A. Aziz M. Fayyaz A. taha Auhmani A. Itto M.Y.A. Multitargeted molecular docking and dynamics simulation studies of thiazolidinones synthesised from (R)-carvone against specific tumour protein markers: Synthesis, spectroscopic characterization and in-silico study. J. Mol. Struct. 2024 1318 1 139171 10.1016/j.molstruc.2024.139171
    [Google Scholar]
  20. Mukhrish Y.E. Amri N.J. Al-humaidi J.Y. Oubella A. Auhmani A. Itto M.Y.A. Discovery of novel thiazolidinone-1,2,3-triazole hybrids with (D)-Limonene skeleton as anticancer agents: Design, synthesis and biological evaluation. J. Mol. Struct. 2024 1308 138127 10.1016/j.molstruc.2024.138127
    [Google Scholar]
  21. Lesyk R. Zimenkovsky B. 4-Thiazolidones: Centenarian history, current status and perspectives for modern organic and medicinal chemistry. Curr. Org. Chem. 2004 8 16 1547 1577 10.2174/1385272043369773
    [Google Scholar]
  22. Gupta A. Singh R. Sonar P.K. Saraf S.K. Novel 4-Thiazolidinone derivatives as anti-infective agents: Synthesis, characterization, and antimicrobial evaluation. Biochem. Res. Int. 2016 2016 1 8 10.1155/2016/8086762 26925267
    [Google Scholar]
  23. Laamari Y. Fawzi M. abida Ejaz S. Aziz M. Ali O. Alotaibi S.H. Alossaimi M.A. Dehbi O. Riadi Y. Ait itto M.Y. Auhmani A. Exploration of new thiazolidinones derived from natural verbenone: Design, synthesis, characterization, and in silico evaluation of alkaline phosphatase and carbonic anhydrase-II inhibition activity. J. Mol. Struct. 2025 1322 2 140332 10.1016/j.molstruc.2024.140332
    [Google Scholar]
  24. Al Zahrani N.A. Al-Ghamdi H.A. El-Shishtawy R.M. Synthesis and antioxidant properties of novel hybrid molecules containing gallic acid and thiazolidinone moieties. J. Mol. Struct. 2024 1318 139348 10.1016/j.molstruc.2024.139348
    [Google Scholar]
  25. Gutiérrez MR Unveiling the different chemical reactivity of diphenyl nitrilimine and phenyl nitrile oxide in[3+2] Cycloaddition reactions with (R)-Carvone through the molecular electron density theory. Molecules 2020 25 1085 10.3390/molecules25051085 32121114
    [Google Scholar]
  26. Oubella A. Alossaimi M.A. Riadi Y. Bhat M.A. Bakheit A.H. Taha M.L. Auhmani A. Morjani H. Geesi M.H. Ait Itto M.Y. Thiazolidinone-linked-1,2,3-triazoles with (R)-Carvone as new potential anticancer agents. Future Med. Chem. 2024 16 14 1449 1464 10.1080/17568919.2024.2351287 39190475
    [Google Scholar]
  27. Byadi S. Abdoullah B. Fawzi M. Irrou E. Ait Elmachkouri Y. Oubella A. Auhmani A. Morjani H. Labd Taha M. Robert A. Aboulmouhajir A. Ait Itto M.Y. Discovery of a new Bcl-2 inhibitor through synthesis, anticancer activity, docking and MD simulations. J. Biomol. Struct. Dyn. 2024 42 8 4145 4154 10.1080/07391102.2023.2218934 37255018
    [Google Scholar]
  28. Bimoussa A. Fawzi M. Oubella A. Ejaz S.A. Sajjad Bilal M. Labd Taha M. Auhmani A. Morjani H. Robert A. Riahi A. Ait Itto M.Y. Hybrids of thiazolidinone with 1,2,3-triazole derivatives: Design, synthesis, biological evaluation, in silico studies, molecular docking, molecular dynamics simulations, and ADMET profiling. J. Biomol. Struct. Dyn. 2023 41 21 11987 11999 10.1080/07391102.2022.2164357 36617941
    [Google Scholar]
  29. Kato T. Ozaki T. Tamura K. Suzuki Y. Akima M. Ohi N. Novel calcium antagonists with both calcium overload inhibition and antioxidant activity. 2. Structure-activity relationships of thiazolidinone derivatives. J. Med. Chem. 1999 42 16 3134 3146 10.1021/jm9900927 10447958
    [Google Scholar]
  30. Popp F.D. Rajopadhye M.J. Synthesis and antileukemic activity of spiro[indoline‐3,2′‐thiazolidine]‐2,4′‐diones. J. Heterocycl. Chem. 1987 24 261 10.1002/jhet.5570240150
    [Google Scholar]
  31. Taylor P.J. The infra-red spectroscopy of some 2-substituted thiazolid-4-ones, a new class of enamino-ketone—I. Elucidation of structure. Spectrochim. Acta A 1970 26 1 153 163 10.1016/0584‑8539(70)80258‑6
    [Google Scholar]
  32. Eyduran F. Süleymanoğlu N. Ustabaş R. Synthesis, spectroscopic and computational investigation of N1,N4-bis(3-oxobutanoyl)benzene-1,4-dicarbohydrazide as a coupling component for azo dyes from waste poly(ethyleneterephthalate) bottle. J. Mol. Struct. 2021 1244 130985 10.1016/j.molstruc.2021.130985
    [Google Scholar]
  33. Kunugi A. Matsumoto U. Aizawa Y. Nagase Y. Microdetermination of adrenocortical steroids by double isotope method. I. Determination of cortisol and corticosterone in blood as thiosemicarbazone-35S. Chem. Pharm. Bull. 1973 21 3 503 510 10.1248/cpb.21.503 4727344
    [Google Scholar]
  34. Vögeli U. von Philipsborn W. Nagarajan K. Nair M.D. Structures of addition products of acetylenedicarboxylic acid esters with various Dinucleophiles. An application of C, H‐spin‐coupling constants. Helv. Chim. Acta 1978 61 2 607 617 10.1002/hlca.19780610207
    [Google Scholar]
  35. Cremer D. Pople J.A. General definition of ring puckering coordinates. J. Am. Chem. Soc. 1975 97 6 1354 1358 10.1021/ja00839a011
    [Google Scholar]
  36. Fawzi M. Bimoussa A. Laamari Y. Muhammed M.T. Irfan A. Oubella A. Alossaimi M.A. Riadi Y. Auhmani A. Itto M.Y.A. Multitargeted molecular docking and dynamics simulation studies of 1,3,4-thiadiazoles synthesised from (R)-carvone against specific tumour protein markers: An In-silico study of two diastereoisomers. Comput. Biol. Chem. 2024 112 112 108159 10.1016/j.compbiolchem.2024.108159 39181099
    [Google Scholar]
  37. Kaas S.A. Baara F.T. Megrouss Y. Yahiaoui S. Djafri A. Boudjenane F.Z. Chouaih A. Djafri A. Hatzidimitriou A. Synthesis, crystal structure, Hirshfeld surface analysis, computational investigations and molecular docking studies of (Z)-3-N-(methyl)-2-N′-(4-methoxyphenylimino) thiazolidin-4-one dihydrate. J. Mol. Struct. 2024 1308 137964 10.1016/j.molstruc.2024.137964
    [Google Scholar]
  38. Knott E.B. The electrophilic reactivity of alkoxyalkylidene derivatives of heterocyclic keto-methylene compounds. J. Chem. Soc. 1954 22 1482 1486 10.1039/jr9540001482
    [Google Scholar]
  39. St Laurent D.R. Regioselective synthesis of 3-(heteroaryl)-iminothiazolidin-4-ones Tetrahedron Lett. 2004 45 1907 1910 10.1016/j.tetlet.2004.01.001
    [Google Scholar]
  40. Gursoy A. Synthesis and Isolation of New Regioisomeric 4-Thiazolidinones and Their Anticonvulsant Activity. Turk. J. Chem. 2005 29 247 254
    [Google Scholar]
  41. Ramsh S.M. Smorygo N.A. Khrabrova E.S. Structure of 2-amino-4-thiazolinone and its 2-aryl derivatives in the crystalline state. Chem. Heterocycl. Compd. 1985 21 1 24 29 10.1007/BF00505893
    [Google Scholar]
  42. Metwally M.A. Farahat A.A. Abdel-Wahab B.F. 2-Amino-4-thiazolidinones: Synthesis and reactions. J. Sulfur Chem. 2010 31 4 315 349 10.1080/17415993.2010.482155
    [Google Scholar]
  43. Åkerblom E. Østerberg O. Bak T.A. Holmberg P. Eriksson G. Blinc R. Paušak S. Ehrenberg L. Dumanović J. 2-Aminothiazoline-4-one and 2-Iminothiazolidine-4-one derivatives. Part II. Tautomerism. Acta Chem. Scand. 1967 21 1437 1442 10.3891/acta.chem.scand.21‑1437
    [Google Scholar]
  44. El-Taher S. Metwaly M. DFT and PCM-TD-DFT investigation of the electronic structures and spectra of 5-(3-phenyl-2-propenylidene)-2-thioxo-4-thiazolidinone derivatives. J. Mol. Struct. 2017 1134 840 850 10.1016/j.molstruc.2017.01.014
    [Google Scholar]
  45. Vigorita M.G. Chimirri A. Grasso S. Fenech G. Ir and pmr spectra of 2‐aryl‐4‐thiazolidinones. III. Stereochemical analysis of 2‐aryl‐3‐(2‐pyridyl)‐4‐thiazolidinones. J. Heterocycl. Chem. 1979 16 6 1257 1261 10.1002/jhet.5570160633
    [Google Scholar]
  46. Barone V. Bolognese A. Correale G. Diurno M.V. Gomez-Monterrey I. Mazzoni O. Intramolecular C-H--O interaction between lactam oxygen and N-alkyl protons. J. Mol. Graph. Model. 2001 19 3-4 318 324 10.1016/S1093‑3263(00)00078‑4 11449570
    [Google Scholar]
  47. Sharma A. Sharma D. Saini N. Sharma S.V. Thakur V.K. Goyal R.K. Sharma P.C. Recent advances in synthetic strategies and SAR of thiazolidin-4-one containing molecules in cancer therapeutics. Cancer Metastasis Rev. 2023 42 3 847 889 10.1007/s10555‑023‑10106‑1 37204562
    [Google Scholar]
  48. Fawzi M. Laamari Y. Oubella A. Rehman M.T. Sahin E. Fahad AlAjmi M. Yildiz I. Ait Itto M.Y. Auhmani A. A novel D-limonene derivative: Synthesis, characterization, molecular docking, molecular dynamics and ADMET prediction studies. J. Sulfur Chem. 2024 45 6 831 849 10.1080/17415993.2024.2375308
    [Google Scholar]
  49. Zhang X. Li X. Li D. Qu G. Wang J. Loiseau P.M. Fan X. Ionic liquid mediated and promoted eco-friendly preparation of thiazolidinone and pyrimidine nucleoside–thiazolidinone hybrids and their antiparasitic activities. Bioorg. Med. Chem. Lett. 2009 19 22 6280 6283 10.1016/j.bmcl.2009.09.101 19819695
    [Google Scholar]
  50. Neuenfeldt P.D. Drawanz B.B. Siqueira G.M. Gomes C.R.B. Wardell S.M.S.V. Flores A.F.C. Cunico W. Efficient solvent-free synthesis of thiazolidin-4-ones from phenylhydrazine and 2,4-dinitrophenylhydrazine. Tetrahedron Lett. 2010 51 23 3106 3108 10.1016/j.tetlet.2010.04.026
    [Google Scholar]
  51. Bonhôte P. Dias A.P. Papageorgiou N. Kalyanasundaram K. Grätzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 1996 35 5 1168 1178 10.1021/ic951325x 11666305
    [Google Scholar]
  52. Yadav A.K. Kumar M. Yadav T. Jain R. An ionic liquid mediated one-pot synthesis of substituted thiazolidinones and benzimidazoles. Tetrahedron Lett. 2009 50 35 5031 5034 10.1016/j.tetlet.2009.06.091
    [Google Scholar]
  53. Dandia A. Singh R. Khaturia S. Mérienne C. Morgant G. Loupy A. Efficient microwave enhanced regioselective synthesis of a series of benzimidazolyl/triazolyl spiro [indole-thiazolidinones] as potent antifungal agents and crystal structure of spiro[3H-indole-3,2′-thiazolidine]-3‘(1,2,4-triazol-3-yl)-2,4’(1H)-dione. Bioorg. Med. Chem. 2006 14 7 2409 2417 10.1016/j.bmc.2005.11.025 16321543
    [Google Scholar]
  54. Jung M.E. Ku J.M. Du L. Hu H. Gatti R.A. Synthesis and evaluation of compounds that induce readthrough of premature termination codons. Bioorg. Med. Chem. Lett. 2011 21 19 5842 5848 10.1016/j.bmcl.2011.07.107 21873052
    [Google Scholar]
  55. Pratap U.R. Jawale D.V. Bhosle M.R. Mane R.A. Saccharomyces cerevisiae catalyzed one-pot three component synthesis of 2,3-diaryl-4-thiazolidinones. Tetrahedron Lett. 2011 52 14 1689 1691 10.1016/j.tetlet.2011.01.143
    [Google Scholar]
  56. Pawełczyk A. Zaprutko L. Microwave assisted synthesis of fragrant jasmone heterocyclic analogues. Eur. J. Med. Chem. 2006 41 5 586 591 10.1016/j.ejmech.2005.09.012 16563570
    [Google Scholar]
  57. Mamaghani M. Loghmanifar A. Taati M.R. An efficient one-pot synthesis of new 2-imino-1,3-thiazolidin-4-ones under ultrasonic conditions. Ultrason. Sonochem. 2011 18 1 45 48 10.1016/j.ultsonch.2010.05.009 20579925
    [Google Scholar]
  58. Abkar Aras M. Jafari N. Moshtaghi Zonouz A. Hamishehkar H. An efficient green synthesis and in vitro evaluation of novel adamantane-containing 4-thiazolidinone derivatives as anticancer agents. J. Mol. Struct. 2025 1321 139708 10.1016/j.molstruc.2024.139708
    [Google Scholar]
  59. Sharath Kumar K.S. Swaroop T.R. Harsha K.B. Narasimhamurthy K.H. Rangappa K.S. T3P®-DMSO mediated one pot cascade protocol for the synthesis of 4-thiazolidinones from alcohols. Tetrahedron Lett. 2012 53 42 5619 5623 10.1016/j.tetlet.2012.08.020
    [Google Scholar]
  60. Ostapiuk Y.V. Obushak M.D. Matiychuk V.S. Naskrent M. Gzella A.K. A convenient method for the synthesis of 2-[(5-benzyl-1,3-thiazol-2-yl)imino]-1,3-thiazolidin-4-one derivatives. Tetrahedron Lett. 2012 53 5 543 545 10.1016/j.tetlet.2011.11.093
    [Google Scholar]
  61. Avupati V.R. Yejella R.P. Akula A. Guntuku G.S. Doddi B.R. Vutla V.R. Anagani S.R. Adimulam L.S. Vyricharla A.K. Synthesis, characterization and biological evaluation of some novel 2,4-thiazolidinediones as potential cytotoxic, antimicrobial and antihyperglycemic agents. Bioorg. Med. Chem. Lett. 2012 22 20 6442 6450 10.1016/j.bmcl.2012.08.052 22981328
    [Google Scholar]
  62. Alemán-González-Duhart D. Álvarez-Almazán S. Valdes M. Tamay-Cach F. Mendieta-Wejebe J.E. In vivo and ex vivo evaluation of 1,3-Thiazolidine-2,4-Dione derivatives as euglycemic agents. PPAR Res. 2021 2021 1 11 10.1155/2021/5100531 35003235
    [Google Scholar]
  63. Oubella A. Ait Itto M.Y. Auhmani A. Riahi A. Robert A. Daran J-C. Morjani H. Parish C.A. Esseffar M. Diastereoselective synthesis and cytotoxic evaluation of new isoxazoles and pyrazoles with monoterpenic skeleton. J. Mol. Struct. 2019 1198 126924 10.1016/j.molstruc.2019.126924
    [Google Scholar]
  64. Sing W.T. Lee C.L. Yeo S.L. Lim S.P. Sim M.M. Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorg. Med. Chem. Lett. 2001 11 2 91 94 10.1016/S0960‑894X(00)00610‑7 11206478
    [Google Scholar]
  65. Brown F.C. Jones R.S. Kent M. The aldol condensation with 2,3-diphenyl-4-thiazolidinone. Can. J. Chem. 1963 41 4 817 820 10.1139/v63‑117
    [Google Scholar]
  66. Lozynskyi A. Zimenkovsky B. Yushyn I. Kaminskyy D. Karpenko O. Gzella A.K. Lesyk R. Synthesis of new structurally diverse thiazolidinone-derived compounds based on reaction of isorhodanine with ortho-substituted aldehydes, α-keto- and β-aroylacrylic acids. J. Mol. Struct. 2020 1217 128448 10.1016/j.molstruc.2020.128448
    [Google Scholar]
  67. Unangst C. Synthesis and biological evaluation of 5-[3,5-bis((1,1-dimethylethyl)-4-hydroxyphenyl)methylene]oxazoles, -thiazoles, and -imidazoles: novel dual 5-lipoxygenase and cyclooxygenase inhibitors with anti-inflammatory activity. J. Med. Chem. 1994 37 322 328 10.1021/jm00028a017 8295221
    [Google Scholar]
  68. Riyaz S. Naidu A. Dubey P.K. L-Proline-catalyzed synthesis of novel 5-(1H-Indol-3-yl-methylene)-thiazolidine-2,4-dione derivatives as potential antihyperglycemic agents. Synth. Commun. 2011 41 18 2756 2762 10.1080/00397911.2010.515352
    [Google Scholar]
  69. Lidström P. Tierney J. Wathey B. Westman J. Microwave assisted organic synthesis—A review. Tetrahedron 2001 57 45 9225 9283 10.1016/S0040‑4020(01)00906‑1
    [Google Scholar]
  70. Kaminskyy D.V. Vasylenko O. Atamanyuk D. Atamanyuk D. Lesyk R. Isorhodanine and thiorhodanine motifs in the synthesis of fused thiopyrano[2,3-d][1,3]thiazoles. Synlett 2011 10 1385 1388
    [Google Scholar]
  71. Mahalle S.R. Netankar P.D. Bondge S.P. Mane R.A. An efficient method for Knoevenagel condensation: A facile synthesis of 5-arylidenyl 2,4-thiazolidinedione. Green Chem. Lett. Rev. 2008 1 2 103 106 10.1080/17518250802139881
    [Google Scholar]
  72. Shelke K.F. Sapkal S.B. Kakade G.K. Sadaphal S.A. Shingate B.B. Shingare M.S. Alum catalyzed simple and efficient synthesis of 5-arylidene-2,4-thiazolidinedione in aqueous media. Green Chem. Lett. Rev. 2010 3 1 17 21 10.1080/17518250903478345
    [Google Scholar]
  73. Patel D.J. Chikhalia K.H. Arylsulfenylation of 4-thiazolidinone with elemental sulfur and aryl halide: Thioether linkage (C–S–C). Tetrahedron 2024 156 133947 10.1016/j.tet.2024.133947
    [Google Scholar]
  74. Liu Z. Huang Y. Zhang W. Ma L. Li J. Wang X. Li J. Shen J. Soluble polymer-supported synthesis of 5-arylidene thiazolidinones and pyrimidinones using a novel traceless linker strategy. J. Comb. Chem. 2008 10 5 632 636 10.1021/cc800054e 18642887
    [Google Scholar]
  75. Sortino M. Delgado P. Juárez S. Quiroga J. Abonía R. Insuasty B. Nogueras M. Rodero L. Garibotto F.M. Enriz R.D. Zacchino S.A. Synthesis and antifungal activity of (Z)-5-arylidenerhodanines. Bioorg. Med. Chem. 2007 15 1 484 494 10.1016/j.bmc.2006.09.038 17049255
    [Google Scholar]
  76. Ravi S. Chiruvella K.K. Rajesh K. Prabhu V. Raghavan S.C. 5-Isopropylidene-3-ethyl rhodanine induce growth inhibition followed by apoptosis in leukemia cells. Eur. J. Med. Chem. 2010 45 7 2748 2752 10.1016/j.ejmech.2010.02.054 20236736
    [Google Scholar]
  77. Gazieva G.A. Izmest’ev A.N. Oxoindolinylidene derivatives of thiazolidin-4-ones: Methods of synthesis and biological activity. Chem. Heterocycl. Compd. 2015 50 11 1515 1527 [review]. 10.1007/s10593‑014‑1619‑8
    [Google Scholar]
  78. Pardasani R.T. Pardasani P. Jain A. Kohli S. Synthesis and semiempirical calculations of thiazolidinone and imidazolidinone derivatives of α-Diones. Phosphorus Sulfur Silicon Relat. Elem. 2004 179 8 1569 1575 10.1080/10426500490464131
    [Google Scholar]
  79. Allan F.J. Allan G.G. Cyanorhodanines. J. Heterocycl. Chem. 1970 7 5 1091 1094 10.1002/jhet.5570070514
    [Google Scholar]
  80. Ramsh S.M. Ivanenko A.G. Shpilyovy V.A. Medvedskiy N.L. Kushakova P.M. Synthesis of 2-Aryl and 2-Hetaryl Derivatives of 2′-Aminospiro[(1,3-dioxane)-5,5′-thiazolin]-4′-one and Spiro[(1,3-dioxane)-5,5′-thiazolidine]2′,4′-dione. Chem. Heterocycl. Compd. 2004 40 7 919 926 10.1023/B:COHC.0000044576.75311.08
    [Google Scholar]
  81. Ramsh S.M. Ivanenko A.G. Unusual hydroxymethylation of 2-amino-4-thiazolinone. Chem. Heterocycl. Compd. 2003 39 11 1541 1542 10.1023/B:COHC.0000014427.80052.d8
    [Google Scholar]
  82. Paladhi S. Bhati M. Panda D. Dash J. Thiazolidinedione-isatin conjugates via an uncatalyzed diastereoselective aldol reaction on water. J. Org. Chem. 2014 79 3 1473 1480 10.1021/jo402515d 24383887
    [Google Scholar]
  83. Kaminskyy D. Kryshchyshyn A. Lesyk R. 5-Ene-4-thiazolidinones – An efficient tool in medicinal chemistry. Eur. J. Med. Chem. 2017 140 542 594 10.1016/j.ejmech.2017.09.031 28987611
    [Google Scholar]
  84. Lo C.P. Croxall W.J. Alkoxymethylenerhodanines and their reactions with rhodanines. J. Am. Chem. Soc. 1954 76 16 4166 4169 10.1021/ja01645a033
    [Google Scholar]
  85. Ead H.A. Abdallah S.O. Kassab N.A. Metwalli N.H. Saleh Y.E. 5-(Ethoxymethylene)thiazolidine-2,4-dione derivatives: Reactions and biological activities. Arch. Pharm. 1987 320 12 1227 1232 10.1002/ardp.198700038 3439864
    [Google Scholar]
  86. Senkiv J. Finiuk N. Kaminskyy D. Havrylyuk D. Wojtyra M. Kril I. Gzella A. Stoika R. Lesyk R. 5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells. Eur. J. Med. Chem. 2016 117 33 46 10.1016/j.ejmech.2016.03.089 27089210
    [Google Scholar]
  87. Matiychuk V.S. Lesyk R.B. Obushak M.D. Gzella A. Atamanyuk D.V. Ostapiuk Y.V. Kryshchyshyn A.P. A new domino-Knoevenagel–hetero-Diels–Alder reaction. Tetrahedron Lett. 2008 49 31 4648 4651 10.1016/j.tetlet.2008.05.062
    [Google Scholar]
  88. Bryhas A.O. Horak Y.I. Ostapiuk Y.V. Obushak M.D. Matiychuk V.S. A new three-step domino Knoevenagel–hetero-Diels–Alder oxidation reaction. Tetrahedron Lett. 2011 52 18 2324 2326 10.1016/j.tetlet.2011.02.081
    [Google Scholar]
  89. Majumdar K.C. Taher A. Nandi R.K. Synthesis of heterocycles by domino-Knoevenagel–hetero-Diels–Alder reactions. Tetrahedron 2012 68 29 5693 5718 10.1016/j.tet.2012.04.098
    [Google Scholar]
  90. Bourahla K. Derdour A. Rahmouni M. Carreaux F. Bazureau J.P. A practical access to novel 2-amino-5-arylidene-1,3-thiazol-4(5H)-ones via sulfur/nitrogen displacement under solvent-free microwave irradiation. Tetrahedron Lett. 2007 48 33 5785 5789 10.1016/j.tetlet.2007.06.078
    [Google Scholar]
  91. Zvezdanovic J. Daskalova L. Yancheva D. Cvetkovic D. Markovic D. Anderluh M. Smelcerovic A. 2-Amino-5-alkylidenethiazol-4-ones as promising lipid peroxidation inhibitors. Monatsh. Chem. 2014 145 6 945 952 10.1007/s00706‑014‑1162‑4
    [Google Scholar]
  92. Baharfar R. Shariati N. An efficient one-pot synthesis of novel isatin-based 2-amino thiazol-4-one conjugates using MgO nanoparticles in aqueous media. C. R. Chim. 2013 17 5 413 419 10.1016/j.crci.2013.08.010
    [Google Scholar]
  93. Radi M. Botta L. Casaluce G. Bernardini M. Botta M. Practical one-pot two-step protocol for the microwave-assisted synthesis of highly functionalized rhodanine derivatives. J. Comb. Chem. 2010 12 1 200 205 10.1021/cc9001789 20028090
    [Google Scholar]
  94. Chaban T.I. Ogurtsov V.V. Chaban I.G. Klenina O.V. Komarytsia J.D. Synthesis and antioxidant activity evaluation of novel 5,7-dimethyl-3H-thiazolo[4,5-b]pyridines. Phosphorus Sulfur Silicon Relat. Elem. 2013 188 11 1611 1620 10.1080/10426507.2013.777723
    [Google Scholar]
  95. Behbehani H. Ibrahim H.M. 4-Thiazolidinones in heterocyclic synthesis: Synthesis of novel enaminones, azolopyrimidines and 2-arylimino-5-arylidene-4-thiazolidinones. Molecules 2012 17 6 6362 6385 10.3390/molecules17066362 22634845
    [Google Scholar]
  96. Benyahlou Z.D. Synthesis, crystal structure, Hirshfeld surface, energy framework, NCI-RDG, theoretical calculations and molecular docking of (Z)4,4′-bis[-3-N-ethyl-2-N'-(phenylimino) thiazolidin-4-one] methane. J. Mole. Stru. 2023 1277 134781
    [Google Scholar]
  97. Gautam P. Gautam D. Chaudhary R.P. Regioselective synthesis of new 2,5,6-trisubstituted 5,6-dihydro-2H-pyrazolo[3,4-d]thiazoles from 5-dimethylaminoethylene-thaozolidin-4-thiones. J. Sulfur Chem. 2014 35 6 628 640 10.1080/17415993.2014.944912
    [Google Scholar]
  98. Tverdokhlebov A.V. Resnyanska E.V. Tolmachev A.A. Andrushko A.P. Novel approach to pyrrolo[2,1-b]thiazoles. Synthesis 2003 17 17 2632 2638 10.1055/s‑2003‑42451
    [Google Scholar]
  99. Mahmoud M.R. Synthesis and reactions of (Z)-2-imino-5-(3,4,5-trimethoxybenzylidene)thiazolidin-4(H)-one. Eur. J. Chem. 2011 2 475 479 10.5155/eurjchem.2.4.475‑479.193
    [Google Scholar]
  100. de Melo Rego M.J.B. Synthesis, in vitro anticancer activity and in silico study of new disubstituted thiazolidinedione derivatives. Med. Chem. Res. 2014 23 3220 3226
    [Google Scholar]
  101. Khazaei A. Veisi H. Safaei M. Ahmadian H. Green synthesis of 5-arylidene-2,4-thiazolidinedione, 5-benzylidene rhodanine and dihydrothiophene derivatives catalyzed by hydrated ionic liquid tetrabutylammonium hydroxide in aqueous medium. J. Sulfur Chem. 2014 35 3 270 278 10.1080/17415993.2013.860142
    [Google Scholar]
  102. Sun J. Xia E.Y. Zhang L.L. Yan C.G. Triethylamine-catalyzed domino reactions of 1,3-thiazolidinedione: A facile access to functionalized dihydrothiophenes. Eur. J. Org. Chem. 2009 2009 30 5247 5254 10.1002/ejoc.200900845
    [Google Scholar]
  103. Shi D.Q. Zou Y. Hu Y. Wu H. Improved synthesis of dihydrothiophenes derivatives under ultrasound irradiation. J. Heterocycl. Chem. 2011 48 4 896 900 10.1002/jhet.662
    [Google Scholar]
  104. Hassaneen H.M. Miqdad O.A. Abunada N.M. Fares A.A. Reaction of thiocarboxanilide derivatives of 2-phenylimino-3-phenyl-4-thiazolidinone and 1,3-diphenyl-2-thioxo-4-imidazolone with hydrazonoyl halides and active chloromethylene compounds. Nat. Sci. 2011 3 3 199 207 10.4236/ns.2011.33026
    [Google Scholar]
  105. Hamdy N.A. Abdel-Aziz H.A. Farag A.M. Fakhr I.M.I. Synthesis of some 1,3-thiazole, 1,3,4-thiadiazole, pyrazolo[5,1-c]-1,2,4-triazine, and 1,2,4-triazolo [5,1-c]-1,2,4-triazine derivatives based on the thiazolo[3,2-a]benzimidazole moiety. Monatsh. Chem. 2007 138 10 1001 1010 10.1007/s00706‑007‑0717‑z
    [Google Scholar]
  106. Ke W. Luo X. Liu X. Xu H. Synthesis of cyanine dyes derived from benzotellurazo‐15‐crown‐5. J. Heterocycl. Chem. 2000 37 5 1321 1324 10.1002/jhet.5570370550
    [Google Scholar]
  107. Peng Z.H. Zhou X.F. Carroll S. Geise H.J. Peng B. Dommisse R. Esmans E. Carleer R. Structure of rhodanine cyanine dyes, spectroscopy and performance in photographic emulsions. J. Mater. Chem. 1996 6 8 1325 1333 10.1039/jm9960601325
    [Google Scholar]
  108. Takasu K. Inoue H. Kim H.S. Suzuki M. Shishido T. Wataya Y. Ihara M. Rhodacyanine dyes as antimalarials. 1. Preliminary evaluation of their activity and toxicity. J. Med. Chem. 2002 45 5 995 998 10.1021/jm0155704 11855978
    [Google Scholar]
  109. Brooker L.G.S. Keyes G.H. Sprague R.H. VanDyke R.H. VanLare E. VanZandt G. White F.L. Studies in the cyanine dye series. The merocyanines. J. Am. Chem. Soc. 1951 73 11 5326 5332 10.1021/ja01155a095
    [Google Scholar]
  110. Ya Horishny V. Synthesis and properties of bicyclic nonfused rhodanine derivatives based on amino acids. Farm. Zh. 1995 2 66 70
    [Google Scholar]
  111. Lazukina A.A. Synthesis of 2,2-bis(arylsulphonyl)vinylamines based on bis(trimethylsilyl)-phormamide. Zhur. Org. Chim. 1983 11 2417 2420
    [Google Scholar]
  112. Knott E.B. Jeffreys R.A. Compounds containing sulphur chromophores. Part II. Attempts to prepare sulphide analogues of merocyanines. J. Chem. Soc. 1955 77 927 933 10.1039/jr9550000927
    [Google Scholar]
  113. Deghenghi R. Daneault G. Orotic acid and its analogues: Part II. On the alkaline rearrangement of 5-carboxymethylidenehydantoin. Can. J. Chem. 1960 38 8 1255 1260 10.1139/v60‑178
    [Google Scholar]
  114. Omar M.T. El-Asar N.K. Saied K.F. A one-pot synthesis of 2,3-dihydro-2-thioxothieno[2,3-d]thiazoles. Synthesis 2001 2001 3 0413 0418 10.1055/s‑2001‑11440
    [Google Scholar]
  115. Kaminskyy D. Zimenkovsky B. Lesyk R. Synthesis and in vitro anticancer activity of 2,4-azolidinedione-acetic acids derivatives. Eur. J. Med. Chem. 2009 44 9 3627 3636 10.1016/j.ejmech.2009.02.023 19299038
    [Google Scholar]
  116. Zimenkovskii B.S. Kutsyk R.V. Lesyk R.B. Matyichuk V.S. Obushak N.D. Klyufinska T.I. Synthesis and antimicrobial activity of 2,4-dioxothiazolidine-5-acetic acid amides. Pharm. Chem. J. 2006 40 6 303 306 10.1007/s11094‑006‑0115‑6
    [Google Scholar]
  117. Nagase H. Studies on fungicides. XXIII. Addition of dithiocarbamates and thiocarbamates to 2-thioxo-, 2-oxo- and 2-imino-5-methoxy-carbonylmethylidene-4-thiazolidones. Chem. Pharm. Bull. 1973 21 5 1132 1135 10.1248/cpb.21.1132
    [Google Scholar]
  118. Hachim M.E. Oubella A. Byadi S. Fawzi M. Laamari Y. Bahsis L. Aboulmouhajir A. Morjani H. Podlipnik Č. Auhmani A. Ait Itto M.Y. Newly synthesized (R)-carvone-derived 1,2,3-triazoles: structural, mechanistic, cytotoxic and molecular docking studies. J. Biomol. Struct. Dyn. 2022 40 16 7205 7217 10.1080/07391102.2021.1894984 33719863
    [Google Scholar]
  119. Oubella A. Thiazolidinone-linked-1,2,3-triazoles with monoterpenic skeleton as new potential anticancer agents: Design, synthesis and molecular docking studies. Bioorg. Chem. 2021 115 105184 10.1016/j.bioorg.2021.105184 34333421
    [Google Scholar]
  120. Fawzi M. Laamari Y. Koumya Y. Oubella A. Auhmani A. Itto M.Y.A. Abouelfida A. Riahi A. Auhmani A. Electrochemical and theoretical studies on the corrosion inhibition performance of some synthesized d-Limonene based heterocyclic compounds. J. Mol. Struct. 2021 1244 130957 10.1016/j.molstruc.2021.130957
    [Google Scholar]
  121. Oubella A. Laamari Y. Hachim M.E. Byadi S. Auhmani A. Morjani H. Riahi A. Podlipnik C. Rohand T. Van Meervelt L. Ait Itto M.Y. New gem‑dichlorocyclopropane-pyrazole hybrids with monoterpenic skeleton: Synthesis, crystal structure, cytotoxic evaluation, molecular dynamics and theoretical study. J. Mol. Struct. 2022 1256 132573 10.1016/j.molstruc.2022.132573
    [Google Scholar]
  122. Gouveia F.L. de Oliveira R.M.B. de Oliveira T.B. da Silva I.M. do Nascimento S.C. de Sena K.X.F.R. de Albuquerque J.F.C. Synthesis, antimicrobial and cytotoxic activities of some 5-arylidene-4-thioxo-thiazolidine-2-ones. Eur. J. Med. Chem. 2009 44 5 2038 2043 10.1016/j.ejmech.2008.10.006 19027993
    [Google Scholar]
  123. Korzeniecki C. Priefer R. Targeting KRAS mutant cancers by preventing signaling transduction in the MAPK pathway. Eur. J. Med. Chem. 2021 211 113006 10.1016/j.ejmech.2020.113006 33228976
    [Google Scholar]
  124. Hawsawi M.B. Khan S. Iqbal T. Hussain R. Khan Y. Zahoor T. Dera A.A. Synthesis, characterization and molecular modeling approach of hybrid pyrazole based thiazolidinone derivatives: An estimation and inhibition of diabetes mellitus. J. Mol. Struct. 2025 1322 140407 10.1016/j.molstruc.2024.140407
    [Google Scholar]
  125. Bagdatli E. Mesci S. Yildirim T. Novel antipyrine substituted 4-thiazolidinones: Synthesis, DNA binding and topoisomerase inhibition activities, and in-silico studies. J. Mol. Struct. 2024 1318 139192 10.1016/j.molstruc.2024.139192
    [Google Scholar]
  126. Lesyk R. Vladzimirska O. Holota S. Zaprutko L. Gzella A. New 5-substituted thiazolo[3,2-b][1,2,4]triazol-6-ones: Synthesis and anticancer evaluation. Eur. J. Med. Chem. 2007 42 5 641 648 10.1016/j.ejmech.2006.12.006 17303290
    [Google Scholar]
  127. Yavari I. Sabbaghan M. Porshamsian K. Bagheri M. Ali-Asgari S. Hossaini Z. Efficient synthesis of alkyl 2-[2-(arylcarbonylimino)-3-aryl-4-oxo-1, 3-thiazolan-5-ylidene]-acetates. Mol. Divers. 2007 11 2 81 85 10.1007/s11030‑007‑9061‑9 17588159
    [Google Scholar]
  128. Hassan A.A. Aly A.A. Bedair T.I.M. Brown A.B. El-Emary T.I. A facile method for the synthesis of hydrazine-4-oxothiazolidine and imino-5-oxothiadiazine derivatives from 1,4-disubstituted thiosemicarbazides. J. Heterocycl. Chem. 2014 51 1 44 49 10.1002/jhet.1655
    [Google Scholar]
  129. Aly A.A. Brown A.B. Abdel-Aziz M. Abuo-Rahma G.E-D.A.A. Radwan M.F. Ramadan M. Gamal-Eldeen A.M. An efficient synthesis of thiazolidine-4-ones with antitumor and antioxidant activities. J. Heterocycl. Chem. 2012 49 4 726 731 10.1002/jhe.641
    [Google Scholar]
  130. Mushkalo L.K. Yangol G.Ya. Condensation of carboxylic acid thioamides. Ukr. Khim. Zh. 1955 21 732 737
    [Google Scholar]
  131. Obydennov K.L. Klimareva E.L. Kosterina M.F. Slepukhin P.A. Morzherin Y.Y. Influence of solvent and substituents on the reaction of N-alkylthioacetamides with dimethyl acetylenedicarboxylate: Synthesis of functionalized thiophenes containing an exocyclic double bond. Tetrahedron Lett. 2013 54 36 4876 4879 10.1016/j.tetlet.2013.06.127
    [Google Scholar]
  132. Berseneva V.S. Tkachev A.V. Morzherin Y.Y. Dehaev W. Luyten I. Toppet S. Bakulev V.A. Synthesis of novel thiazolidin-4-ones by reaction of malonthioamide derivatives with dimethyl acetylenedicarboxylate. J. Chem. Soc. Perkin Trans. 1988 1 2133 2136
    [Google Scholar]
  133. Kosterina M.F. Morzherin Y.Y. Kramarenko O.A. Berseneva V.S. Matern A.I. Tkachev A.V. Bakulev V.A. Synthesis and complexing properties of alkyl (3-oxo-2,3-dihydrothiophen-2-ylidene)- and 4-(oxothiazolidin-5-ylidene)acetate derivatives. Russ. J. Org. Chem. 2004 40 6 866 869 10.1023/B:RUJO.0000044550.62124.94
    [Google Scholar]
  134. Lown J.W. Ma J.C.N. Addition reactions of acetylenic esters with substituted thioureas. Can. J. Chem. 1967 45 9 939 951 10.1139/v67‑159
    [Google Scholar]
  135. Khan S. Hussain R. Khan Y. Iqbal T. Islam M.S. Almutairi T.M. Synthesis, confirmation based on in vitro and in silico study of thiadiazole-based thiazolidinone scaffolds: An approach toward Covid-19. Results Chem. 2024 12 101845 10.1016/j.rechem.2024.101845
    [Google Scholar]
  136. Machulkin A.E. Uspenskaya A.A. Zyk N.Y. Nimenko E.A. Ber A.P. Petrov S.A. Shafikov R.R. Skvortsov D.A. Smirnova G.B. Borisova Y.A. Pokrovsky V.S. Kolmogorov V.S. Vaneev A.N. Ivanenkov Y.A. Khudyakov A.D. Kovalev S.V. Erofeev A.S. Gorelkin P.V. Beloglazkina E.K. Zyk N.V. Khazanova E.S. Majouga A.G. PSMA-targeted small-molecule docetaxel conjugate: Synthesis and preclinical evaluation. Eur. J. Med. Chem. 2022 227 113936 10.1016/j.ejmech.2021.113936 34717125
    [Google Scholar]
  137. Alizadeh A. Rostamnia S. Zohreh N. Hosseinpour R. A simple and effective approach to the synthesis of rhodanine derivatives via three-component reactions in water. Tetrahedron Lett. 2009 50 14 1533 1535 10.1016/j.tetlet.2008.12.107
    [Google Scholar]
  138. Appalanaidu K. Dadmal T. Jagadeesh Babu N. Kumbhare R.M. An improved one-pot multicomponent strategy for the preparation of thiazoline, thiazolidinone and thiazolidinol scaffolds. RSC Advances 2015 5 107 88063 88069 10.1039/C5RA17278K
    [Google Scholar]
  139. Jacobine A.M. Posner G.H. Three-component, one-flask synthesis of rhodanines (thiazolidinones). J. Org. Chem. 2011 76 19 8121 8125 10.1021/jo201561t 21853986
    [Google Scholar]
  140. Gabillet S. Lecerclé D. Loreau O. Carboni M. Dézard S. Gomis J.M. Taran F. Phosphine-catalyzed construction of sulfur heterocycles. Org. Lett. 2007 9 20 3925 3927 10.1021/ol701563e 17803312
    [Google Scholar]
  141. Acheson R.M. Wallis J.D. Addition reactions of heterocyclic compounds. Part 74. Products from dimethyl acetylenedicarboxylate with thiourea, thioamide, and guanidine derivatives. J. Chem. Soc., Perkin Trans. 1 1981 1 415 422 10.1039/p19810000415
    [Google Scholar]
  142. Dzurilla M. Kristian P. Imrich J. Štec J. Bromine oxidation of N-(3 or 4-substituted phenyl)-N′-3-phenylpropenoylthioureas. Collect. Czech. Chem. Commun. 1983 48 11 3134 3139 10.1135/cccc19833134
    [Google Scholar]
  143. Pizzo C. Saiz C. Talevi A. Gavernet L. Palestro P. Bellera C. Blanch L.B. Benítez D. Cazzulo J.J. Chidichimo A. Wipf P. Mahler S.G. Synthesis of 2-hydrazolyl-4-thiazolidinones based on multicomponent reactions and biological evaluation against Trypanosoma Cruzi. Chem. Biol. Drug Des. 2011 77 3 166 172 10.1111/j.1747‑0285.2010.01071.x 21251233
    [Google Scholar]
  144. Choughuley A.S. Chadna M.S. Reactions of some epoxy acids with thiourea. Indian J. Chem. 1963 1 437 440
    [Google Scholar]
  145. Chate A.V. Tathe A.G. Nagtilak P.J. Sangle S.M. Gill C.H. Efficient approach to thiazolidinones via a one-pot three-component reaction involving 2-amino-1-phenylethanone hydrochloride, aldehyde and mercaptoacetic acid. Chin. J. Catal. 2016 37 11 1997 2002 10.1016/S1872‑2067(16)62536‑6
    [Google Scholar]
  146. Isidor J.L. McKee R.L. Synthesis of 2-methylene-4-thiazolidinones. J. Org. Chem. 1973 38 20 3615 3617 10.1021/jo00960a039
    [Google Scholar]
  147. Koval’ I.V. Heterocyclization reactions involving thiols. Russ. J. Org. Chem. 2006 42 5 625 651 10.1134/S1070428006050010
    [Google Scholar]
  148. Markovic R.R. Baranac M. Regioselective synthesis of new 5-ethoxycarbonylmethyl-4-oxothiazolidyn-2-ylidene bromides and rearrangement reaction thereof. Synlett 2000 5 607 610
    [Google Scholar]
  149. Marković R. Baranac M. Džambaski Z. Stojanović M. Steel P.J. High regioselectivity in the heterocyclization of β-oxonitriles to 4-oxothiazolidines: X-ray structure proof. Tetrahedron 2003 59 39 7803 7810 10.1016/S0040‑4020(03)01146‑3
    [Google Scholar]
  150. Kavitha C.V. Basappa Swamy S.N. Mantelingu K. Doreswamy S. Sridhar M.A. Shashidhara Prasad J. Rangappa K.S. Synthesis of new bioactive venlafaxine analogs: Novel thiazolidin-4-ones as antimicrobials. Bioorg. Med. Chem. 2006 14 7 2290 2299 10.1016/j.bmc.2005.11.017 16338140
    [Google Scholar]
  151. Shaker R.M. One-pot synthesis of novel 1,10- and 1,4-bridged bisthiazolidinone derivatives and their antimicrobial activity. Phosphorus Sulfur Silicon Relat. Elem. 1999 149 1 7 14 10.1080/10426509908037017
    [Google Scholar]
  152. Smith R.L. Lee T.J. Gould N.P. Cragoe E.J. Jr Oien H.G. Kuehl F.A. Jr Prostaglandin isosteres. 1. (8-Aza-, 8,10-diaza-, and 8-aza-11-thia)-9-oxoprostanoic acids and their derivatives. J. Med. Chem. 1977 20 10 1292 1299 10.1021/jm00220a013 198545
    [Google Scholar]
  153. Kaminskyy D. Khyluk D. Vasylenko O. Lesyk R. An efficient method for the transformation of 5-ylidenerhodanines into 2,3,5-trisubstituted-4-thiazolidinones. Tetrahedron Lett. 2012 53 5 557 559 10.1016/j.tetlet.2011.11.095
    [Google Scholar]
  154. Hofmann B. Barzen S. Rödl C.B. Kiehl A. Borig J. Živković A. Stark H. Schneider G. Steinhilber D. A class of 5-benzylidene-2-phenylthiazolinones with high potency as direct 5-lipoxygenase inhibitors. J. Med. Chem. 2011 54 6 1943 1947 10.1021/jm101165z 21341744
    [Google Scholar]
  155. Zayed E.M. Studies on thiazolin-4-one: Synthesis of some pyrano[2,3-b]thiazole derivatives. Pharmazie 1985 40 194 196
    [Google Scholar]
  156. El-Maghraby A.A. Studies on thiazolopyridines. Part 1: Antimicrobial activity of some novel fluorinated thiazolo[3,2-a]pyridines and thiazolo[20,30:1,6]pyrido[2,3-d]pyrimidines. Phosphorus Sulfur. 2002 177 293 302 10.1080/10426500210240
    [Google Scholar]
  157. El-Gaby M.S.A. Al-Sehemi A.G. Mohamed Y.A. Ammar Y.A. Recent trends in chemistry of thiazolopyridines. Phosphorus Sulfur Silicon Relat. Elem. 2006 181 3 631 674 10.1080/10426500500269885
    [Google Scholar]
  158. Boominathan M. Nagaraj M. Maheshwaran C. Muthusubramanian S. Bhuvanesh N. One-pot green synthesis of thiazolo[3,2-a]pyridine derivatives via tandem cyclization in aqueous media. J. Heterocycl. Chem. 2014 51 1 244 248 10.1002/jhet.1650
    [Google Scholar]
  159. Kambe S. Hayashi T. Thiocyanoacetate. III. The synthesis of 2-hydrazono-4-thiazolidinone derivatives. Bull. Chem. Soc. Jpn. 1972 45 3 952 954 10.1246/bcsj.45.952
    [Google Scholar]
  160. Attanasi O.A. Bartoccini S. Favi G. Giorgi G. Perrulli F.R. Santeusanio S. Powerful approach to heterocyclic skeletal diversity by sequential three-component reaction of amines, isothiocyanates, and 1,2-diaza-1,3-dienes. J. Org. Chem. 2012 77 2 1161 1167 10.1021/jo2021949 22191418
    [Google Scholar]
  161. Pasquier E. Honoré S. Braguer D. Microtubule-targeting agents in angiogenesis: Where do we stand? Drug Resist. Updat. 2006 9 1-2 74 86 10.1016/j.drup.2006.04.003 16714139
    [Google Scholar]
  162. Jackson J.R. Patrick D.R. Dar M.M. Huang P.S. Targeted anti-mitotic therapies: Can we improve on tubulin agents? Nat. Rev. Cancer 2007 7 2 107 117 10.1038/nrc2049 17251917
    [Google Scholar]
  163. Jiang N. Wang X. Yang Y. Dai W. Advances in mitotic inhibitors for cancer treatment. Mini Rev. Med. Chem. 2006 6 8 885 895 10.2174/138955706777934955 16918495
    [Google Scholar]
  164. Schmidt M. Bastians H. Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist. Updat. 2007 10 4-5 162 181 10.1016/j.drup.2007.06.003 17669681
    [Google Scholar]
  165. Boudissa R. Benmohammed A. Chafai N. Boudechicha A. Rekiba N. Lagraa H. Achour M. Khoumeri O. Djafri A. Terme T. Vanelle P. Synthesis, characterization, DFT, antibacterial, ADME-T properties, and molecular docking of new N-functionalized thiazolidinones. J. Mol. Struct. 2024 1307 138004 10.1016/j.molstruc.2024.138004
    [Google Scholar]
  166. Zengin Kurt B. Gökçe M. Şenol H. Öztürk Civelek D. Dandin G. Gazioglu I. Synthesis, cytotoxic evaluation, and in silico studies of novel benzenesulfonamide-thiazolidinone derivatives against colorectal carcinoma. J. Mol. Struct. 2025 1321 140153 10.1016/j.molstruc.2024.140153
    [Google Scholar]
  167. Khan S. Khan Y. Al-Qaaneh A.M. Hussain R. Iqbal T. Ullah H. Shoaib K. Maalik A. Bilal Khan M. Akif M. Al Zahrani S. Aghayeva S. Exploring effective diagnosis of Alzheimer disease: Experimental and computational analysis of hybrid benzimidazole based thiazolidinone derivatives. Results Chem. 2024 9 101663 10.1016/j.rechem.2024.101663
    [Google Scholar]
  168. Singh V. Jha K.T. Singh S. Singh R. Chawla P.A. Targeting inflammation through inhibition of COX-2 by substituted 4-thiazolidinone analogues: In-vitro, in-vivo and in-silico studies. J. Mol. Struct. 2025 1319 139393 10.1016/j.molstruc.2024.139393
    [Google Scholar]
  169. Dwivedi B. Bhardwaj D. Choudhary D. Green design and synthesis of some novel thiazolidinone appended benzothiazole–triazole hybrids as antimicrobial agents. RSC Advances 2024 14 12 8341 8352 10.1039/D4RA00990H 38476177
    [Google Scholar]
  170. Tripathi A.C. Gupta S.J. Fatima G.N. Sonar P.K. Verma A. Saraf S.K. 4-Thiazolidinones: The advances continue…. Eur. J. Med. Chem. 2014 72 52 77 10.1016/j.ejmech.2013.11.017 24355348
    [Google Scholar]
  171. Wu J. Yu L. Yang F. Li J. Wang P. Zhou W. Qin L. Li Y. Luo J. Yi Z. Liu M. Chen Y. Optimization of 2-(3-(arylalkyl amino carbonyl) phenyl)-3-(2-methoxyphenyl)-4-thiazolidinone derivatives as potent antitumor growth and metastasis agents. Eur. J. Med. Chem. 2014 80 340 351 10.1016/j.ejmech.2014.04.068 24794770
    [Google Scholar]
  172. Nolen B.J. Tomasevic N. Russell A. Pierce D.W. Jia Z. McCormick C.D. Hartman J. Sakowicz R. Pollard T.D. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature 2009 460 7258 1031 1034 10.1038/nature08231 19648907
    [Google Scholar]
  173. Yang F. Peng S. Li Y. Su L. Peng Y. Wu J. Chen H. Liu M. Yi Z. Chen Y. A hybrid of thiazolidinone with the hydroxamate scaffold for developing novel histone deacetylase inhibitors with antitumor activities. Org. Biomol. Chem. 2016 14 5 1727 1735 10.1039/C5OB02250A 26732459
    [Google Scholar]
  174. Gandalovicov A. Migrastatics: Anti-metastatic and anti-invasion drugs: Promises and challenges. Trends Cancer 2017 3 391 406
    [Google Scholar]
  175. Abo-Ashour M.F. Eldehna W.M. George R.F. Abdel-Aziz M.M. Elaasser M.M. Abou-Seri S.M. Abdel Gawad N.M. Synthesis and biological evaluation of 2-aminothiazole-thiazolidinone conjugates as potential antitubercular agents. Future Med. Chem. 2018 10 12 1405 1419 10.4155/fmc‑2017‑0327 29788758
    [Google Scholar]
  176. Laamari Y. Ousidi A.N. Bimoussa A. Rehman M.T. AlAjmi M.F. Taha M.L. Oubella A. Ait itto M.Y. Auhmani A. 2-isopropyl-4-methoxy-5-methylphenol-hydrazone derivatives : Synthesis, characterization, and in-silico assessment of EGFR and Bcl2 inhibitory activity. J. Mol. Struct. 2025 1322 1322 140266 10.1016/j.molstruc.2024.140266
    [Google Scholar]
  177. Riadi Y. Design, characterization, and DFT exploration of new quinazoline-N-substituted analogs: Anti-cancer activity and molecular docking insights. J Mol Struct. 2025 1322 Part 1 140420
    [Google Scholar]
  178. Anekal D.P. Biradar J.S. Synthesis and biological evaluation of novel Indolyl 4-thiazolidinones bearing thiadiazine nucleus. Arab. J. Chem. 2017 10 S2098 S2105 10.1016/j.arabjc.2013.07.041
    [Google Scholar]
  179. de Souza M.V.N. Synthesis and biological activity of natural thiazoles: An important class of heterocyclic compounds. J. Sulfur Chem. 2005 26 4-5 429 449 10.1080/17415990500322792
    [Google Scholar]
  180. Riadi Y. Geesi M.H. Oubella A. Itto M.Y.A. Synthesis, spectroscopic analysis, molecular docking and DFT study of novel 1,2,3-Triazole derivatives incorporating paramethoxythymol and salicylaldehyde moieties. J. Mol. Struct. 2024 1318 1318 139251 10.1016/j.molstruc.2024.139251
    [Google Scholar]
  181. Laamari Y. Bimoussa A. Chagaleti B.K. Saravanan V. Alotaibi S.H. Alotaibi F.M. Mk K. Oubella A. Itto M.Y.A. Auhmani A. Thymol-1,2,3-triazole derivatives: Network pharmacology, molecular simulations and synthesis targeting breast cancer. J. Mol. Struct. 2025 1321 1321 140060 10.1016/j.molstruc.2024.140060
    [Google Scholar]
  182. Li Q. Wu J. Zheng H. Liu K. Guo T.L. Liu Y. Eblen S.T. Grant S. Zhang S. Discovery of 3-(2-aminoethyl)-5-(3-phenyl-propylidene)-thiazolidine-2,4-dione as a dual inhibitor of the Raf/MEK/ERK and the PI3K/Akt signaling pathways. Bioorg. Med. Chem. Lett. 2010 20 15 4526 4530 10.1016/j.bmcl.2010.06.030 20580230
    [Google Scholar]
  183. Patil V. Tilekar K. Mehendale-Munj S. Mohan R. Ramaa C.S. Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2,4-thiazolidinedione derivatives. Eur. J. Med. Chem. 2010 45 10 4539 4544 10.1016/j.ejmech.2010.07.014 20667627
    [Google Scholar]
  184. Kadi A.A. El-Brollosy N.R. Al-Deeb O.A. Habib E.E. Ibrahim T.M. El-Emam A.A. Synthesis, antimicrobial, and anti-inflammatory activities of novel 2-(1-adamantyl)-5-substituted-1,3,4-oxadiazoles and 2-(1-adamantylamino)-5-substituted-1,3,4-thiadiazoles. Eur. J. Med. Chem. 2007 42 2 235 242 10.1016/j.ejmech.2006.10.003 17129641
    [Google Scholar]
  185. Bimoussa A. Laamari Y. Fawzi M. Oubella A. Alossaimi M.A. Riadi Y. Varadharajan V. Alotaibi S.H. Taha M.L. Auhmani A. Itto M.Y.A. Synthesis of novel (R)-Carvone-1,2,3-triazole hybrids: Network pharmacology, molecular docking, and dynamics simulation targeting tumor protein markers. J. Mol. Struct. 2025 1322 140489 10.1016/j.molstruc.2024.140489
    [Google Scholar]
  186. Subtel’na I. Atamanyuk D. Szymańska E. Kieć-Kononowicz K. Zimenkovsky B. Vasylenko O. Gzella A. Lesyk R. Synthesis of 5-arylidene-2-amino-4-azolones and evaluation of their anticancer activity. Bioorg. Med. Chem. 2010 18 14 5090 5102 10.1016/j.bmc.2010.05.073 20594860
    [Google Scholar]
  187. Mosula L. Zimenkovsky B. Havrylyuk D. Missir A.V. Chirita I.C. Lesyk R. Evaluation of novel thiazolidinone-based anticancer compounds. Farmacia 2009 57 312 330
    [Google Scholar]
  188. Sonawane N.D. Verkman A.S. Thiazolidinone CFTR inhibitors with improved water solubility identified by structure–activity analysis. Bioorg. Med. Chem. 2008 16 17 8187 8195 10.1016/j.bmc.2008.07.044 18691893
    [Google Scholar]
  189. Ma T. Thiagarajah J.R. Yang H. Sonawane N.D. Folli C. Galietta L.J.V. Verkman A.S. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin–induced intestinal fluid secretion. J. Clin. Invest. 2002 110 11 1651 1658 10.1172/JCI0216112 12464670
    [Google Scholar]
  190. Murphy G.J. Holder J.C. PPAR-γ agonists: Therapeutic role in diabetes, inflammation and cancer. Trends Pharmacol. Sci. 2000 21 12 469 474 10.1016/S0165‑6147(00)01559‑5 11121836
    [Google Scholar]
  191. Huang J.W. Shiau C.W. Yang J. Wang D.S. Chiu H.C. Chen C.Y. Chen C.S. Development of small-molecule cyclin D1-ablative agents. J. Med. Chem. 2006 49 15 4684 4689 10.1021/jm060057h 16854074
    [Google Scholar]
  192. Cutshall N.S. O’Day C. Prezhdo M. Rhodanine derivatives as inhibitors of JSP-1. Bioorg. Med. Chem. Lett. 2005 15 14 3374 3379 10.1016/j.bmcl.2005.05.034 15961311
    [Google Scholar]
  193. Carter P.H. Scherle P.A. Muckelbauer J.A. Voss M.E. Liu R.Q. Thompson L.A. Tebben A.J. Solomon K.A. Lo Y.C. Li Z. Strzemienski P. Yang G. Falahatpisheh N. Xu M. Wu Z. Farrow N.A. Ramnarayan K. Wang J. Rideout D. Yalamoori V. Domaille P. Underwood D.J. Trzaskos J.M. Friedman S.M. Newton R.C. Decicco C.P. Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-α. Proc. Natl. Acad. Sci. USA 2001 98 21 11879 11884 10.1073/pnas.211178398 11592999
    [Google Scholar]
  194. Degterev A. Lugovskoy A. Cardone M. Mulley B. Wagner G. Mitchison T. Yuan J. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat. Cell Biol. 2001 3 2 173 182 10.1038/35055085 11175750
    [Google Scholar]
  195. Dayam R. Aiello F. Deng J. Wu Y. Garofalo A. Chen X. Neamati N. Discovery of small molecule integrin alphavbeta3 antagonists as novel anticancer agents. J. Med. Chem. 2006 49 15 4526 4534 10.1021/jm051296s 16854058
    [Google Scholar]
  196. Ahn J.H. Kim S.J. Park W.S. Cho S.Y. Ha J.D. Kim S.S. Kang S.K. Jeong D.G. Jung S.K. Lee S.H. Kim H.M. Park S.K. Lee K.H. Lee C.W. Ryu S.E. Choi J.K. Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorg. Med. Chem. Lett. 2006 16 11 2996 2999 10.1016/j.bmcl.2006.02.060 16530413
    [Google Scholar]
  197. Chen H. Fan Y.H. Natarajan A. Guo Y. Iyasere J. Harbinski F. Luus L. Christ W. Aktas H. Halperin J.A. Synthesis and biological evaluation of thiazolidine-2,4-dione and 2,4-thione derivatives as inhibitors of translation initiation. Bioorg. Med. Chem. Lett. 2004 14 21 5401 5405 10.1016/j.bmcl.2004.08.017 15454234
    [Google Scholar]
  198. Teraishi F. P-glycoprotein-independent apoptosis induction by a novel synthetic compound, MMPT [5-[(4-methylphenyl)methylene]-2-(phenylamino)-4(5H)-thiazolone]. J. Pharmacol. Exp. Ther. 2005 314 355 362 10.1124/jpet.105.085654 15831436
    [Google Scholar]
  199. Teraishi F. Wu S. Sasaki J. Zhang L. Davis J.J. Guo W. Dong F. Fang B. JNK1-dependent antimitotic activity of thiazolidin compounds in human non-small-cell lung and colon cancer cells. Cell. Mol. Life Sci. 2005 62 19-20 2382 2389 10.1007/s00018‑005‑5365‑z 16179969
    [Google Scholar]
  200. Zhou H. Wu S. Zhai S. Liu A. Sun Y. Li R. Zhang Y. Ekins S. Swaan P.W. Fang B. Zhang B. Yan B. Design, synthesis, cytoselective toxicity, structure-activity relationships, and pharmacophore of thiazolidinone derivatives targeting drug-resistant lung cancer cells. J. Med. Chem. 2008 51 5 1242 1251 10.1021/jm7012024 18257542
    [Google Scholar]
  201. Abbass E.M. Al-Karmalawy A.A. Sharaky M. Khattab M. Alzahrani A.Y.A. Hassaballah A.I. Rational design and eco-friendly one-pot multicomponent synthesis of novel ethylidenehydrazineylthiazol-4(5H)-ones as potential apoptotic inducers targeting wild and mutant EGFR-TK in triple negative breast cancer. Bioorg. Chem. 2024 142 106936 10.1016/j.bioorg.2023.106936 37890211
    [Google Scholar]
  202. Chen S. Chen L. Le N.T. Zhao C. Sidduri A. Lou J.P. Michoud C. Portland L. Jackson N. Liu J.J. Konzelmann F. Chi F. Tovar C. Xiang Q. Chen Y. Wen Y. Vassilev L.T. Synthesis and activity of quinolinyl-methylene-thiazolinones as potent and selective cyclin-dependent kinase 1 inhibitors. Bioorg. Med. Chem. Lett. 2007 17 8 2134 2138 10.1016/j.bmcl.2007.01.081 17303421
    [Google Scholar]
  203. Vassilev L.T. Tovar C. Chen S. Knezevic D. Zhao X. Sun H. Heimbrook D.C. Chen L. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc. Natl. Acad. Sci. USA 2006 103 28 10660 10665 10.1073/pnas.0600447103 16818887
    [Google Scholar]
  204. Blicklé J.F. Thiazolidinediones: Clinical data and perspectives. Diabetes Metab. 2001 27 2 Pt 2 279 285 11452222
    [Google Scholar]
  205. Gegick C.G. Altheimer M.D. Comparison of effects of thiazolidinediones on cardiovascular risk factors: Observations from a clinical practice. Endocr. Pract. 2001 7 3 162 169 10.4158/EP.7.3.162 11421562
    [Google Scholar]
  206. Bansal G. Thanikachalam P.V. Maurya R.K. Chawla P. Ramamurthy S. An overview on medicinal perspective of thiazolidine-2,4-dione: A remarkable scaffold in the treatment of type 2 diabetes. J. Adv. Res. 2020 23 163 205 10.1016/j.jare.2020.01.008 32154036
    [Google Scholar]
  207. Fettach S. Thari F.Z. Karrouchi K. Benbacer L. Lee L.H. Bouyahya A. Cherrah Y. Sefrioui H. Bougrin K. Faouzy M.E.A. Assessment of anti-hyperglycemic and anti-hyperlipidemic effects of thiazolidine-2,4-dione derivatives in HFD-STZ diabetic animal model. Chem. Biol. Interact. 2024 391 110902 10.1016/j.cbi.2024.110902 38367680
    [Google Scholar]
  208. Jazet I.M. Meinders A.E. The thiazolidinedione derivates: A new class of oral blood glucose lowering agents. Ned. Tijdschr. Geneeskd. 2001 145 32 1541 1547 11525086
    [Google Scholar]
  209. Fu H. Hou X. Wang L. Dun Y. Yang X. Fang H. Design, synthesis and biological evaluation of 3-aryl-rhodanine benzoic acids as anti-apoptotic protein Bcl-2 inhibitors. Bioorg. Med. Chem. Lett. 2015 25 22 5265 5269 10.1016/j.bmcl.2015.09.051 26421995
    [Google Scholar]
  210. Kavitha C.V. Chandrappa S. Narasimhamurthy K.H. Rangappa K.S. Synthesis and evaluation of 5-((5-(4-methoxyphenyl)furan-2-yl)methylene)thiazolidine-2,4-diones as a new class of cytotoxic agents for leukemia treatment. Asian J. Biochem. Pharm. Res. 2014 4 309 323
    [Google Scholar]
  211. Kassem A.F. Althomali R.H. Anwar M.M. El-Sofany W.I. Thiazole moiety: A promising scaffold for anticancer drug discovery. J. Mol. Struct. 2024 1303 137510 10.1016/j.molstruc.2024.137510
    [Google Scholar]
  212. Sharath Kumar K.S. Hanumappa A. Hegde M. Narasimhamurthy K.H. Raghavan S.C. Rangappa K.S. Synthesis and antiproliferative effect of novel 4-thiazolidinone-, pyridine- and piperazine-based conjugates on human leukemic cells. Eur. J. Med. Chem. 2014 81 341 349 10.1016/j.ejmech.2014.05.009 24852281
    [Google Scholar]
  213. Suresh N. Nagesh H.N. Chandra Sekhar K.V.G. Kumar A. Shirazi A.N. Parang K. Synthesis of novel ciprofloxacin analogues and evaluation of their anti-proliferative effect on human cancer cell lines. Bioorg. Med. Chem. Lett. 2013 23 23 6292 6295 10.1016/j.bmcl.2013.09.077 24138941
    [Google Scholar]
  214. Kaminskyy D.V. Lesyk R.B. Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives. Biopolim. Kletka 2010 26 2 136 145 10.7124/bc.000150
    [Google Scholar]
  215. Long N. Le Gresley A. Wren S.P. Thiazolidinediones: An in–depth study of their synthesis and application to medicinal chemistry in the treatment of diabetes mellitus. ChemMedChem 2021 16 11 1717 1736 10.1002/cmdc.202100177 33844475
    [Google Scholar]
  216. Kaminskyy D.V. 5-Ylidene-2-thioxo-4-thiazolidinone-3-succinic acids and their derivatives: Synthesis, anticancer activity, QSAR-analysis. J. Org. Pharm. Chem. 2006 4 41 48
    [Google Scholar]
  217. Chandrappa S. Synthesis of 2-(5-([5-(4-chlorophenyl)furan-2-yl]methylene)-4-oxo-2-thioxo-thiazolidin-3-yl)acetic acid derivatives and evaluation of their cytotoxicity and induction of apoptosis in human leukemia cells. Bioorg. Med. Chem. 2009 17 2576 2584 10.1016/j.bmc.2009.01.016 19243955
    [Google Scholar]
  218. Rashid M. Synthesis and SAR strategy of thiazolidinone: A novel approch for cancer traitment. J. Chil. Chem. Soc. 2020 65 2 10.4067/S0717‑97072020000204817
    [Google Scholar]
  219. Havrylyuk D. Mosula L. Zimenkovsky B. Vasylenko O. Gzella A. Lesyk R. Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Eur. J. Med. Chem. 2010 45 11 5012 5021 10.1016/j.ejmech.2010.08.008 20810193
    [Google Scholar]
  220. Havrylyuk D. Zimenkovsky B. Vasylenko O. Zaprutko L. Gzella A. Lesyk R. Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. Eur. J. Med. Chem. 2009 44 4 1396 1404 10.1016/j.ejmech.2008.09.032 19000643
    [Google Scholar]
  221. Havrylyuk D. Roman O. Lesyk R. Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline–thiazolidine-based hybrids. Eur. J. Med. Chem. 2016 113 145 166 10.1016/j.ejmech.2016.02.030 26922234
    [Google Scholar]
  222. El-Naggar M. Novel Thiazolidinone/Thiazolo[3,2-a]Benzimidazolone-Isatin conjugates as apoptotic anti-proliferative agents towards breast cancer: One-pot synthesis and in vitro biological evaluation. Molecules 2018 23 6 1420
    [Google Scholar]
  223. Kaminskyy D. Khyluk D. Vasylenko O. Zaprutko L. Lesyk R. A facile synthesis and anticancer activity evaluation of spiro[thiazolidinone-isatin] conjugates. Sci. Pharm. 2011 79 4 763 777 10.3797/scipharm.1109‑14 22145104
    [Google Scholar]
  224. Wang S. Zhao Y. Zhang G. Lv Y. Zhang N. Gong P. Design, synthesis and biological evaluation of novel 4-thiazolidinones containing indolin-2-one moiety as potential antitumor agent. Eur. J. Med. Chem. 2011 46 8 3509 3518 10.1016/j.ejmech.2011.05.017 21621880
    [Google Scholar]
  225. Wang S. Zhao Y. Zhu W. Liu Y. Guo K. Gong P. Synthesis and anticancer activity of Indolin-2-one derivatives bearing the 4-thiazolidinone moiety. Arch. Pharm. 2012 345 1 73 80 10.1002/ardp.201100082 21932254
    [Google Scholar]
  226. Sun L. Liang C. Shirazian S. Zhou Y. Miller T. Cui J. Fukuda J.Y. Chu J.Y. Nematalla A. Wang X. Chen H. Sistla A. Luu T.C. Tang F. Wei J. Tang C. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem. 2003 46 7 1116 1119 10.1021/jm0204183 12646019
    [Google Scholar]
  227. Sun C.L. Li R. Stafford J.A. Discovery and development of Sunitinib (SU 11248): Multitarget tyrosine kinase inhibitor of tumor growth, survival, and angiogenesis. Kinase Inhibitor Drugs. John Wiley Sons, Inc. Hoboken, New Jersey 2009 1 39 10.1002/9780470524961.ch1
    [Google Scholar]
  228. Lesyk R. Zimenkovsky B. Atamanyuk D. Jensen F. Kieć-Kononowicz K. Gzella A. Anticancer thiopyrano[2,3-d][1,3]thiazol-2-ones with norbornane moiety. Synthesis, cytotoxicity, physico-chemical properties, and computational studies. Bioorg. Med. Chem. 2006 14 15 5230 5240 10.1016/j.bmc.2006.03.053 16632367
    [Google Scholar]
  229. French K.J. Schrecengost R.S. Lee B.D. Zhuang Y. Smith S.N. Eberly J.L. Yun J.K. Smith C.D. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res. 2003 63 18 5962 5969 14522923
    [Google Scholar]
  230. Ha J. Kang E. Seo J. Cho S. Phosphorylation dynamics of JNK signaling: Effects of dual-specificity Phosphatases (DUSPs) on the JNK pathway. Int. J. Mol. Sci. 2019 20 24 6157 10.3390/ijms20246157 31817617
    [Google Scholar]
  231. Geronikaki A. Eleftheriou P. Vicini P. Alam I. Dixit A. Saxena A.K. 2-Thiazolylimino/heteroarylimino-5-arylidene-4-thiazolidinones as new agents with SHP-2 inhibitory action. J. Med. Chem. 2008 51 17 5221 5228 10.1021/jm8004306 18702480
    [Google Scholar]
  232. Elnaggar D.H. Mohamed S.F. Abd-Elghaffar H.S. Elsayed M.A. Amr A.E.G.E. Abou-Amra E.S. Hosny H.M. Awad H.M. Novel indeno-pyrazole and indeno-pyrimidine conjugates: Synthesis, DFT, anticancer screening and in silico studies as potent tubulin inhibitors. J. Mol. Struct. 2025 1321 140175 10.1016/j.molstruc.2024.140175
    [Google Scholar]
  233. Desai N.C. Rajpara K.M. Joshi V.V. Microwave induced synthesis of fluorobenzamides containing thiazole and thiazolidine as promising antimicrobial analogs. J. Fluor. Chem. 2013 145 102 111 10.1016/j.jfluchem.2012.10.012
    [Google Scholar]
  234. Siddiqui I.R. Singh P.K. Singh J. Singh J. Synthesis and fungicidal activity of novel 4,4‘-Bis(2‘ ‘-aryl-5‘ ‘-methyl/unsubstituted-4‘ ‘-oxo-thiazolidin-3‘ ‘-yl) Bibenzyl. J. Agric. Food Chem. 2003 51 24 7062 7065 10.1021/jf0342324 14611172
    [Google Scholar]
  235. Siddiqui R. Singh P.K. Singh J. Synthesis and fungicidal activity of new 4-thiazolidone derivatives. Indian J. Chem. 2005 44B 10 2102 2106
    [Google Scholar]
  236. Kunzler A. Neuenfeldt P.D. das Neves A.M. Pereira C.M.P. Marques G.H. Nascente P.S. Fernandes M.H.V. Hübner S.O. Cunico W. Synthesis, antifungal and cytotoxic activities of 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidinones. Eur. J. Med. Chem. 2013 64 74 80 10.1016/j.ejmech.2013.03.030 23644190
    [Google Scholar]
  237. Šarkanj B. Molnar M. Čačić M. Gille L. 4-Methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem. 2013 139 1-4 488 495 10.1016/j.foodchem.2013.01.027 23561135
    [Google Scholar]
  238. Kwan P. Sills G.J. Brodie M.J. The mechanisms of action of commonly used antiepileptic drugs. Pharmacol. Ther. 2001 90 1 21 34 10.1016/S0163‑7258(01)00122‑X 11448723
    [Google Scholar]
  239. Rogawski M.A. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res. 2006 69 3 273 294 10.1016/j.eplepsyres.2006.02.004 16621450
    [Google Scholar]
  240. Karaküçük-İyidoğan A. Başaran E. Tatar-Yılmaz G. Oruç-Emre E.E. Development of new chiral 1,2,4-triazole-3-thiones and 1,3,4-thiadiazoles with promising in vivo anticonvulsant activity targeting GABAergic system and voltage-gated sodium channels (VGSCs). Bioorg. Chem. 2024 151 107662 10.1016/j.bioorg.2024.107662 39079390
    [Google Scholar]
  241. Oluwaseye A. Uzairu A. Shallangwa G.A. Abechi S.E. In silico study on anticonvulsant activity of isoxazole and thiazole derivatives active in subcutaneous pentylenetetrazole animal model. J. King Saud Univ. Sci. 2020 32 1 116 124 10.1016/j.jksus.2018.03.022
    [Google Scholar]
  242. Archana Srivastava V.K. Kumar A. Synthesis of newer thiadiazolyl and thiazolidinonyl quinazolin-4(3H)-ones as potential anticonvulsant agents. Eur. J. Med. Chem. 2002 37 11 873 882 10.1016/S0223‑5234(02)01389‑2 12446046
    [Google Scholar]
  243. Capan G. Ulusoy N. Ergenç N. Cevdet Ekinci A. Vidin A. Synthesis and anticonvulsant activity of new 3-[(2-furyl)carbonyl]amino-4-thiazolidinone and 2-[(2-furyl)carbonyl]hydrazono-4-thiazoline derivatives. Farmaco 1996 51 11 729 732 9035380
    [Google Scholar]
  244. Raveesha R. Kumar K.Y. Raghu M.S. Prasad S.B.B. Alsalme A. Krishnaiah P. Prashanth M.K. Synthesis, molecular docking, antimicrobial, antioxidant and anticonvulsant assessment of novel S and C-linker thiazole derivatives. Chem. Phys. Lett. 2022 791 16 139408 10.1016/j.cplett.2022.139408
    [Google Scholar]
  245. El-Feky S.A.H. Abd El-Samii Z.K. Synthesis and anticonvulsant properties of some novel quinazolone-thiosemicarbazone and 4-thiazolidone derivatives. Arch. Pharm. 1991 324 6 381 383 10.1002/ardp.19913240613 1763950
    [Google Scholar]
  246. Ergenç N. Capan G. Synthesis and anticonvulsant activity of new 4-thiazolidone and 4-thiazoline derivatives. Farmaco 1994 49 6 449 451 8074788
    [Google Scholar]
  247. Ragab F.A. Eid N.M. el-Tawab H.A. Synthesis and anticonvulsant activity of new thiazolidinone and thioxoimidazolidinone derivatives derived from furochromones. Pharmazie 1997 52 12 926 929 9442556
    [Google Scholar]
  248. Nagar S. Singh H.H. Sinha J.N. Parmar S.S. Anticonvulsant and cardiovascular effects of substituted thiazolidones. J. Med. Chem. 1973 16 2 178 180 10.1021/jm00260a027 4683119
    [Google Scholar]
  249. Parmar S.S. Dwivedi C. Chaudhari A. Gupta T.K. Substituted thiazolidones and their selective inhibition of nicotinamide-adenine dinucleotide dependent oxidations. J. Med. Chem. 1972 15 1 99 101 10.1021/jm00271a030 4331920
    [Google Scholar]
  250. Amin K.M. Rahman D.E.A. Al-Eryani Y.A. Synthesis and preliminary evaluation of some substituted coumarins as anticonvulsant agents. Bioorg. Med. Chem. 2008 16 10 5377 5388 10.1016/j.bmc.2008.04.021 18467106
    [Google Scholar]
  251. Kaur H. Kumar S. Vishwakarma P. Sharma M. Saxena K.K. Kumar A. Synthesis and antipsychotic and anticonvulsant activity of some new substituted oxa/thiadiazolylazetidinonyl/thiazolidinonylcarbazoles. Eur. J. Med. Chem. 2010 45 7 2777 2783 10.1016/j.ejmech.2010.02.060 20392546
    [Google Scholar]
  252. Shingalapur R.V. Hosamani K.M. Keri R.S. Hugar M.H. Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles. Eur. J. Med. Chem. 2010 45 1753 1759 10.1016/j.ejmech.2010.01.007 20122763
    [Google Scholar]
  253. Ghogare J.G. Bhandari S.V. Bothara K.G. Madgulkar A.R. Parashar G.A. Sonawane B.G. Inamdar P.R. Design, synthesis and pharmacological screening of potential anticonvulsant agents using hybrid approach. Eur. J. Med. Chem. 2010 45 3 857 863 10.1016/j.ejmech.2009.09.014 20034707
    [Google Scholar]
  254. Agarwal A. Lata S. Saxena K.K. Srivastava V.K. Kumar A. Synthesis and anticonvulsant activity of some potential thiazolidinonyl 2-oxo/thiobarbituric acids. Eur. J. Med. Chem. 2006 41 10 1223 1229 10.1016/j.ejmech.2006.03.029 16919852
    [Google Scholar]
  255. Rohini R.M. Manjunath M. Synthesis and anti-convulsant activity of triazothiole/thiazolyl thiazolidinone derivatives of indole. Pharma Chem. 2012 4 6 2438 2441
    [Google Scholar]
  256. Morens D.M. Folkers G.K. Fauci A.S. The challenge of emerging and re-emerging infectious diseases. Nature 2004 430 6996 242 249 10.1038/nature02759 15241422
    [Google Scholar]
  257. Levy S.B. Marshall B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004 10 S12 S122 S129 10.1038/nm1145
    [Google Scholar]
  258. Marlovits T.C. Kubori T. Sukhan A. Thomas D.R. Galán J.E. Unger V.M. Structural insights into the assembly of the type III secretion needle complex. Science 2004 306 5698 1040 1042 10.1126/science.1102610 15528446
    [Google Scholar]
  259. Marlovits T.C. Kubori T. Lara-Tejero M. Thomas D. Unger V.M. Galán J.E. Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 2006 441 7093 637 640 10.1038/nature04822 16738660
    [Google Scholar]
  260. Tang D.W. Chen I.C. Chou P.Y. Lai M.J. Liu Z.Y. Tsai K.K. Cheng L.H. Zhao J.X. Cho E.C. Chang H.H. Lin T.E. Hsu K.C. Chen M.C. Liou J.P. HSP90/LSD1 dual inhibitors against prostate cancer as well as patient-derived colorectal organoids. Eur. J. Med. Chem. 2024 278 116801 10.1016/j.ejmech.2024.116801 39241481
    [Google Scholar]
  261. Kauppi A.M. Nordfelth R. Uvell H. Wolf-Watz H. Elofsson M. Targeting bacterial virulence: Inhibitors of type III secretion in Yersinia. Chem. Biol. 2003 10 3 241 249 10.1016/S1074‑5521(03)00046‑2 12670538
    [Google Scholar]
  262. Tsou L.K. Dossa P.D. Hang H.C. Small molecules aimed at type III secretion systems to inhibit bacterial virulence. MedChemComm 2013 4 1 68 79 10.1039/C2MD20213A 23930198
    [Google Scholar]
  263. Felise H.B. Nguyen H.V. Pfuetzner R.A. Barry K.C. Jackson S.R. Blanc M.P. Bronstein P.A. Kline T. Miller S.I. An inhibitor of gram-negative bacterial virulence protein secretion. Cell Host Microbe 2008 4 4 325 336 10.1016/j.chom.2008.08.001 18854237
    [Google Scholar]
  264. Kline T. Barry K.C. Jackson S.R. Felise H.B. Nguyen H.V. Miller S.I. Tethered thiazolidinone dimers as inhibitors of the bacterial type III secretion system. Bioorg. Med. Chem. Lett. 2009 19 5 1340 1343 10.1016/j.bmcl.2009.01.047 19195888
    [Google Scholar]
  265. Knowles J.R. Penicillin resistance: The chemistry of. beta.-lactamase inhibition. Acc. Chem. Res. 1985 18 4 97 104 10.1021/ar00112a001
    [Google Scholar]
  266. Patel H. Mishra L. Noolvi M. Karpoormath R. Singh Cameotra S. Synthesis, in vitro evaluation, and molecular docking studies of azetidinones and thiazolidinones of 2-amino-5-cyclopropyl-1,3,4-thiadiazole as antibacterial agents. Arch. Pharm. 2014 347 9 668 684 10.1002/ardp.201400140 25066774
    [Google Scholar]
  267. Deep A. Kumar P. Narasimhan B. Ramasamy K. Mani V. Mishra R. Majeed A. Synthesis, antimicrobial, anticancer evaluation of 2-(aryl)-4- thiazolidinone derivatives and their QSAR studies. Curr. Top. Med. Chem. 2015 15 11 990 1002 10.2174/1568026615666150317221849 25786509
    [Google Scholar]
  268. Shokooh Saljooghi A. Khabazzadeh H. Khaleghi M. Synthesis of novel 1,8-dioxo octahydroacridine functionalized thioureas and thiazolidinones and evaluation of their antimicrobial activities. J. Indian Chem. Soc. 2017 14 3 727 736 10.1007/s13738‑016‑1024‑6
    [Google Scholar]
  269. Nechak R. Bouzroura S.A. Benmalek Y. Salhi L. Martini S.P. Morizur V. Dunach E. Kolli B.N. Synthesis and antimicrobial activity evaluation of novel 4-Thiazolidinones containing a pyrone moiety. Synth. Commun. 2015 45 2 262 272 10.1080/00397911.2014.970278
    [Google Scholar]
  270. Ahmed S. Zayed M. El-Messery S. Al-Agamy M. Abdel-Rahman H. Design, synthesis, antimicrobial evaluation and molecular modeling study of 1,2,4-Triazole-based 4-Thiazolidinones. Molecules 2016 21 5 568 10.3390/molecules21050568 27144547
    [Google Scholar]
  271. Andres C.J. Bronson J.J. D’Andrea S.V. Deshpande M.S. Falk P.J. Grant-Young K.A. Harte W.E. Ho H.T. Misco P.F. Robertson J.G. Stock D. Sun Y. Walsh A.W. 4-Thiazolidinones: Novel inhibitors of the bacterial enzyme murB. Bioorg. Med. Chem. Lett. 2000 10 8 715 717 10.1016/S0960‑894X(00)00073‑1 10782671
    [Google Scholar]
  272. Haroun M. Tratrat C. Tsolaki E. Geronikaki A. Thiazole-based thiazolidinones as potent antimicrobial agents. Design, synthesis and biological evaluation. Comb. Chem. High Throughput Screen. 2016 19 1 51 57 10.2174/1386207319666151203002348 26632442
    [Google Scholar]
  273. Khan S.A. Asiri A.M. Sharma K. Synthesis of steroidal thiazolidinones as antibacterial agents based on the in vitro and quantum chemistry calculation. Med. Chem. Res. 2013 22 4 1998 2004 10.1007/s00044‑012‑0155‑2
    [Google Scholar]
  274. Küçükgüzel Ş.G. Oruç E.E. Rollas S. Şahin F. Özbek A. Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds. Eur. J. Med. Chem. 2002 37 3 197 206 10.1016/S0223‑5234(01)01326‑5 11900864
    [Google Scholar]
  275. Ballell L. Field R.A. Duncan K. Young R.J. New small-molecule synthetic antimycobacterials. Antimicrob. Agents Chemother. 2005 49 6 2153 2163 10.1128/AAC.49.6.2153‑2163.2005 15917508
    [Google Scholar]
  276. Kulkarni A.R. Anti-microbial activity and film characterization of thiazolidinone derivatives of chitosan. Macromol. Biosci. 2005 5 490 493 10.1002/mabi.200400207 15948225
    [Google Scholar]
  277. Lu H.F. Xie C. Chang J. Lin G.Q. Sun X. Synthesis, cytotoxicity, metabolic stability and pharmacokinetic evaluation of fluorinated docetaxel analogs. Eur. J. Med. Chem. 2011 46 5 1743 1748 10.1016/j.ejmech.2011.02.027 21396751
    [Google Scholar]
  278. Bonde C.G. Gaikwad N.J. Synthesis and preliminary evaluation of some pyrazine containing thiazolines and thiazolidinones as antimicrobial agents. Bioorg. Med. Chem. 2004 12 9 2151 2161 10.1016/j.bmc.2004.02.024 15080915
    [Google Scholar]
  279. Cesur N. Cesur Z. Ergenç N. Uzun M. Kiraz M. Kasimoǧlu Ö. Kaya D. Synthesis and antifungal activity of some 2-aryl-3-substituted 4-thiazolidinones. Arch. Pharm. 1994 327 4 271 272 10.1002/ardp.19943270414 8204028
    [Google Scholar]
  280. Keyser P. Elofsson M. Rosell S. Wolf-Watz H. Virulence blockers as alternatives to antibiotics: Type III secretion inhibitors against Gram‐negative bacteria. J. Intern. Med. 2008 264 1 17 29 10.1111/j.1365‑2796.2008.01941.x 18393958
    [Google Scholar]
  281. Nguyen T.C. Le T.D. Hoang T.K.D. Pham C.T. Alhaji J.A. Nguyen T.C. Truong N.A. Dinh C.P. Van Meervelt L. Synthesis, evaluation of α-glucosidase inhibitory and antimicrobial activities of novel N-(5-arylidene-4-oxo-2-thioxothiazolidin-3-yl)-2-(naphthalen-1-yl)acetamide derivatives. J. Mol. Struct. 2025 1326 141068 10.1016/j.molstruc.2024.141068
    [Google Scholar]
  282. Duncan M.C. Chemical inhibitors of the type three secretion system: Disarming bacterial pathogens. Antimicrob Agents Chemother. 2012 56 11 5433 5441 10.1128/AAC.00975‑12
    [Google Scholar]
  283. Vicini P. Geronikaki A. Incerti M. Zani F. Dearden J. Hewitt M. 2-Heteroarylimino-5-benzylidene-4-thiazolidinones analogues of 2-thiazolylimino-5-benzylidene-4-thiazolidinones with antimicrobial activity: Synthesis and structure–activity relationship. Bioorg. Med. Chem. 2008 16 7 3714 3724 10.1016/j.bmc.2008.02.001 18299196
    [Google Scholar]
  284. Patel R.V. Patel P.K. Kumari P. Rajani D.P. Chikhalia K.H. Synthesis of benzimidazolyl-1,3,4-oxadiazol-2ylthio-N-phenyl (benzothiazolyl) acetamides as antibacterial, antifungal and antituberculosis agents. Eur. J. Med. Chem. 2012 53 41 51 10.1016/j.ejmech.2012.03.033 22516426
    [Google Scholar]
  285. Chawla P. Singh R. Saraf S.K. Syntheses and evaluation of 2,5-disubstituted 4-thiazolidinone analogues as antimicrobial agents. Med. Chem. Res. 2012 21 8 2064 2071 10.1007/s00044‑011‑9730‑1
    [Google Scholar]
  286. Chawla P. Singh R. Saraf S.K. Effect of chloro and fluoro groups on the antimicrobial activity of 2,5-disubstituted 4-thiazolidinones: A comparative study. Med. Chem. Res. 2012 21 10 3263 3271 10.1007/s00044‑011‑9864‑1
    [Google Scholar]
  287. Bondock S. Khalifa W. Fadda A.A. Synthesis and antimicrobial evaluation of some new thiazole, thiazolidinone and thiazoline derivatives starting from 1-chloro-3,4-dihydronaphthalene-2-carboxaldehyde. Eur. J. Med. Chem. 2007 42 7 948 954 10.1016/j.ejmech.2006.12.025 17316908
    [Google Scholar]
  288. Khan S.A. Yusuf M. Yusuf M. Synthesis and biological evaluation of some thiazolidinone derivatives of steroid as antibacterial agents. Eur. J. Med. Chem. 2009 44 6 2597 2600 10.1016/j.ejmech.2008.09.004 19211172
    [Google Scholar]
  289. Sharma M.C. QSAR, synthesis and biological activity studies of some thiazolidinones derivatives. Dig J Nanomater Biostruct.. 2009 4 223 232
    [Google Scholar]
  290. El-Gaby M.S.A. El-Hag Ali G.A.M. El-Maghraby A.A. Abd El-Rahman M.T. Helal M.H.M. Synthesis, characterization and in vitro antimicrobial activity of novel 2-thioxo-4-thiazolidinones and 4,4′-bis(2-thioxo-4-thiazolidinone-3-yl)diphenylsulfones. Eur. J. Med. Chem. 2009 44 10 4148 4152 10.1016/j.ejmech.2009.05.005 19540629
    [Google Scholar]
  291. Palekar V.S. Damle A.J. Shukla S.R. Synthesis and antibacterial activity of some novel bis-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and bis-4-thiazolidinone derivatives from terephthalic dihydrazide. Eur. J. Med. Chem. 2009 44 12 5112 5116 10.1016/j.ejmech.2009.07.023 19683841
    [Google Scholar]
  292. Yang X.C. Zhang P.L. Kumar K.V. Li S. Geng R.X. Zhou C.H. Discovery of unique thiazolidinone-conjugated coumarins as novel broad spectrum antibacterial agents. Eur. J. Med. Chem. 2022 232 114192 10.1016/j.ejmech.2022.114192 35168149
    [Google Scholar]
  293. Abo-Ashour M.F. Eldehna W.M. George R.F. Abdel-Aziz M.M. Elaasser M.M. Abdel Gawad N.M. Gupta A. Bhakta S. Abou-Seri S.M. Novel indole-thiazolidinone conjugates: Design, synthesis and whole-cell phenotypic evaluation as a novel class of antimicrobial agents. Eur. J. Med. Chem. 2018 160 49 60 10.1016/j.ejmech.2018.10.008 30317025
    [Google Scholar]
  294. Arineitwe C. Oderinlo O. Tukulula M. Khanye S. Khathi A. Sibiya N. Discovery of novel thiazolidinedione-derivatives with multi-modal antidiabetic activities in vitro and in silico. Int. J. Mol. Sci. 2023 24 3 3024 10.3390/ijms24033024 36769344
    [Google Scholar]
  295. Maity T.K. Paul A. Maji A. Sarkar A. Saha S. Janah P. Approaches in the synthesis of 5-arylidene-2,4-thiazolidinedione derivatives using Knoevenagel condensation. Mini Rev. Org. Chem. 2023 20 1 5 34 10.2174/1570193X19666220331155705
    [Google Scholar]
  296. Levshin I.B. Simonov A.Y. Lavrenov S.N. Panov A.A. Grammatikova N.E. Alexandrov A.A. Ghazy E.S.M.O. Savin N.A. Gorelkin P.V. Erofeev A.S. Polshakov V.I. Antifungal thiazolidines: Synthesis and biological evaluation of mycosidine congeners. Pharmaceuticals 2022 15 5 563 10.3390/ph15050563 35631390
    [Google Scholar]
  297. Ottaná R. Mazzon E. Dugo L. Monforte F. Maccari R. Sautebin L. De Luca G. Vigorita M.G. Alcaro S. Ortuso F. Caputi A.P. Cuzzocrea S. Modeling and biological evaluation of 3,3′-(1,2-ethanediyl)bis[2-(4-methoxyphenyl)-thiazolidin-4-one], a new synthetic cyclooxygenase-2 inhibitor. Eur. J. Pharmacol. 2002 448 1 71 80 10.1016/S0014‑2999(02)01888‑5 12126974
    [Google Scholar]
  298. Vigorita M.G. Chiral 3,3′-(1,2-ethanediyl)-bis[2-(3,4-dimethoxyphenyl)-4-thiazolidinones] with anti-inflammatory activity. Bioorg. Med. Chem. 2003 11 999 1006 10.1016/S0968‑0896(02)00518‑7 12614885
    [Google Scholar]
  299. Vigorita M.G. 3,3′-Bi(1,3-thiazolidin-4-one) system. VIII. 3,3′-(1,2-Ethanediyl) derivatives and corresponding 1,1′-disulfones: Synthesis, stereochemistry and anti-inflammatory activity. Farmaco 1997 52 43 48 9181681
    [Google Scholar]
  300. Abdellatif K.R.A. Abdelgawad M.A. Elshemy H.A.H. Alsayed S.S.R. Design, synthesis and biological screening of new 4-thiazolidinone derivatives with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorg. Chem. 2016 64 1 12 10.1016/j.bioorg.2015.11.001 26561742
    [Google Scholar]
  301. Silva A.A.R. Silva Góes A.J. Lima W.T. Souza Maia M.B. Antiedematogenic activity of two thiazolidine derivatives: N-Tryptophyl-5-(3,5-di-tert-butyl-4-hydroxybenzylidene) Rhodanine (GS26) and N-Tryptophyl-5-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2,4-thiazolidinedione (GS28). Chem. Pharm. Bull. 2003 51 12 1351 1355 10.1248/cpb.51.1351 14646308
    [Google Scholar]
  302. Song Y. Connor D.T. Doubleday R. Sorenson R.J. Sercel A.D. Unangst P.C. Roth B.D. Gilbertsen R.B. Chan K. Schrier D.J. Guglietta A. Bornemeier D.A. Dyer R.D. Synthesis, structure-activity relationships, and in vivo evaluations of substituted di-tert-butylphenols as a novel class of potent, selective, and orally active cyclooxygenase-2 inhibitors. 1. Thiazolone and oxazolone series. J. Med. Chem. 1999 42 7 1151 1160 10.1021/jm9805081 10197959
    [Google Scholar]
  303. Cho H. Tai H.H. Thiazolidinediones as a novel class of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase inhibitors. Arch. Biochem. Biophys. 2002 405 2 247 251 10.1016/S0003‑9861(02)00352‑1 12220539
    [Google Scholar]
  304. Michelet J.F. Colombe L. Gautier B. Gaillard O. Benech F. Pereira R. Boulle C. Dalko-Csiba M. Rozot R. Neuwels M. Bernard B.A. Expression of NAD + dependent 15‐hydroxyprostaglandin dehydrogenase and protection of prostaglandins in human hair follicle. Exp. Dermatol. 2008 17 10 821 828 10.1111/j.1600‑0625.2008.00706.x 18328086
    [Google Scholar]
  305. Wu Y. Tai H.H. Cho H. Synthesis and SAR of thiazolidinedione derivatives as 15-PGDH inhibitors. Bioorg. Med. Chem. 2010 18 4 1428 1433 10.1016/j.bmc.2010.01.016 20122835
    [Google Scholar]
  306. Chadha N. Bahia M.S. Kaur M. Silakari O. Thiazolidine-2,4-dione derivatives: Programmed chemical weapons for key protein targets of various pathological conditions. Bioorg. Med. Chem. 2015 23 13 2953 2974 10.1016/j.bmc.2015.03.071 25890697
    [Google Scholar]
  307. Panico A. Maccari R. Cardile V. Crasci L. Ronsisvalle S. Ottanà R. 5-Arylidene-4-thiazolidinone derivatives active as antidegenerative agents on human chondrocyte cultures. Med. Chem. 2013 9 1 84 90 10.2174/157340613804488378 22762165
    [Google Scholar]
  308. Panico A.M. Vicini P. Geronikaki A. Incerti M. Cardile V. Crascì L. Messina R. Ronsisvalle S. Heteroarylimino-4-thiazolidinones as inhibitors of cartilage degradation. Bioorg. Chem. 2011 39 1 48 52 10.1016/j.bioorg.2010.11.002 21208635
    [Google Scholar]
  309. Ottanà R. Maccari R. Barreca M.L. Bruno G. Rotondo A. Rossi A. Chiricosta G. Di Paola R. Sautebin L. Cuzzocrea S. Vigorita M.G. 5-Arylidene-2-imino-4-thiazolidinones: Design and synthesis of novel anti-inflammatory agents. Bioorg. Med. Chem. 2005 13 13 4243 4252 10.1016/j.bmc.2005.04.058 15905093
    [Google Scholar]
  310. Kumar A. Rajput C.S. Bhati S.K. Synthesis of 3-[4′-(p-chlorophenyl)-thiazol-2′-yl]-2-[(substituted azetidinone/thiazolidinone)-aminomethyl]-6-bromoquinazolin-4-ones as anti-inflammatory agent. Bioorg. Med. Chem. 2007 15 8 3089 3096 10.1016/j.bmc.2007.01.042 17317192
    [Google Scholar]
  311. Bhati S.K. Kumar A. Synthesis of new substituted azetidinoyl and thiazolidinoyl-1,3,4-thiadiazino (6,5-b) indoles as promising anti-inflammatory agents. Eur. J. Med. Chem. 2008 43 11 2323 2330 10.1016/j.ejmech.2007.10.012 18063224
    [Google Scholar]
  312. Saegusa H. Kurihara T. Zong S. Kazuno A. Matsuda Y. Nonaka T. Han W. Toriyama H. Tanabe T. Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. EMBO J. 2001 20 10 2349 2356 10.1093/emboj/20.10.2349 11350923
    [Google Scholar]
  313. Miljanich G.P. Ziconotide: Neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 2004 11 23 3029 3040 10.2174/0929867043363884 15578997
    [Google Scholar]
  314. Knutsen L.J.S. Hobbs C.J. Earnshaw C.G. Fiumana A. Gilbert J. Mellor S.L. Radford F. Smith N.J. Birch P.J. Russell Burley J. Ward S.D.C. James I.F. Synthesis and SAR of novel 2-arylthiazolidinones as selective analgesic N-type calcium channel blockers. Bioorg. Med. Chem. Lett. 2007 17 3 662 667 10.1016/j.bmcl.2006.10.098 17134896
    [Google Scholar]
  315. Eleftheriou P. Geronikaki A. Hadjipavlou-Litina D. Vicini P. Filz O. Filimonov D. Poroikov V. Chaudhaery S.S. Roy K.K. Saxena A.K. Fragment-based design, docking, synthesis, biological evaluation and structure–activity relationships of 2-benzo/benzisothiazolimino-5-aryliden-4-thiazolidinones as cycloxygenase/lipoxygenase inhibitors. Eur. J. Med. Chem. 2012 47 1 111 124 10.1016/j.ejmech.2011.10.029 22119153
    [Google Scholar]
  316. Rawal R.K. Solomon V.R. Prabhakar Y.S. Topological descriptors in modeling the HIV inhibitory activity of 2-aryl-3-pyridyl-thiazolidin-4-ones. Comb. Chem. High Throughput Screen. 2005 8 5 439 443 10.2174/1386207054546496 16101583
    [Google Scholar]
  317. Rawal R.K. Tripathi R. Katti S.B. Pannecouque C. De Clercq E. Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Bioorg. Med. Chem. 2007 15 4 1725 1731 10.1016/j.bmc.2006.12.003 17178227
    [Google Scholar]
  318. Barreca M.L. Chimirri A. De Luca L. Monforte A.M. Monforte P. Rao A. Zappalà M. Balzarini J. De Clercq E. Pannecouque C. Witvrouw M. Discovery of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV-1 agents. Bioorg. Med. Chem. Lett. 2001 11 13 1793 1796 10.1016/S0960‑894X(01)00304‑3 11425562
    [Google Scholar]
  319. Barreca M.L. Balzarini J. Chimirri A. Clercq E.D. Luca L.D. Höltje H.D. Höltje M. Monforte A.M. Monforte P. Pannecouque C. Rao A. Zappalà M. Design, synthesis, structure-activity relationships, and molecular modeling studies of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV agents. J. Med. Chem. 2002 45 24 5410 5413 10.1021/jm020977+ 12431069
    [Google Scholar]
  320. Prabhakar Y.S. CP-MLR/PLS Directed Structure-Activity Modeling of the HIV-1 RT inhibitory activity of 2,3-diaryl-1,3-thiazolidin-4-ones. Mol. Inform. 2004 23 4 234 244
    [Google Scholar]
  321. Zhou L. Chen W. Cao C. Shi Y. Ye W. Hu J. Wang L. Zhou W. Design and synthesis of α-naphthoflavone chimera derivatives able to eliminate cytochrome P450 (CYP)1B1-mediated drug resistance via targeted CYP1B1 degradation. Eur. J. Med. Chem. 2020 189 112028 10.1016/j.ejmech.2019.112028 31945665
    [Google Scholar]
  322. Rawal R.K. Prabhakar Y.S. Katti S.B. De Clercq E. 2-(Aryl)-3-furan-2-ylmethyl-thiazolidin-4-ones as selective HIV-RT inhibitors. Bioorg. Med. Chem. 2005 13 24 6771 6776 10.1016/j.bmc.2005.07.063 16198576
    [Google Scholar]
  323. Suryawanshi R. Jadhav S. Makwana N. Desai D. Chaturbhuj D. Sonawani A. Idicula-Thomas S. Murugesan V. Katti S.B. Tripathy S. Paranjape R. Kulkarni S. Evaluation of 4-thiazolidinone derivatives as potential reverse transcriptase inhibitors against HIV-1 drug resistant strains. Bioorg. Chem. 2017 71 211 218 10.1016/j.bioorg.2017.02.007 28236450
    [Google Scholar]
  324. Ravichandran V. Prashantha Kumar B.R. Sankar S. Agrawal R.K. Predicting anti-HIV activity of 1,3,4-thiazolidinone derivatives: 3D-QSAR approach. Eur. J. Med. Chem. 2009 44 3 1180 1187 10.1016/j.ejmech.2008.05.036 18687505
    [Google Scholar]
  325. Jiang S. Tala S.R. Lu H. Abo-Dya N.E. Avan I. Gyanda K. Lu L. Katritzky A.R. Debnath A.K. Design, synthesis, and biological activity of novel 5-((Arylfuran/1 H -pyrrol-2-yl)methylene)-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-4-ones as HIV-1 fusion inhibitors targeting gp41. J. Med. Chem. 2011 54 2 572 579 10.1021/jm101014v 21190369
    [Google Scholar]
  326. Maga G. Falchi F. Garbelli A. Belfiore A. Witvrouw M. Manetti F. Botta M. Pharmacophore modeling and molecular docking led to the discovery of inhibitors of human immunodeficiency virus-1 replication targeting the human cellular aspartic acid-glutamic acid-alanine-aspartic acid box polypeptide 3. J. Med. Chem. 2008 51 21 6635 6638 10.1021/jm8008844 18834110
    [Google Scholar]
  327. Dayam R. Gundla R. Al-Mawsawi L.Q. Neamati N. HIV‐1 integrase inhibitors: 2005–2006 update. Med. Res. Rev. 2008 28 1 118 154 10.1002/med.20116 17979144
    [Google Scholar]
  328. Dayam R. Sanchez T. Clement O. Shoemaker R. Sei S. Neamati N. β-diketo acid pharmacophore hypothesis. 1. Discovery of a novel class of HIV-1 integrase inhibitors. J. Med. Chem. 2005 48 1 111 120 10.1021/jm0496077 15634005
    [Google Scholar]
  329. Lange C.M. Review article: Specifically targeted antiviral therapy for hepatitis C a new era in therapy. Aliment. Pharmacol. Ther. 2010 32 14 28 10.1111/j.1365‑2036.2010.04317.x 20374226
    [Google Scholar]
  330. Parfieniuk A. Jaroszewicz J. Flisiak R. Specifically targeted antiviral therapy for hepatitis C virus. World J. Gastroenterol. 2007 13 43 5673 5681 10.3748/wjg.v13.i43.5673 17963291
    [Google Scholar]
  331. Thompson A.J.V. McHutchison J.G. Antiviral resistance and specifically targeted therapy for HCV (STAT‐C). J. Viral Hepat. 2009 16 6 377 387 10.1111/j.1365‑2893.2009.01124.x 19472445
    [Google Scholar]
  332. Vermehren J. Sarrazin C. New HCV therapies on the horizon. Clin. Microbiol. Infect. 2011 17 2 122 134 10.1111/j.1469‑0691.2010.03430.x 21087349
    [Google Scholar]
  333. Küçükgüzel İ. Satılmış G. Gurukumar K.R. Basu A. Tatar E. Nichols D.B. Talele T.T. Kaushik-Basu N. 2-Heteroarylimino-5-arylidene-4-thiazolidinones as a new class of non-nucleoside inhibitors of HCV NS5B polymerase. Eur. J. Med. Chem. 2013 69 931 941 10.1016/j.ejmech.2013.08.043 24161679
    [Google Scholar]
  334. Barreca M.L. Iraci N. Manfroni G. Cecchetti V. Allosteric inhibition of the hepatitis C virus NS5B polymerase: In silico strategies for drug discovery and development. Future Med. Chem. 2011 3 8 1027 1055 10.4155/fmc.11.53 21707403
    [Google Scholar]
  335. Yan S. Appleby T. Larson G. Wu J.Z. Hamatake R. Hong Z. Yao N. Structure-based design of a novel thiazolone scaffold as HCV NS5B polymerase allosteric inhibitors. Bioorg. Med. Chem. Lett. 2006 16 22 5888 5891 10.1016/j.bmcl.2006.08.056 16934455
    [Google Scholar]
  336. Yan S. Appleby T. Larson G. Wu J.Z. Hamatake R.K. Hong Z. Yao N. Thiazolone-acylsulfonamides as novel HCV NS5B polymerase allosteric inhibitors: Convergence of structure-based drug design and X-ray crystallographic study. Bioorg. Med. Chem. Lett. 2007 17 7 1991 1995 10.1016/j.bmcl.2007.01.024 17276060
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298368489250325083742
Loading
/content/journals/mroc/10.2174/0118756298368489250325083742
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: antifungal ; Thiazolidinones ; rhodanines ; pharmacological ; anticancer ; anti-HIV
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test