Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Thiazolidinones and their 5-ene derivatives have become pivotal in organic and medicinal chemistry due to their diverse pharmacological potential. These compounds have been widely explored for their therapeutic applications, with thiazolidine-based frameworks yielding numerous biologically active molecules. This review consolidates various synthetic approaches to thiazolidinone and 5-ene derivatives, including core modifications, one-pot or multistage syntheses, and transformations of related heterocycles. The manuscript highlights key pharmacological targets of thiazolidinones, ranging from initial hit compounds to fully developed drugs. Specifically, thiazolidinone-rhodanines often appear as frequent hitters or pan-assay interference compounds in high-throughput screens. Studies have shown that modifications at the C5 carbon, particularly through the addition of a 5-ene fraction, enhance the pharmacological profile of these compounds. Additionally, the review addresses substitutions at the C5 and N3 positions, including 5-ene and carboxyl groups, and discusses the biological utility of these modifications. Integrating pharmacologically active groups within a heterocyclic system often results in enhanced bioactivity. The review highlights innovative synthetic strategies for thiazolidinone derivatives, emphasizing the potential of these compounds to explore a broad spectrum of biological activities through structural diversity and targeted modifications.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298368489250325083742
2025-04-23
2026-02-02
Loading full text...

Full text loading...

References

  1. JeyaramanR. AvilaS. Chemistry of 3-azabicyclo[3.3.1]nonanes.Chem. Rev.198181214917410.1021/cr00042a002
    [Google Scholar]
  2. NirwanS. ChahalV. KakkarR. Thiazolidinones: Synthesis, reactivity, and their biological applications.J. Heterocycl. Chem.20195641239125310.1002/jhet.3514
    [Google Scholar]
  3. AlamF. IslamM.A. MohamedM. AhmadI. KamalM.A. DonnellyR. IdrisI. GanS.H. Efficacy and safety of pioglitazone monotherapy in type 2 diabetes mellitus: A systematic review and meta-analysis of randomised controlled trials.Sci. Rep.201991538910.1038/s41598‑019‑41854‑2 30926892
    [Google Scholar]
  4. SiddiquiN. ArshadM.F. AhsanW. AlamM.S. Thiazoles, a valuable insight into the recent advances and biological activities.Int. J. Pharm. Sci. Drug Res.2009113614310.25004/IJPSDR.2009.010302
    [Google Scholar]
  5. de Moraes GomesP.A.T. de Oliveira BarbosaM. Farias SantiagoE. de Oliveira CardosoM.V. Capistrano CostaN.T. HernandesM.Z. MoreiraD.R.M. da SilvaA.C. dos SantosT.A.R. PereiraV.R.A. Brayner dos SantosdF.A. PereiraN.G.A. FerreiraR.S. LeiteA.C.L. New 1,3-thiazole derivatives and their biological and ultrastructural effects on Trypanosoma cruzi.Eur. J. Med. Chem.201612138739810.1016/j.ejmech.2016.05.050 27295485
    [Google Scholar]
  6. de Oliveira FilhoG.B. de Oliveira CardosoM.V. EspíndolaJ.W.P. FerreiraL.F.G.R. de SimoneC.A. FerreiraR.S. CoelhoP.L. MeiraC.S. MoreiraM.D.R. SoaresM.B.P. Lima LeiteA.C. Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi.Bioorg. Med. Chem.201523237478748610.1016/j.bmc.2015.10.048 26549870
    [Google Scholar]
  7. dos SantosT.A.R. da SilvaA.C. SilvaE.B. GomesP.A.T.M. EspíndolaJ.W.P. CardosoM.V.O. MoreiraD.R.M. LeiteA.C.L. PereiraV.R.A. Antitumor and immunomodulatory activities of thiosemicarbazones and 1,3-Thiazoles in Jurkat and HT-29 cells.Biomed. Pharmacother.20168255556010.1016/j.biopha.2016.05.038 27470396
    [Google Scholar]
  8. BrownF.C. 4-Thiazolidinones.Chem. Rev.196161546352110.1021/cr60213a002
    [Google Scholar]
  9. NewkomeG.R. NayakA. 4-Thiazolidinones.Adv. Heterocycl. Chem.1980258311210.1016/S0065‑2725(08)60690‑X
    [Google Scholar]
  10. SinghS.P. Chemistry and biological activity of thiazolidinones.Chem. Rev.19818117520310.1021/cr00042a003
    [Google Scholar]
  11. Abdel-RahmanR.M. Chemoselective heterocyclization and pharmacological activities of new heterocycles-A review. Part V-Synthesis of biocidal 4-thiazolidinones derivatives.Boll. Chim. Farm.20011406401410 11822229
    [Google Scholar]
  12. VermaA. SarafS.K. 4-Thiazolidinone – A biologically active scaffold.Eur. J. Med. Chem.200843589790510.1016/j.ejmech.2007.07.017 17870209
    [Google Scholar]
  13. HamamaW.S. GoudaM.A. BadrM.H. ZoorobH.H. Synthesis of some new fused and binary 1,3,4-Thiadiazoles as potential antitumor and antioxidant agents.J. Heterocycl. Chem.201350478779410.1002/jhet.1569
    [Google Scholar]
  14. JainA.K. VaidyaA. RavichandranV. KashawS.K. AgrawalR.K. Recent developments and biological activities of thiazolidinone derivatives: A review.Bioorg. Med. Chem.201220113378339510.1016/j.bmc.2012.03.069 22546204
    [Google Scholar]
  15. BimoussaA. HachimM.E. LaamariY. GeesiM.H. MuhammedM.T. AlamriM.A. RiadiY. YildizI. OubellaA. AlotaibiS.H. AuhmaniA. IttoM.Y.A. Computational assessment of the reactivity and anticancer activity of 1,2,3-triazole-thiazolidinones derivatives: An approach combining DFT calculations, molecular dynamics simulations, molecular docking, and ADMET.J. Mol. Struct.20251321213975610.1016/j.molstruc.2024.139756
    [Google Scholar]
  16. LaamariY. MuhammedM.T. IrfanA. OubellaA. AlossaimiM.A. GeesiM.H. RiadiY. TahaM.L. MorjaniH. AuhmaniA. IttoM.Y.A. New isoxazoline‐linked 1,3,4‐thiadiazole derivatives: Synthesis, antiproliferative activity, molecular docking, molecular dynamics and DFT.J. Mol. Struct.20251319213936810.1016/j.molstruc.2024.139368
    [Google Scholar]
  17. Koyambo-KonzapaS-J. GeesiM.H. OubellaA. AlamriM.A. IbrahimM.A.A. AkmanF. TahaM. RiadiY. AuhmaniA. Ait IttoM.Y. Computational and experimental characterisation of a new (R)-camphor-Thiazolidinone derivative: A combined approach for structure optimisation and activity prediction.J. Mol. Liq.202441012561510.1016/j.molliq.2024.125615
    [Google Scholar]
  18. Koyambo-KonzapaS-J. OubellaA. IssaouiN. AmoloG. TahaM.L. GeesiM.H. AldakhilT. RiadiY. AuhmaniA. IttoM.Y.A. Molecular structure, spectroscopic (FT-IR, NMR and UV–Vis), electronic properties, molecular docking, and molecular dynamics studies on novel thiazolidinone derivative: A potent breast cancer drug.J. Mol. Struct.20241318213930110.1016/j.molstruc.2024.139301
    [Google Scholar]
  19. BimoussaA. MouradF. OubellaA. AlossaimiM.A. RiadiY. EjazS.A. AzizM. FayyazA. taha AuhmaniA. IttoM.Y.A. Multitargeted molecular docking and dynamics simulation studies of thiazolidinones synthesised from (R)-carvone against specific tumour protein markers: Synthesis, spectroscopic characterization and in-silico study.J. Mol. Struct.20241318113917110.1016/j.molstruc.2024.139171
    [Google Scholar]
  20. MukhrishY.E. AmriN.J. Al-humaidiJ.Y. OubellaA. AuhmaniA. IttoM.Y.A. Discovery of novel thiazolidinone-1,2,3-triazole hybrids with (D)-Limonene skeleton as anticancer agents: Design, synthesis and biological evaluation.J. Mol. Struct.2024130813812710.1016/j.molstruc.2024.138127
    [Google Scholar]
  21. LesykR. ZimenkovskyB. 4-Thiazolidones: Centenarian history, current status and perspectives for modern organic and medicinal chemistry.Curr. Org. Chem.20048161547157710.2174/1385272043369773
    [Google Scholar]
  22. GuptaA. SinghR. SonarP.K. SarafS.K. Novel 4-Thiazolidinone derivatives as anti-infective agents: Synthesis, characterization, and antimicrobial evaluation.Biochem. Res. Int.201620161810.1155/2016/8086762 26925267
    [Google Scholar]
  23. LaamariY. FawziM. abida EjazS. AzizM. AliO. AlotaibiS.H. AlossaimiM.A. DehbiO. RiadiY. Ait ittoM.Y. AuhmaniA. Exploration of new thiazolidinones derived from natural verbenone: Design, synthesis, characterization, and in silico evaluation of alkaline phosphatase and carbonic anhydrase-II inhibition activity.J. Mol. Struct.20251322214033210.1016/j.molstruc.2024.140332
    [Google Scholar]
  24. Al ZahraniN.A. Al-GhamdiH.A. El-ShishtawyR.M. Synthesis and antioxidant properties of novel hybrid molecules containing gallic acid and thiazolidinone moieties.J. Mol. Struct.2024131813934810.1016/j.molstruc.2024.139348
    [Google Scholar]
  25. GutiérrezM.R. Unveiling the different chemical reactivity of diphenyl nitrilimine and phenyl nitrile oxide in[3+2] Cycloaddition reactions with (R)-Carvone through the molecular electron density theory.Molecules202025108510.3390/molecules25051085 32121114
    [Google Scholar]
  26. OubellaA. AlossaimiM.A. RiadiY. BhatM.A. BakheitA.H. TahaM.L. AuhmaniA. MorjaniH. GeesiM.H. Ait IttoM.Y. Thiazolidinone-linked-1,2,3-triazoles with (R)-Carvone as new potential anticancer agents.Future Med. Chem.202416141449146410.1080/17568919.2024.2351287 39190475
    [Google Scholar]
  27. ByadiS. AbdoullahB. FawziM. IrrouE. Ait ElmachkouriY. OubellaA. AuhmaniA. MorjaniH. Labd TahaM. RobertA. AboulmouhajirA. Ait IttoM.Y. Discovery of a new Bcl-2 inhibitor through synthesis, anticancer activity, docking and MD simulations.J. Biomol. Struct. Dyn.20244284145415410.1080/07391102.2023.2218934 37255018
    [Google Scholar]
  28. BimoussaA. FawziM. OubellaA. EjazS.A. Sajjad BilalM. Labd TahaM. AuhmaniA. MorjaniH. RobertA. RiahiA. Ait IttoM.Y. Hybrids of thiazolidinone with 1,2,3-triazole derivatives: Design, synthesis, biological evaluation, in silico studies, molecular docking, molecular dynamics simulations, and ADMET profiling.J. Biomol. Struct. Dyn.20234121119871199910.1080/07391102.2022.2164357 36617941
    [Google Scholar]
  29. KatoT. OzakiT. TamuraK. SuzukiY. AkimaM. OhiN. Novel calcium antagonists with both calcium overload inhibition and antioxidant activity. 2. Structure-activity relationships of thiazolidinone derivatives.J. Med. Chem.199942163134314610.1021/jm9900927 10447958
    [Google Scholar]
  30. PoppF.D. RajopadhyeM.J. Synthesis and antileukemic activity of spiro[indoline‐3,2′‐thiazolidine]‐2,4′‐diones.J. Heterocycl. Chem.19872426110.1002/jhet.5570240150
    [Google Scholar]
  31. TaylorP.J. The infra-red spectroscopy of some 2-substituted thiazolid-4-ones, a new class of enamino-ketone—I. Elucidation of structure.Spectrochim. Acta A197026115316310.1016/0584‑8539(70)80258‑6
    [Google Scholar]
  32. EyduranF. SüleymanoğluN. UstabaşR. Synthesis, spectroscopic and computational investigation of N1,N4-bis(3-oxobutanoyl)benzene-1,4-dicarbohydrazide as a coupling component for azo dyes from waste poly(ethyleneterephthalate) bottle.J. Mol. Struct.2021124413098510.1016/j.molstruc.2021.130985
    [Google Scholar]
  33. KunugiA. MatsumotoU. AizawaY. NagaseY. Microdetermination of adrenocortical steroids by double isotope method. I. Determination of cortisol and corticosterone in blood as thiosemicarbazone-35S.Chem. Pharm. Bull.197321350351010.1248/cpb.21.503 4727344
    [Google Scholar]
  34. VögeliU. von PhilipsbornW. NagarajanK. NairM.D. Structures of addition products of acetylenedicarboxylic acid esters with various Dinucleophiles. An application of C, H‐spin‐coupling constants.Helv. Chim. Acta197861260761710.1002/hlca.19780610207
    [Google Scholar]
  35. CremerD. PopleJ.A. General definition of ring puckering coordinates.J. Am. Chem. Soc.19759761354135810.1021/ja00839a011
    [Google Scholar]
  36. FawziM. BimoussaA. LaamariY. MuhammedM.T. IrfanA. OubellaA. AlossaimiM.A. RiadiY. AuhmaniA. IttoM.Y.A. Multitargeted molecular docking and dynamics simulation studies of 1,3,4-thiadiazoles synthesised from (R)-carvone against specific tumour protein markers: An In-silico study of two diastereoisomers.Comput. Biol. Chem.202411211210815910.1016/j.compbiolchem.2024.108159 39181099
    [Google Scholar]
  37. KaasS.A. BaaraF.T. MegroussY. YahiaouiS. DjafriA. BoudjenaneF.Z. ChouaihA. DjafriA. HatzidimitriouA. Synthesis, crystal structure, Hirshfeld surface analysis, computational investigations and molecular docking studies of (Z)-3-N-(methyl)-2-N′-(4-methoxyphenylimino) thiazolidin-4-one dihydrate.J. Mol. Struct.2024130813796410.1016/j.molstruc.2024.137964
    [Google Scholar]
  38. KnottE.B. The electrophilic reactivity of alkoxyalkylidene derivatives of heterocyclic keto-methylene compounds.J. Chem. Soc.1954221482148610.1039/jr9540001482
    [Google Scholar]
  39. St LaurentD.R. Regioselective synthesis of 3-(heteroaryl)-iminothiazolidin-4-ones.Tetrahedron Lett.2004451907191010.1016/j.tetlet.2004.01.001
    [Google Scholar]
  40. GursoyA. Synthesis and isolation of new regioisomeric 4-thiazolidinones and their anticonvulsant activity.Turk. J. Chem.200529247254
    [Google Scholar]
  41. RamshS.M. SmorygoN.A. KhrabrovaE.S. Structure of 2-amino-4-thiazolinone and its 2-aryl derivatives in the crystalline state.Chem. Heterocycl. Compd.1985211242910.1007/BF00505893
    [Google Scholar]
  42. MetwallyM.A. FarahatA.A. Abdel-WahabB.F. 2-Amino-4-thiazolidinones: Synthesis and reactions.J. Sulfur Chem.201031431534910.1080/17415993.2010.482155
    [Google Scholar]
  43. ÅkerblomE. ØsterbergO. BakT.A. HolmbergP. ErikssonG. BlincR. PaušakS. EhrenbergL. DumanovićJ. 2-Aminothiazoline-4-one and 2-Iminothiazolidine-4-one derivatives. Part II. Tautomerism.Acta Chem. Scand.1967211437144210.3891/acta.chem.scand.21‑1437
    [Google Scholar]
  44. El-TaherS. MetwalyM. DFT and PCM-TD-DFT investigation of the electronic structures and spectra of 5-(3-phenyl-2-propenylidene)-2-thioxo-4-thiazolidinone derivatives.J. Mol. Struct.2017113484085010.1016/j.molstruc.2017.01.014
    [Google Scholar]
  45. VigoritaM.G. ChimirriA. GrassoS. FenechG. Ir and pmr spectra of 2‐aryl‐4‐thiazolidinones. III. Stereochemical analysis of 2‐aryl‐3‐(2‐pyridyl)‐4‐thiazolidinones.J. Heterocycl. Chem.19791661257126110.1002/jhet.5570160633
    [Google Scholar]
  46. BaroneV. BologneseA. CorrealeG. DiurnoM.V. Gomez-MonterreyI. MazzoniO. Intramolecular C-H-O interaction between lactam oxygen and N-alkyl protons.J. Mol. Graph. Model.2001193-431832410.1016/S1093‑3263(00)00078‑4 11449570
    [Google Scholar]
  47. SharmaA. SharmaD. SainiN. SharmaS.V. ThakurV.K. GoyalR.K. SharmaP.C. Recent advances in synthetic strategies and SAR of thiazolidin-4-one containing molecules in cancer therapeutics.Cancer Metastasis Rev.202342384788910.1007/s10555‑023‑10106‑1 37204562
    [Google Scholar]
  48. FawziM. LaamariY. OubellaA. RehmanM.T. SahinE. Fahad AlAjmiM. YildizI. Ait IttoM.Y. AuhmaniA. A novel D-limonene derivative: Synthesis, characterization, molecular docking, molecular dynamics and ADMET prediction studies.J. Sulfur Chem.202445683184910.1080/17415993.2024.2375308
    [Google Scholar]
  49. ZhangX. LiX. LiD. QuG. WangJ. LoiseauP.M. FanX. Ionic liquid mediated and promoted eco-friendly preparation of thiazolidinone and pyrimidine nucleoside–thiazolidinone hybrids and their antiparasitic activities.Bioorg. Med. Chem. Lett.200919226280628310.1016/j.bmcl.2009.09.101 19819695
    [Google Scholar]
  50. NeuenfeldtP.D. DrawanzB.B. SiqueiraG.M. GomesC.R.B. WardellS.M.S.V. FloresA.F.C. CunicoW. Efficient solvent-free synthesis of thiazolidin-4-ones from phenylhydrazine and 2,4-dinitrophenylhydrazine.Tetrahedron Lett.201051233106310810.1016/j.tetlet.2010.04.026
    [Google Scholar]
  51. BonhôteP. DiasA.P. PapageorgiouN. KalyanasundaramK. GrätzelM. Hydrophobic, highly conductive ambient-temperature molten salts.Inorg. Chem.19963551168117810.1021/ic951325x 11666305
    [Google Scholar]
  52. YadavA.K. KumarM. YadavT. JainR. An ionic liquid mediated one-pot synthesis of substituted thiazolidinones and benzimidazoles.Tetrahedron Lett.200950355031503410.1016/j.tetlet.2009.06.091
    [Google Scholar]
  53. DandiaA. SinghR. KhaturiaS. MérienneC. MorgantG. LoupyA. Efficient microwave enhanced regioselective synthesis of a series of benzimidazolyl/triazolyl spiro (indole-thiazolidinones) as potent antifungal agents and crystal structure of spiro[3H-indole-3,2′-thiazolidine)-3‘(1,2,4-triazol-3-yl)-2,4’(1H)-dione.Bioorg. Med. Chem.20061472409241710.1016/j.bmc.2005.11.025 16321543
    [Google Scholar]
  54. JungM.E. KuJ.M. DuL. HuH. GattiR.A. Synthesis and evaluation of compounds that induce readthrough of premature termination codons.Bioorg. Med. Chem. Lett.201121195842584810.1016/j.bmcl.2011.07.107 21873052
    [Google Scholar]
  55. PratapU.R. JawaleD.V. BhosleM.R. ManeR.A. Saccharomyces cerevisiae catalyzed one-pot three component synthesis of 2,3-diaryl-4-thiazolidinones.Tetrahedron Lett.201152141689169110.1016/j.tetlet.2011.01.143
    [Google Scholar]
  56. PawełczykA. ZaprutkoL. Microwave assisted synthesis of fragrant jasmone heterocyclic analogues.Eur. J. Med. Chem.200641558659110.1016/j.ejmech.2005.09.012 16563570
    [Google Scholar]
  57. MamaghaniM. LoghmanifarA. TaatiM.R. An efficient one-pot synthesis of new 2-imino-1,3-thiazolidin-4-ones under ultrasonic conditions.Ultrason. Sonochem.2011181454810.1016/j.ultsonch.2010.05.009 20579925
    [Google Scholar]
  58. Abkar ArasM. JafariN. Moshtaghi ZonouzA. HamishehkarH. An efficient green synthesis and in vitro evaluation of novel adamantane-containing 4-thiazolidinone derivatives as anticancer agents.J. Mol. Struct.2025132113970810.1016/j.molstruc.2024.139708
    [Google Scholar]
  59. Sharath KumarK.S. SwaroopT.R. HarshaK.B. NarasimhamurthyK.H. RangappaK.S. T3P®-DMSO mediated one pot cascade protocol for the synthesis of 4-thiazolidinones from alcohols.Tetrahedron Lett.201253425619562310.1016/j.tetlet.2012.08.020
    [Google Scholar]
  60. OstapiukY.V. ObushakM.D. MatiychukV.S. NaskrentM. GzellaA.K. A convenient method for the synthesis of 2-[(5-benzyl-1,3-thiazol-2-yl)imino]-1,3-thiazolidin-4-one derivatives.Tetrahedron Lett.201253554354510.1016/j.tetlet.2011.11.093
    [Google Scholar]
  61. AvupatiV.R. YejellaR.P. AkulaA. GuntukuG.S. DoddiB.R. VutlaV.R. AnaganiS.R. AdimulamL.S. VyricharlaA.K. Synthesis, characterization and biological evaluation of some novel 2,4-thiazolidinediones as potential cytotoxic, antimicrobial and antihyperglycemic agents.Bioorg. Med. Chem. Lett.201222206442645010.1016/j.bmcl.2012.08.052 22981328
    [Google Scholar]
  62. Alemán-González-DuhartD. Álvarez-AlmazánS. ValdesM. Tamay-CachF. Mendieta-WejebeJ.E. In vivo and ex vivo evaluation of 1,3-Thiazolidine-2,4-Dione derivatives as euglycemic agents.PPAR Res.2021202111110.1155/2021/5100531 35003235
    [Google Scholar]
  63. OubellaA. Ait IttoM.Y. AuhmaniA. RiahiA. RobertA. DaranJ-C. MorjaniH. ParishC.A. EsseffarM. Diastereoselective synthesis and cytotoxic evaluation of new isoxazoles and pyrazoles with monoterpenic skeleton.J. Mol. Struct.2019119812692410.1016/j.molstruc.2019.126924
    [Google Scholar]
  64. SingW.T. LeeC.L. YeoS.L. LimS.P. SimM.M. Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor.Bioorg. Med. Chem. Lett.2001112919410.1016/S0960‑894X(00)00610‑7 11206478
    [Google Scholar]
  65. BrownF.C. JonesR.S. KentM. The aldol condensation with 2,3-diphenyl-4-thiazolidinone.Can. J. Chem.196341481782010.1139/v63‑117
    [Google Scholar]
  66. LozynskyiA. ZimenkovskyB. YushynI. KaminskyyD. KarpenkoO. GzellaA.K. LesykR. Synthesis of new structurally diverse thiazolidinone-derived compounds based on reaction of isorhodanine with ortho-substituted aldehydes, α-keto- and β-aroylacrylic acids.J. Mol. Struct.2020121712844810.1016/j.molstruc.2020.128448
    [Google Scholar]
  67. UnangstC. Synthesis and biological evaluation of 5-[3,5-bis((1,1-dimethylethyl)-4-hydroxyphenyl)methylene]oxazoles, -thiazoles, and -imidazoles: novel dual 5-lipoxygenase and cyclooxygenase inhibitors with anti-inflammatory activity.J. Med. Chem.19943732232810.1021/jm00028a017 8295221
    [Google Scholar]
  68. RiyazS. NaiduA. DubeyP.K. L-Proline-catalyzed synthesis of novel 5-(1H-Indol-3-yl-methylene)-thiazolidine-2,4-dione derivatives as potential antihyperglycemic agents.Synth. Commun.201141182756276210.1080/00397911.2010.515352
    [Google Scholar]
  69. LidströmP. TierneyJ. WatheyB. WestmanJ. Microwave assisted organic synthesis—A review.Tetrahedron200157459225928310.1016/S0040‑4020(01)00906‑1
    [Google Scholar]
  70. KaminskyyD.V. VasylenkoO. AtamanyukD. AtamanyukD. LesykR. Isorhodanine and thiorhodanine motifs in the synthesis of fused thiopyrano[2,3-d][1,3]thiazoles.Synlett20111013851388
    [Google Scholar]
  71. MahalleS.R. NetankarP.D. BondgeS.P. ManeR.A. An efficient method for Knoevenagel condensation: A facile synthesis of 5-arylidenyl 2,4-thiazolidinedione.Green Chem. Lett. Rev.20081210310610.1080/17518250802139881
    [Google Scholar]
  72. ShelkeK.F. SapkalS.B. KakadeG.K. SadaphalS.A. ShingateB.B. ShingareM.S. Alum catalyzed simple and efficient synthesis of 5-arylidene-2,4-thiazolidinedione in aqueous media.Green Chem. Lett. Rev.201031172110.1080/17518250903478345
    [Google Scholar]
  73. PatelD.J. ChikhaliaK.H. Arylsulfenylation of 4-thiazolidinone with elemental sulfur and aryl halide: Thioether linkage (C–S–C).Tetrahedron202415613394710.1016/j.tet.2024.133947
    [Google Scholar]
  74. LiuZ. HuangY. ZhangW. MaL. LiJ. WangX. LiJ. ShenJ. Soluble polymer-supported synthesis of 5-arylidene thiazolidinones and pyrimidinones using a novel traceless linker strategy.J. Comb. Chem.200810563263610.1021/cc800054e 18642887
    [Google Scholar]
  75. SortinoM. DelgadoP. JuárezS. QuirogaJ. AboníaR. InsuastyB. NoguerasM. RoderoL. GaribottoF.M. EnrizR.D. ZacchinoS.A. Synthesis and antifungal activity of (Z)-5-arylidenerhodanines.Bioorg. Med. Chem.200715148449410.1016/j.bmc.2006.09.038 17049255
    [Google Scholar]
  76. RaviS. ChiruvellaK.K. RajeshK. PrabhuV. RaghavanS.C. 5-Isopropylidene-3-ethyl rhodanine induce growth inhibition followed by apoptosis in leukemia cells.Eur. J. Med. Chem.20104572748275210.1016/j.ejmech.2010.02.054 20236736
    [Google Scholar]
  77. GazievaG.A. Izmest’evA.N. Oxoindolinylidene derivatives of thiazolidin-4-ones: Methods of synthesis and biological activity.Chem. Heterocycl. Compd.201550111515152710.1007/s10593‑014‑1619‑8
    [Google Scholar]
  78. PardasaniR.T. PardasaniP. JainA. KohliS. Synthesis and semiempirical calculations of thiazolidinone and imidazolidinone derivatives of α-Diones.Phosphorus Sulfur Silicon Relat. Elem.200417981569157510.1080/10426500490464131
    [Google Scholar]
  79. AllanF.J. AllanG.G. Cyanorhodanines.J. Heterocycl. Chem.1970751091109410.1002/jhet.5570070514
    [Google Scholar]
  80. RamshS.M. IvanenkoA.G. ShpilyovyV.A. MedvedskiyN.L. KushakovaP.M. Synthesis of 2-Aryl and 2-hetaryl derivatives of 2′-aminospiro[(1,3-dioxane)-5,5′-thiazolin]-4′-one and spiro[(1,3-dioxane)-5,5′-thiazolidine]2′,4′-dione.Chem. Heterocycl. Compd.200440791992610.1023/B:COHC.0000044576.75311.08
    [Google Scholar]
  81. RamshS.M. IvanenkoA.G. Unusual hydroxymethylation of 2-amino-4-thiazolinone.Chem. Heterocycl. Compd.200339111541154210.1023/B:COHC.0000014427.80052.d8
    [Google Scholar]
  82. PaladhiS. BhatiM. PandaD. DashJ. Thiazolidinedione-isatin conjugates via an uncatalyzed diastereoselective aldol reaction on water.J. Org. Chem.20147931473148010.1021/jo402515d 24383887
    [Google Scholar]
  83. KaminskyyD. KryshchyshynA. LesykR. 5-Ene-4-thiazolidinones – An efficient tool in medicinal chemistry.Eur. J. Med. Chem.201714054259410.1016/j.ejmech.2017.09.031 28987611
    [Google Scholar]
  84. LoC.P. CroxallW.J. Alkoxymethylenerhodanines and their reactions with rhodanines.J. Am. Chem. Soc.195476164166416910.1021/ja01645a033
    [Google Scholar]
  85. EadH.A. AbdallahS.O. KassabN.A. MetwalliN.H. SalehY.E. 5-(Ethoxymethylene)thiazolidine-2,4-dione derivatives: Reactions and biological activities.Arch. Pharm.1987320121227123210.1002/ardp.198700038 3439864
    [Google Scholar]
  86. SenkivJ. FiniukN. KaminskyyD. HavrylyukD. WojtyraM. KrilI. GzellaA. StoikaR. LesykR. 5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells.Eur. J. Med. Chem.2016117334610.1016/j.ejmech.2016.03.089 27089210
    [Google Scholar]
  87. MatiychukV.S. LesykR.B. ObushakM.D. GzellaA. AtamanyukD.V. OstapiukY.V. KryshchyshynA.P. A new domino-Knoevenagel–hetero-Diels–Alder reaction.Tetrahedron Lett.200849314648465110.1016/j.tetlet.2008.05.062
    [Google Scholar]
  88. BryhasA.O. HorakY.I. OstapiukY.V. ObushakM.D. MatiychukV.S. A new three-step domino Knoevenagel–hetero-Diels–Alder oxidation reaction.Tetrahedron Lett.201152182324232610.1016/j.tetlet.2011.02.081
    [Google Scholar]
  89. MajumdarK.C. TaherA. NandiR.K. Synthesis of heterocycles by domino-Knoevenagel–hetero-Diels–Alder reactions.Tetrahedron201268295693571810.1016/j.tet.2012.04.098
    [Google Scholar]
  90. BourahlaK. DerdourA. RahmouniM. CarreauxF. BazureauJ.P. A practical access to novel 2-amino-5-arylidene-1,3-thiazol-4(5H)-ones via sulfur/nitrogen displacement under solvent-free microwave irradiation.Tetrahedron Lett.200748335785578910.1016/j.tetlet.2007.06.078
    [Google Scholar]
  91. ZvezdanovicJ. DaskalovaL. YanchevaD. CvetkovicD. MarkovicD. AnderluhM. SmelcerovicA. 2-Amino-5-alkylidenethiazol-4-ones as promising lipid peroxidation inhibitors.Monatsh. Chem.2014145694595210.1007/s00706‑014‑1162‑4
    [Google Scholar]
  92. BaharfarR. ShariatiN. An efficient one-pot synthesis of novel isatin-based 2-amino thiazol-4-one conjugates using MgO nanoparticles in aqueous media.C. R. Chim.201317541341910.1016/j.crci.2013.08.010
    [Google Scholar]
  93. RadiM. BottaL. CasaluceG. BernardiniM. BottaM. Practical one-pot two-step protocol for the microwave-assisted synthesis of highly functionalized rhodanine derivatives.J. Comb. Chem.201012120020510.1021/cc9001789 20028090
    [Google Scholar]
  94. ChabanT.I. OgurtsovV.V. ChabanI.G. KleninaO.V. KomarytsiaJ.D. Synthesis and antioxidant activity evaluation of novel 5,7-dimethyl-3H-thiazolo[4,5-b]pyridines.Phosphorus Sulfur Silicon Relat. Elem.2013188111611162010.1080/10426507.2013.777723
    [Google Scholar]
  95. BehbehaniH. IbrahimH.M. 4-Thiazolidinones in heterocyclic synthesis: Synthesis of novel enaminones, azolopyrimidines and 2-arylimino-5-arylidene-4-thiazolidinones.Molecules20121766362638510.3390/molecules17066362 22634845
    [Google Scholar]
  96. BenyahlouZ.D. Synthesis, crystal structure, Hirshfeld surface, energy framework, NCI-RDG, theoretical calculations and molecular docking of (Z)4,4′-bis[-3-N-ethyl-2-N′-(phenylimino) thiazolidin-4-one] methane.J. Mol. Struct.20231277134781
    [Google Scholar]
  97. GautamP. GautamD. ChaudharyR.P. Regioselective synthesis of new 2,5,6-trisubstituted 5,6-dihydro-2H-pyrazolo[3,4-d]thiazoles from 5-dimethylaminoethylene-thaozolidin-4-thiones.J. Sulfur Chem.201435662864010.1080/17415993.2014.944912
    [Google Scholar]
  98. TverdokhlebovA.V. ResnyanskaE.V. TolmachevA.A. AndrushkoA.P. Novel approach to pyrrolo[2,1-b]thiazoles.Synthesis200317172632263810.1055/s‑2003‑42451
    [Google Scholar]
  99. MahmoudM.R. Synthesis and reactions of (Z)-2-imino-5-(3,4,5-trimethoxybenzylidene)thiazolidin-4(H)-one.Eur. J. Chem.2011247547910.5155/eurjchem.2.4.475‑479.193
    [Google Scholar]
  100. de Melo RegoM.J.B. Synthesis, in vitro anticancer activity and in silico study of new disubstituted thiazolidinedione derivatives.Med. Chem. Res.20142332203226
    [Google Scholar]
  101. KhazaeiA. VeisiH. SafaeiM. AhmadianH. Green synthesis of 5-arylidene-2,4-thiazolidinedione, 5-benzylidene rhodanine and dihydrothiophene derivatives catalyzed by hydrated ionic liquid tetrabutylammonium hydroxide in aqueous medium.J. Sulfur Chem.201435327027810.1080/17415993.2013.860142
    [Google Scholar]
  102. SunJ. XiaE.Y. ZhangL.L. YanC.G. Triethylamine-catalyzed domino reactions of 1,3-thiazolidinedione: A facile access to functionalized dihydrothiophenes.Eur. J. Org. Chem.20092009305247525410.1002/ejoc.200900845
    [Google Scholar]
  103. ShiD.Q. ZouY. HuY. WuH. Improved synthesis of dihydrothiophenes derivatives under ultrasound irradiation.J. Heterocycl. Chem.201148489690010.1002/jhet.662
    [Google Scholar]
  104. HassaneenH.M. MiqdadO.A. AbunadaN.M. FaresA.A. Reaction of thiocarboxanilide derivatives of 2-phenylimino-3-phenyl-4-thiazolidinone and 1,3-diphenyl-2-thioxo-4-imidazolone with hydrazonoyl halides and active chloromethylene compounds.Nat. Sci.20113319920710.4236/ns.2011.33026
    [Google Scholar]
  105. HamdyN.A. Abdel-AzizH.A. FaragA.M. FakhrI.M.I. Synthesis of some 1,3-thiazole, 1,3,4-thiadiazole, pyrazolo[5,1-c]-1,2,4-triazine, and 1,2,4-triazolo [5,1-c]-1,2,4-triazine derivatives based on the thiazolo[3,2-a]benzimidazole moiety.Monatsh. Chem.2007138101001101010.1007/s00706‑007‑0717‑z
    [Google Scholar]
  106. KeW. LuoX. LiuX. XuH. Synthesis of cyanine dyes derived from benzotellurazo‐15‐crown‐5.J. Heterocycl. Chem.20003751321132410.1002/jhet.5570370550
    [Google Scholar]
  107. PengZ.H. ZhouX.F. CarrollS. GeiseH.J. PengB. DommisseR. EsmansE. CarleerR. Structure of rhodanine cyanine dyes, spectroscopy and performance in photographic emulsions.J. Mater. Chem.1996681325133310.1039/jm9960601325
    [Google Scholar]
  108. TakasuK. InoueH. KimH.S. SuzukiM. ShishidoT. WatayaY. IharaM. Rhodacyanine dyes as antimalarials. 1. Preliminary evaluation of their activity and toxicity.J. Med. Chem.200245599599810.1021/jm0155704 11855978
    [Google Scholar]
  109. BrookerL.G.S. KeyesG.H. SpragueR.H. VanDykeR.H. VanLareE. VanZandtG. WhiteF.L. Studies in the cyanine dye series. The merocyanines.J. Am. Chem. Soc.195173115326533210.1021/ja01155a095
    [Google Scholar]
  110. Ya HorishnyV. Synthesis and properties of bicyclic nonfused rhodanine derivatives based on amino acids.Farm. Zh.199526670
    [Google Scholar]
  111. LazukinaA.A. Synthesis of 2,2-bis(arylsulphonyl)vinylamines based on bis(trimethylsilyl)-phormamide.Zhur. Org. Chim.19831124172420
    [Google Scholar]
  112. KnottE.B. JeffreysR.A. Compounds containing sulphur chromophores. Part II. Attempts to prepare sulphide analogues of merocyanines.J. Chem. Soc.19557792793310.1039/jr9550000927
    [Google Scholar]
  113. DeghenghiR. DaneaultG. Orotic acid and its analogues: Part II. On the alkaline rearrangement of 5-carboxymethylidenehydantoin.Can. J. Chem.19603881255126010.1139/v60‑178
    [Google Scholar]
  114. OmarM.T. El-AsarN.K. SaiedK.F. A one-pot synthesis of 2,3-dihydro-2-thioxothieno[2,3-d]thiazoles.Synthesis2001200130413041810.1055/s‑2001‑11440
    [Google Scholar]
  115. KaminskyyD. ZimenkovskyB. LesykR. Synthesis and in vitro anticancer activity of 2,4-azolidinedione-acetic acids derivatives.Eur. J. Med. Chem.20094493627363610.1016/j.ejmech.2009.02.023 19299038
    [Google Scholar]
  116. ZimenkovskiiB.S. KutsykR.V. LesykR.B. MatyichukV.S. ObushakN.D. KlyufinskaT.I. Synthesis and antimicrobial activity of 2,4-dioxothiazolidine-5-acetic acid amides.Pharm. Chem. J.200640630330610.1007/s11094‑006‑0115‑6
    [Google Scholar]
  117. NagaseH. Studies on fungicides. XXIII. Addition of dithiocarbamates and thiocarbamates to 2-thioxo-, 2-oxo- and 2-imino-5-methoxy-carbonylmethylidene-4-thiazolidones.Chem. Pharm. Bull.19732151132113510.1248/cpb.21.1132
    [Google Scholar]
  118. HachimM.E. OubellaA. ByadiS. FawziM. LaamariY. BahsisL. AboulmouhajirA. MorjaniH. PodlipnikČ. AuhmaniA. Ait IttoM.Y. Newly synthesized (R)-carvone-derived 1,2,3-triazoles: structural, mechanistic, cytotoxic and molecular docking studies.J. Biomol. Struct. Dyn.202240167205721710.1080/07391102.2021.1894984 33719863
    [Google Scholar]
  119. OubellaA. Thiazolidinone-linked-1,2,3-triazoles with monoterpenic skeleton as new potential anticancer agents: Design, synthesis and molecular docking studies.Bioorg. Chem.202111510518410.1016/j.bioorg.2021.105184 34333421
    [Google Scholar]
  120. FawziM. LaamariY. KoumyaY. OubellaA. AuhmaniA. IttoM.Y.A. AbouelfidaA. RiahiA. AuhmaniA. Electrochemical and theoretical studies on the corrosion inhibition performance of some synthesized d-Limonene based heterocyclic compounds.J. Mol. Struct.2021124413095710.1016/j.molstruc.2021.130957
    [Google Scholar]
  121. OubellaA. LaamariY. HachimM.E. ByadiS. AuhmaniA. MorjaniH. RiahiA. PodlipnikC. RohandT. Van MeerveltL. Ait IttoM.Y. New gem dichlorocyclopropane-pyrazole hybrids with monoterpenic skeleton: Synthesis, crystal structure, cytotoxic evaluation, molecular dynamics and theoretical study.J. Mol. Struct.2022125613257310.1016/j.molstruc.2022.132573
    [Google Scholar]
  122. GouveiaF.L. de OliveiraR.M.B. de OliveiraT.B. da SilvaI.M. do NascimentoS.C. de SenaK.X.F.R. de AlbuquerqueJ.F.C. Synthesis, antimicrobial and cytotoxic activities of some 5-arylidene-4-thioxo-thiazolidine-2-ones.Eur. J. Med. Chem.20094452038204310.1016/j.ejmech.2008.10.006 19027993
    [Google Scholar]
  123. KorzenieckiC. PrieferR. Targeting KRAS mutant cancers by preventing signaling transduction in the MAPK pathway.Eur. J. Med. Chem.202121111300610.1016/j.ejmech.2020.113006 33228976
    [Google Scholar]
  124. HawsawiM.B. KhanS. IqbalT. HussainR. KhanY. ZahoorT. DeraA.A. Synthesis, characterization and molecular modeling approach of hybrid pyrazole based thiazolidinone derivatives: An estimation and inhibition of diabetes mellitus.J. Mol. Struct.2025132214040710.1016/j.molstruc.2024.140407
    [Google Scholar]
  125. BagdatliE. MesciS. YildirimT. Novel antipyrine substituted 4-thiazolidinones: Synthesis, DNA binding and topoisomerase inhibition activities, and in-silico studies.J. Mol. Struct.2024131813919210.1016/j.molstruc.2024.139192
    [Google Scholar]
  126. LesykR. VladzimirskaO. HolotaS. ZaprutkoL. GzellaA. New 5-substituted thiazolo[3,2-b][1,2,4]triazol-6-ones: Synthesis and anticancer evaluation.Eur. J. Med. Chem.200742564164810.1016/j.ejmech.2006.12.006 17303290
    [Google Scholar]
  127. YavariI. SabbaghanM. PorshamsianK. BagheriM. Ali-AsgariS. HossainiZ. Efficient synthesis of alkyl 2-[2-(arylcarbonylimino)-3-aryl-4-oxo-1, 3-thiazolan-5-ylidene]-acetates.Mol. Divers.2007112818510.1007/s11030‑007‑9061‑9 17588159
    [Google Scholar]
  128. HassanA.A. AlyA.A. BedairT.I.M. BrownA.B. El-EmaryT.I. A facile method for the synthesis of hydrazine-4-oxothiazolidine and imino-5-oxothiadiazine derivatives from 1,4-disubstituted thiosemicarbazides.J. Heterocycl. Chem.2014511444910.1002/jhet.1655
    [Google Scholar]
  129. AlyA.A. BrownA.B. Abdel-AzizM. Abuo-RahmaG.E-D.A.A. RadwanM.F. RamadanM. Gamal-EldeenA.M. An efficient synthesis of thiazolidine-4-ones with antitumor and antioxidant activities.J. Heterocycl. Chem.201249472673110.1002/jhe.641
    [Google Scholar]
  130. MushkaloL.K. YangolG.Ya. Condensation of carboxylic acid thioamides.Ukr. Khim. Zh.195521732737
    [Google Scholar]
  131. ObydennovK.L. KlimarevaE.L. KosterinaM.F. SlepukhinP.A. MorzherinY.Y. Influence of solvent and substituents on the reaction of N-alkylthioacetamides with dimethyl acetylenedicarboxylate: Synthesis of functionalized thiophenes containing an exocyclic double bond.Tetrahedron Lett.201354364876487910.1016/j.tetlet.2013.06.127
    [Google Scholar]
  132. BersenevaV.S. TkachevA.V. MorzherinY.Y. DehaevW. LuytenI. ToppetS. BakulevV.A. Synthesis of novel thiazolidin-4-ones by reaction of malonthioamide derivatives with dimethyl acetylenedicarboxylate.J. Chem. Soc. Perkin Trans.1988121332136
    [Google Scholar]
  133. KosterinaM.F. MorzherinY.Y. KramarenkoO.A. BersenevaV.S. MaternA.I. TkachevA.V. BakulevV.A. Synthesis and complexing properties of alkyl (3-oxo-2,3-dihydrothiophen-2-ylidene)- and 4-(oxothiazolidin-5-ylidene)acetate derivatives.Russ. J. Org. Chem.200440686686910.1023/B:RUJO.0000044550.62124.94
    [Google Scholar]
  134. LownJ.W. MaJ.C.N. Addition reactions of acetylenic esters with substituted thioureas.Can. J. Chem.196745993995110.1139/v67‑159
    [Google Scholar]
  135. KhanS. HussainR. KhanY. IqbalT. IslamM.S. AlmutairiT.M. Synthesis, confirmation based on in vitro and in silico study of thiadiazole-based thiazolidinone scaffolds: An approach toward COVID-19.Results Chem.20241210184510.1016/j.rechem.2024.101845
    [Google Scholar]
  136. MachulkinA.E. UspenskayaA.A. ZykN.Y. NimenkoE.A. BerA.P. PetrovS.A. ShafikovR.R. SkvortsovD.A. SmirnovaG.B. BorisovaY.A. PokrovskyV.S. KolmogorovV.S. VaneevA.N. IvanenkovY.A. KhudyakovA.D. KovalevS.V. ErofeevA.S. GorelkinP.V. BeloglazkinaE.K. ZykN.V. KhazanovaE.S. MajougaA.G. PSMA-targeted small-molecule docetaxel conjugate: Synthesis and preclinical evaluation.Eur. J. Med. Chem.202222711393610.1016/j.ejmech.2021.113936 34717125
    [Google Scholar]
  137. AlizadehA. RostamniaS. ZohrehN. HosseinpourR. A simple and effective approach to the synthesis of rhodanine derivatives via three-component reactions in water.Tetrahedron Lett.200950141533153510.1016/j.tetlet.2008.12.107
    [Google Scholar]
  138. AppalanaiduK. DadmalT. Jagadeesh BabuN. KumbhareR.M. An improved one-pot multicomponent strategy for the preparation of thiazoline, thiazolidinone and thiazolidinol scaffolds.RSC Advances20155107880638806910.1039/C5RA17278K
    [Google Scholar]
  139. JacobineA.M. PosnerG.H. Three-component, one-flask synthesis of rhodanines (thiazolidinones).J. Org. Chem.201176198121812510.1021/jo201561t 21853986
    [Google Scholar]
  140. GabilletS. LecercléD. LoreauO. CarboniM. DézardS. GomisJ.M. TaranF. Phosphine-catalyzed construction of sulfur heterocycles.Org. Lett.20079203925392710.1021/ol701563e 17803312
    [Google Scholar]
  141. AchesonR.M. WallisJ.D. Addition reactions of heterocyclic compounds. Part 74. Products from dimethyl acetylenedicarboxylate with thiourea, thioamide, and guanidine derivatives.J. Chem. Soc., Perkin Trans. 11981141542210.1039/p19810000415
    [Google Scholar]
  142. DzurillaM. KristianP. ImrichJ. ŠtecJ. Bromine oxidation of N-(3 or 4-substituted phenyl)-N′-3-phenylpropenoylthioureas.Collect. Czech. Chem. Commun.198348113134313910.1135/cccc19833134
    [Google Scholar]
  143. PizzoC. SaizC. TaleviA. GavernetL. PalestroP. BelleraC. BlanchL.B. BenítezD. CazzuloJ.J. ChidichimoA. WipfP. MahlerS.G. Synthesis of 2-hydrazolyl-4-thiazolidinones based on multicomponent reactions and biological evaluation against Trypanosoma cruzi.Chem. Biol. Drug Des.201177316617210.1111/j.1747‑0285.2010.01071.x 21251233
    [Google Scholar]
  144. ChoughuleyA.S. ChadnaM.S. Reactions of some epoxy acids with thiourea.Indian J. Chem.19631437440
    [Google Scholar]
  145. ChateA.V. TatheA.G. NagtilakP.J. SangleS.M. GillC.H. Efficient approach to thiazolidinones via a one-pot three-component reaction involving 2-amino-1-phenylethanone hydrochloride, aldehyde and mercaptoacetic acid.Chin. J. Catal.201637111997200210.1016/S1872‑2067(16)62536‑6
    [Google Scholar]
  146. IsidorJ.L. McKeeR.L. Synthesis of 2-methylene-4-thiazolidinones.J. Org. Chem.197338203615361710.1021/jo00960a039
    [Google Scholar]
  147. Koval’I.V. Heterocyclization reactions involving thiols.Russ. J. Org. Chem.200642562565110.1134/S1070428006050010
    [Google Scholar]
  148. MarkovicR.R. BaranacM. Regioselective synthesis of new 5-ethoxycarbonylmethyl-4-oxothiazolidyn-2-ylidene bromides and rearrangement reaction thereof.Synlett20005607610
    [Google Scholar]
  149. MarkovićR. BaranacM. DžambaskiZ. StojanovićM. SteelP.J. High regioselectivity in the heterocyclization of β-oxonitriles to 4-oxothiazolidines: X-ray structure proof.Tetrahedron200359397803781010.1016/S0040‑4020(03)01146‑3
    [Google Scholar]
  150. KavithaC.V. Basappa SwamyS.N. MantelinguK. DoreswamyS. SridharM.A. Shashidhara PrasadJ. RangappaK.S. Synthesis of new bioactive venlafaxine analogs: Novel thiazolidin-4-ones as antimicrobials.Bioorg. Med. Chem.20061472290229910.1016/j.bmc.2005.11.017 16338140
    [Google Scholar]
  151. ShakerR.M. One-pot synthesis of novel 1,10- and 1,4-bridged bisthiazolidinone derivatives and their antimicrobial activity.Phosphorus Sulfur Silicon Relat. Elem.1999149171410.1080/10426509908037017
    [Google Scholar]
  152. SmithR.L. LeeT.J. GouldN.P. CragoeE.J.Jr OienH.G. KuehlF.A. Jr Prostaglandin isosteres. 1. (8-Aza-, 8,10-diaza-, and 8-aza-11-thia)-9-oxoprostanoic acids and their derivatives.J. Med. Chem.197720101292129910.1021/jm00220a013 198545
    [Google Scholar]
  153. KaminskyyD. KhylukD. VasylenkoO. LesykR. An efficient method for the transformation of 5-ylidenerhodanines into 2,3,5-trisubstituted-4-thiazolidinones.Tetrahedron Lett.201253555755910.1016/j.tetlet.2011.11.095
    [Google Scholar]
  154. HofmannB. BarzenS. RödlC.B. KiehlA. BorigJ. ŽivkovićA. StarkH. SchneiderG. SteinhilberD. A class of 5-benzylidene-2-phenylthiazolinones with high potency as direct 5-lipoxygenase inhibitors.J. Med. Chem.20115461943194710.1021/jm101165z 21341744
    [Google Scholar]
  155. ZayedE.M. Studies on thiazolin-4-one: Synthesis of some pyrano[2,3-b]thiazole derivatives.Pharmazie198540194196
    [Google Scholar]
  156. El-MaghrabyA.A. Studies on thiazolopyridines. Part 1: Antimicrobial activity of some novel fluorinated thiazolo[3,2-a]pyridines and thiazolo[20,30:1,6]pyrido[2,3-d]pyrimidines.Phosphorus Sulfur.200217729330210.1080/10426500210240
    [Google Scholar]
  157. El-GabyM.S.A. Al-SehemiA.G. MohamedY.A. AmmarY.A. Recent trends in chemistry of thiazolopyridines.Phosphorus Sulfur Silicon Relat. Elem.2006181363167410.1080/10426500500269885
    [Google Scholar]
  158. BoominathanM. NagarajM. MaheshwaranC. MuthusubramanianS. BhuvaneshN. One-pot green synthesis of thiazolo[3,2-a]pyridine derivatives via tandem cyclization in aqueous media.J. Heterocycl. Chem.201451124424810.1002/jhet.1650
    [Google Scholar]
  159. KambeS. HayashiT. Thiocyanoacetate. III. The synthesis of 2-hydrazono-4-thiazolidinone derivatives.Bull. Chem. Soc. Jpn.197245395295410.1246/bcsj.45.952
    [Google Scholar]
  160. AttanasiO.A. BartocciniS. FaviG. GiorgiG. PerrulliF.R. SanteusanioS. Powerful approach to heterocyclic skeletal diversity by sequential three-component reaction of amines, isothiocyanates, and 1,2-diaza-1,3-dienes.J. Org. Chem.20127721161116710.1021/jo2021949 22191418
    [Google Scholar]
  161. PasquierE. HonoréS. BraguerD. Microtubule-targeting agents in angiogenesis: Where do we stand?Drug Resist. Updat.200691-2748610.1016/j.drup.2006.04.003 16714139
    [Google Scholar]
  162. JacksonJ.R. PatrickD.R. DarM.M. HuangP.S. Targeted anti-mitotic therapies: Can we improve on tubulin agents?Nat. Rev. Cancer20077210711710.1038/nrc2049 17251917
    [Google Scholar]
  163. JiangN. WangX. YangY. DaiW. Advances in mitotic inhibitors for cancer treatment.Mini Rev. Med. Chem.20066888589510.2174/138955706777934955 16918495
    [Google Scholar]
  164. SchmidtM. BastiansH. Mitotic drug targets and the development of novel anti-mitotic anticancer drugs.Drug Resist. Updat.2007104-516218110.1016/j.drup.2007.06.003 17669681
    [Google Scholar]
  165. BoudissaR. BenmohammedA. ChafaiN. BoudechichaA. RekibaN. LagraaH. AchourM. KhoumeriO. DjafriA. TermeT. VanelleP. Synthesis, characterization, DFT, antibacterial, ADME-T properties, and molecular docking of new N-functionalized thiazolidinones.J. Mol. Struct.2024130713800410.1016/j.molstruc.2024.138004
    [Google Scholar]
  166. Zengin KurtB. GökçeM. ŞenolH. Öztürk CivelekD. DandinG. GaziogluI. Synthesis, cytotoxic evaluation, and in silico studies of novel benzenesulfonamide-thiazolidinone derivatives against colorectal carcinoma.J. Mol. Struct.2025132114015310.1016/j.molstruc.2024.140153
    [Google Scholar]
  167. KhanS. KhanY. Al-QaanehA.M. HussainR. IqbalT. UllahH. ShoaibK. MaalikA. Bilal KhanM. AkifM. Al ZahraniS. AghayevaS. Exploring effective diagnosis of Alzheimer disease: Experimental and computational analysis of hybrid benzimidazole based thiazolidinone derivatives.Results Chem.2024910166310.1016/j.rechem.2024.101663
    [Google Scholar]
  168. SinghV. JhaK.T. SinghS. SinghR. ChawlaP.A. Targeting inflammation through inhibition of COX-2 by substituted 4-thiazolidinone analogues: In-vitro, in-vivo and in-silico studies.J. Mol. Struct.2025131913939310.1016/j.molstruc.2024.139393
    [Google Scholar]
  169. DwivediB. BhardwajD. ChoudharyD. Green design and synthesis of some novel thiazolidinone appended benzothiazole–triazole hybrids as antimicrobial agents.RSC Advances202414128341835210.1039/D4RA00990H 38476177
    [Google Scholar]
  170. TripathiA.C. GuptaS.J. FatimaG.N. SonarP.K. VermaA. SarafS.K. 4-Thiazolidinones: The advances continue….Eur. J. Med. Chem.201472527710.1016/j.ejmech.2013.11.017 24355348
    [Google Scholar]
  171. WuJ. YuL. YangF. LiJ. WangP. ZhouW. QinL. LiY. LuoJ. YiZ. LiuM. ChenY. Optimization of 2-(3-(arylalkyl amino carbonyl) phenyl)-3-(2-methoxyphenyl)-4-thiazolidinone derivatives as potent antitumor growth and metastasis agents.Eur. J. Med. Chem.20148034035110.1016/j.ejmech.2014.04.068 24794770
    [Google Scholar]
  172. NolenB.J. TomasevicN. RussellA. PierceD.W. JiaZ. McCormickC.D. HartmanJ. SakowiczR. PollardT.D. Characterization of two classes of small molecule inhibitors of Arp2/3 complex.Nature200946072581031103410.1038/nature08231 19648907
    [Google Scholar]
  173. YangF. PengS. LiY. SuL. PengY. WuJ. ChenH. LiuM. YiZ. ChenY. A hybrid of thiazolidinone with the hydroxamate scaffold for developing novel histone deacetylase inhibitors with antitumor activities.Org. Biomol. Chem.20161451727173510.1039/C5OB02250A 26732459
    [Google Scholar]
  174. GandalovicovA. Migrastatics: Anti-metastatic and anti-invasion drugs: Promises and challenges.Trends Cancer20173391406
    [Google Scholar]
  175. Abo-AshourM.F. EldehnaW.M. GeorgeR.F. Abdel-AzizM.M. ElaasserM.M. Abou-SeriS.M. Abdel GawadN.M. Synthesis and biological evaluation of 2-aminothiazole-thiazolidinone conjugates as potential antitubercular agents.Future Med. Chem.201810121405141910.4155/fmc‑2017‑0327 29788758
    [Google Scholar]
  176. LaamariY. OusidiA.N. BimoussaA. RehmanM.T. AlAjmiM.F. TahaM.L. OubellaA. Ait ittoM.Y. AuhmaniA. 2-isopropyl-4-methoxy-5-methylphenol-hydrazone derivatives: Synthesis, characterization, and in-silico assessment of EGFR and Bcl2 inhibitory activity.J. Mol. Struct.20251322132214026610.1016/j.molstruc.2024.140266
    [Google Scholar]
  177. RiadiY. Design, characterization, and DFT exploration of new quinazoline-N-substituted analogs: Anti-cancer activity and molecular docking insights.J. Mol. Struct.20251322Part 1140420
    [Google Scholar]
  178. AnekalD.P. BiradarJ.S. Synthesis and biological evaluation of novel Indolyl 4-thiazolidinones bearing thiadiazine nucleus.Arab. J. Chem.201710S2098S210510.1016/j.arabjc.2013.07.041
    [Google Scholar]
  179. de SouzaM.V.N. Synthesis and biological activity of natural thiazoles: An important class of heterocyclic compounds.J. Sulfur Chem.2005264-542944910.1080/17415990500322792
    [Google Scholar]
  180. RiadiY. GeesiM.H. OubellaA. IttoM.Y.A. Synthesis, spectroscopic analysis, molecular docking and DFT study of novel 1,2,3-Triazole derivatives incorporating paramethoxythymol and salicylaldehyde moieties.J. Mol. Struct.20241318131813925110.1016/j.molstruc.2024.139251
    [Google Scholar]
  181. LaamariY. BimoussaA. ChagaletiB.K. SaravananV. AlotaibiS.H. AlotaibiF.M. MkK. OubellaA. IttoM.Y.A. AuhmaniA. Thymol-1,2,3-triazole derivatives: Network pharmacology, molecular simulations and synthesis targeting breast cancer.J. Mol. Struct.20251321132114006010.1016/j.molstruc.2024.140060
    [Google Scholar]
  182. LiQ. WuJ. ZhengH. LiuK. GuoT.L. LiuY. EblenS.T. GrantS. ZhangS. Discovery of 3-(2-aminoethyl)-5-(3-phenyl-propylidene)-thiazolidine-2,4-dione as a dual inhibitor of the Raf/MEK/ERK and the PI3K/Akt signaling pathways.Bioorg. Med. Chem. Lett.201020154526453010.1016/j.bmcl.2010.06.030 20580230
    [Google Scholar]
  183. PatilV. TilekarK. Mehendale-MunjS. MohanR. RamaaC.S. Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2,4-thiazolidinedione derivatives.Eur. J. Med. Chem.201045104539454410.1016/j.ejmech.2010.07.014 20667627
    [Google Scholar]
  184. KadiA.A. El-BrollosyN.R. Al-DeebO.A. HabibE.E. IbrahimT.M. El-EmamA.A. Synthesis, antimicrobial, and anti-inflammatory activities of novel 2-(1-adamantyl)-5-substituted-1,3,4-oxadiazoles and 2-(1-adamantylamino)-5-substituted-1,3,4-thiadiazoles.Eur. J. Med. Chem.200742223524210.1016/j.ejmech.2006.10.003 17129641
    [Google Scholar]
  185. BimoussaA. LaamariY. FawziM. OubellaA. AlossaimiM.A. RiadiY. VaradharajanV. AlotaibiS.H. TahaM.L. AuhmaniA. IttoM.Y.A. Synthesis of novel (R)-Carvone-1,2,3-triazole hybrids: Network pharmacology, molecular docking, and dynamics simulation targeting tumor protein markers.J. Mol. Struct.2025132214048910.1016/j.molstruc.2024.140489
    [Google Scholar]
  186. Subtel’naI. AtamanyukD. SzymańskaE. Kieć-KononowiczK. ZimenkovskyB. VasylenkoO. GzellaA. LesykR. Synthesis of 5-arylidene-2-amino-4-azolones and evaluation of their anticancer activity.Bioorg. Med. Chem.201018145090510210.1016/j.bmc.2010.05.073 20594860
    [Google Scholar]
  187. MosulaL. ZimenkovskyB. HavrylyukD. MissirA.V. ChiritaI.C. LesykR. Evaluation of novel thiazolidinone-based anticancer compounds.Farmacia200957312330
    [Google Scholar]
  188. SonawaneN.D. VerkmanA.S. Thiazolidinone CFTR inhibitors with improved water solubility identified by structure–activity analysis.Bioorg. Med. Chem.200816178187819510.1016/j.bmc.2008.07.044 18691893
    [Google Scholar]
  189. MaT. ThiagarajahJ.R. YangH. SonawaneN.D. FolliC. GaliettaL.J.V. VerkmanA.S. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin–induced intestinal fluid secretion.J. Clin. Invest.2002110111651165810.1172/JCI0216112 12464670
    [Google Scholar]
  190. MurphyG.J. HolderJ.C. PPAR-γ agonists: Therapeutic role in diabetes, inflammation and cancer.Trends Pharmacol. Sci.2000211246947410.1016/S0165‑6147(00)01559‑5 11121836
    [Google Scholar]
  191. HuangJ.W. ShiauC.W. YangJ. WangD.S. ChiuH.C. ChenC.Y. ChenC.S. Development of small-molecule cyclin D1-ablative agents.J. Med. Chem.200649154684468910.1021/jm060057h 16854074
    [Google Scholar]
  192. CutshallN.S. O’DayC. PrezhdoM. Rhodanine derivatives as inhibitors of JSP-1.Bioorg. Med. Chem. Lett.200515143374337910.1016/j.bmcl.2005.05.034 15961311
    [Google Scholar]
  193. CarterP.H. ScherleP.A. MuckelbauerJ.A. VossM.E. LiuR.Q. ThompsonL.A. TebbenA.J. SolomonK.A. LoY.C. LiZ. StrzemienskiP. YangG. FalahatpishehN. XuM. WuZ. FarrowN.A. RamnarayanK. WangJ. RideoutD. YalamooriV. DomailleP. UnderwoodD.J. TrzaskosJ.M. FriedmanS.M. NewtonR.C. DeciccoC.P. Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-α.Proc. Natl. Acad. Sci. USA20019821118791188410.1073/pnas.211178398 11592999
    [Google Scholar]
  194. DegterevA. LugovskoyA. CardoneM. MulleyB. WagnerG. MitchisonT. YuanJ. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL.Nat. Cell Biol.20013217318210.1038/35055085 11175750
    [Google Scholar]
  195. DayamR. AielloF. DengJ. WuY. GarofaloA. ChenX. NeamatiN. Discovery of small molecule integrin alphavbeta3 antagonists as novel anticancer agents.J. Med. Chem.200649154526453410.1021/jm051296s 16854058
    [Google Scholar]
  196. AhnJ.H. KimS.J. ParkW.S. ChoS.Y. HaJ.D. KimS.S. KangS.K. JeongD.G. JungS.K. LeeS.H. KimH.M. ParkS.K. LeeK.H. LeeC.W. RyuS.E. ChoiJ.K. Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors.Bioorg. Med. Chem. Lett.200616112996299910.1016/j.bmcl.2006.02.060 16530413
    [Google Scholar]
  197. ChenH. FanY.H. NatarajanA. GuoY. IyasereJ. HarbinskiF. LuusL. ChristW. AktasH. HalperinJ.A. Synthesis and biological evaluation of thiazolidine-2,4-dione and 2,4-thione derivatives as inhibitors of translation initiation.Bioorg. Med. Chem. Lett.200414215401540510.1016/j.bmcl.2004.08.017 15454234
    [Google Scholar]
  198. TeraishiF. P-glycoprotein-independent apoptosis induction by a novel synthetic compound, MMPT [5-[(4-methylphenyl)methylene]-2-(phenylamino)-4(5H)-thiazoloneJ. Pharmacol. Exp. Ther.200531435536210.1124/jpet.105.085654 15831436
    [Google Scholar]
  199. TeraishiF. WuS. SasakiJ. ZhangL. DavisJ.J. GuoW. DongF. FangB. JNK1-dependent antimitotic activity of thiazolidin compounds in human non-small-cell lung and colon cancer cells.Cell. Mol. Life Sci.20056219-202382238910.1007/s00018‑005‑5365‑z 16179969
    [Google Scholar]
  200. ZhouH. WuS. ZhaiS. LiuA. SunY. LiR. ZhangY. EkinsS. SwaanP.W. FangB. ZhangB. YanB. Design, synthesis, cytoselective toxicity, structure-activity relationships, and pharmacophore of thiazolidinone derivatives targeting drug-resistant lung cancer cells.J. Med. Chem.20085151242125110.1021/jm7012024 18257542
    [Google Scholar]
  201. AbbassE.M. Al-KarmalawyA.A. SharakyM. KhattabM. AlzahraniA.Y.A. HassaballahA.I. Rational design and eco-friendly one-pot multicomponent synthesis of novel ethylidenehydrazineylthiazol-4(5H)-ones as potential apoptotic inducers targeting wild and mutant EGFR-TK in triple negative breast cancer.Bioorg. Chem.202414210693610.1016/j.bioorg.2023.106936 37890211
    [Google Scholar]
  202. ChenS. ChenL. LeN.T. ZhaoC. SidduriA. LouJ.P. MichoudC. PortlandL. JacksonN. LiuJ.J. KonzelmannF. ChiF. TovarC. XiangQ. ChenY. WenY. VassilevL.T. Synthesis and activity of quinolinyl-methylene-thiazolinones as potent and selective cyclin-dependent kinase 1 inhibitors.Bioorg. Med. Chem. Lett.20071782134213810.1016/j.bmcl.2007.01.081 17303421
    [Google Scholar]
  203. VassilevL.T. TovarC. ChenS. KnezevicD. ZhaoX. SunH. HeimbrookD.C. ChenL. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1.Proc. Natl. Acad. Sci. USA200610328106601066510.1073/pnas.0600447103 16818887
    [Google Scholar]
  204. BlickléJ.F. Thiazolidinediones: Clinical data and perspectives.Diabetes Metab.2001272 Pt 2279285 11452222
    [Google Scholar]
  205. GegickC.G. AltheimerM.D. Comparison of effects of thiazolidinediones on cardiovascular risk factors: Observations from a clinical practice.Endocr. Pract.20017316216910.4158/EP.7.3.162 11421562
    [Google Scholar]
  206. BansalG. ThanikachalamP.V. MauryaR.K. ChawlaP. RamamurthyS. An overview on medicinal perspective of thiazolidine-2,4-dione: A remarkable scaffold in the treatment of type 2 diabetes.J. Adv. Res.20202316320510.1016/j.jare.2020.01.008 32154036
    [Google Scholar]
  207. FettachS. ThariF.Z. KarrouchiK. BenbacerL. LeeL.H. BouyahyaA. CherrahY. SefriouiH. BougrinK. FaouzyM.E.A. Assessment of anti-hyperglycemic and anti-hyperlipidemic effects of thiazolidine-2,4-dione derivatives in HFD-STZ diabetic animal model.Chem. Biol. Interact.202439111090210.1016/j.cbi.2024.110902 38367680
    [Google Scholar]
  208. JazetI.M. MeindersA.E. The thiazolidinedione derivates: A new class of oral blood glucose lowering agents.Ned. Tijdschr. Geneeskd.20011453215411547 11525086
    [Google Scholar]
  209. FuH. HouX. WangL. DunY. YangX. FangH. Design, synthesis and biological evaluation of 3-aryl-rhodanine benzoic acids as anti-apoptotic protein Bcl-2 inhibitors.Bioorg. Med. Chem. Lett.201525225265526910.1016/j.bmcl.2015.09.051 26421995
    [Google Scholar]
  210. KavithaC.V. ChandrappaS. NarasimhamurthyK.H. RangappaK.S. Synthesis and evaluation of 5-((5-(4-methoxyphenyl)furan-2-yl)methylene)thiazolidine-2,4-diones as a new class of cytotoxic agents for leukemia treatment.Asian J. Biochem. Pharm. Res.20144309323
    [Google Scholar]
  211. KassemA.F. AlthomaliR.H. AnwarM.M. El-SofanyW.I. Thiazole moiety: A promising scaffold for anticancer drug discovery.J. Mol. Struct.2024130313751010.1016/j.molstruc.2024.137510
    [Google Scholar]
  212. Sharath KumarK.S. HanumappaA. HegdeM. NarasimhamurthyK.H. RaghavanS.C. RangappaK.S. Synthesis and antiproliferative effect of novel 4-thiazolidinone-, pyridine- and piperazine-based conjugates on human leukemic cells.Eur. J. Med. Chem.20148134134910.1016/j.ejmech.2014.05.009 24852281
    [Google Scholar]
  213. SureshN. NageshH.N. Chandra SekharK.V.G. KumarA. ShiraziA.N. ParangK. Synthesis of novel ciprofloxacin analogues and evaluation of their anti-proliferative effect on human cancer cell lines.Bioorg. Med. Chem. Lett.201323236292629510.1016/j.bmcl.2013.09.077 24138941
    [Google Scholar]
  214. KaminskyyD.V. LesykR.B. Structure–anticancer activity relationships among 4-azolidinone-3-carboxylic acids derivatives.Biopolim. Kletka201026213614510.7124/bc.000150
    [Google Scholar]
  215. LongN. Le GresleyA. WrenS.P. Thiazolidinediones: An in–depth study of their synthesis and application to medicinal chemistry in the treatment of diabetes mellitus.ChemMedChem202116111717173610.1002/cmdc.202100177 33844475
    [Google Scholar]
  216. KaminskyyD.V. 5-Ylidene-2-thioxo-4-thiazolidinone-3-succinic acids and their derivatives: Synthesis, anticancer activity, QSAR-analysis.J. Org. Pharm. Chem.200644148
    [Google Scholar]
  217. ChandrappaS. Synthesis of 2-(5-([5-(4-chlorophenyl)furan-2-yl]methylene)-4-oxo-2-thioxo-thiazolidin-3-yl)acetic acid derivatives and evaluation of their cytotoxicity and induction of apoptosis in human leukemia cells.Bioorg. Med. Chem.2009172576258410.1016/j.bmc.2009.01.016 19243955
    [Google Scholar]
  218. RashidM. Synthesis and SAR strategy of thiazolidinone: A novel approch for cancer traitment.J. Chil. Chem. Soc.202065210.4067/S0717‑97072020000204817
    [Google Scholar]
  219. HavrylyukD. MosulaL. ZimenkovskyB. VasylenkoO. GzellaA. LesykR. Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety.Eur. J. Med. Chem.201045115012502110.1016/j.ejmech.2010.08.008 20810193
    [Google Scholar]
  220. HavrylyukD. ZimenkovskyB. VasylenkoO. ZaprutkoL. GzellaA. LesykR. Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity.Eur. J. Med. Chem.20094441396140410.1016/j.ejmech.2008.09.032 19000643
    [Google Scholar]
  221. HavrylyukD. RomanO. LesykR. Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline–thiazolidine-based hybrids.Eur. J. Med. Chem.201611314516610.1016/j.ejmech.2016.02.030 26922234
    [Google Scholar]
  222. El-NaggarM. Novel Thiazolidinone/Thiazolo[3,2-a]Benzimidazolone-Isatin conjugates as apoptotic anti-proliferative agents towards breast cancer: One-pot synthesis and in vitro biological evaluation.Molecules20182361420
    [Google Scholar]
  223. KaminskyyD. KhylukD. VasylenkoO. ZaprutkoL. LesykR. A facile synthesis and anticancer activity evaluation of spiro[thiazolidinone-isatin] conjugates.Sci. Pharm.201179476377710.3797/scipharm.1109‑14 22145104
    [Google Scholar]
  224. WangS. ZhaoY. ZhangG. LvY. ZhangN. GongP. Design, synthesis and biological evaluation of novel 4-thiazolidinones containing indolin-2-one moiety as potential antitumor agent.Eur. J. Med. Chem.20114683509351810.1016/j.ejmech.2011.05.017 21621880
    [Google Scholar]
  225. WangS. ZhaoY. ZhuW. LiuY. GuoK. GongP. Synthesis and anticancer activity of Indolin-2-one derivatives bearing the 4-thiazolidinone moiety.Arch. Pharm.20123451738010.1002/ardp.201100082 21932254
    [Google Scholar]
  226. SunL. LiangC. ShirazianS. ZhouY. MillerT. CuiJ. FukudaJ.Y. ChuJ.Y. NematallaA. WangX. ChenH. SistlaA. LuuT.C. TangF. WeiJ. TangC. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase.J. Med. Chem.20034671116111910.1021/jm0204183 12646019
    [Google Scholar]
  227. SunC.L. Discovery and development of Sunitinib (SU 11248): Multitarget tyrosine kinase inhibitor of tumor growth, survival, and angiogenesis.Kinase Inhibitor Drugs. LiR. StaffordJ.A. Hoboken, New JerseyJohn Wiley Sons, Inc.200913910.1002/9780470524961.ch1
    [Google Scholar]
  228. LesykR. ZimenkovskyB. AtamanyukD. JensenF. Kieć-KononowiczK. GzellaA. Anticancer thiopyrano[2,3-d][1,3]thiazol-2-ones with norbornane moiety. Synthesis, cytotoxicity, physico-chemical properties, and computational studies.Bioorg. Med. Chem.200614155230524010.1016/j.bmc.2006.03.053 16632367
    [Google Scholar]
  229. FrenchK.J. SchrecengostR.S. LeeB.D. ZhuangY. SmithS.N. EberlyJ.L. YunJ.K. SmithC.D. Discovery and evaluation of inhibitors of human sphingosine kinase.Cancer Res.2003631859625969 14522923
    [Google Scholar]
  230. HaJ. KangE. SeoJ. ChoS. Phosphorylation dynamics of JNK signaling: Effects of dual-specificity Phosphatases (DUSPs) on the JNK pathway.Int. J. Mol. Sci.20192024615710.3390/ijms20246157 31817617
    [Google Scholar]
  231. GeronikakiA. EleftheriouP. ViciniP. AlamI. DixitA. SaxenaA.K. 2-Thiazolylimino/heteroarylimino-5-arylidene-4-thiazolidinones as new agents with SHP-2 inhibitory action.J. Med. Chem.200851175221522810.1021/jm8004306 18702480
    [Google Scholar]
  232. ElnaggarD.H. MohamedS.F. Abd-ElghaffarH.S. ElsayedM.A. AmrA.E.G.E. Abou-AmraE.S. HosnyH.M. AwadH.M. Novel indeno-pyrazole and indeno-pyrimidine conjugates: Synthesis, DFT, anticancer screening and in silico studies as potent tubulin inhibitors.J. Mol. Struct.2025132114017510.1016/j.molstruc.2024.140175
    [Google Scholar]
  233. DesaiN.C. RajparaK.M. JoshiV.V. Microwave induced synthesis of fluorobenzamides containing thiazole and thiazolidine as promising antimicrobial analogs.J. Fluor. Chem.201314510211110.1016/j.jfluchem.2012.10.012
    [Google Scholar]
  234. SiddiquiI.R. SinghP.K. SinghJ. SinghJ. Synthesis and fungicidal activity of novel 4,4‘-Bis(2‘ ‘-aryl-5‘ ‘-methyl/unsubstituted-4‘ ‘-oxo-thiazolidin-3‘ ‘-yl).Bibenzyl. J. Agric. Food Chem.200351247062706510.1021/jf0342324 14611172
    [Google Scholar]
  235. SiddiquiR. SinghP.K. SinghJ. Synthesis and fungicidal activity of new 4-thiazolidone derivatives.Indian J. Chem.200544B1021022106
    [Google Scholar]
  236. KunzlerA. NeuenfeldtP.D. das NevesA.M. PereiraC.M.P. MarquesG.H. NascenteP.S. FernandesM.H.V. HübnerS.O. CunicoW. Synthesis, antifungal and cytotoxic activities of 2-aryl-3-((piperidin-1-yl)ethyl)thiazolidinones.Eur. J. Med. Chem.201364748010.1016/j.ejmech.2013.03.030 23644190
    [Google Scholar]
  237. ŠarkanjB. MolnarM. ČačićM. GilleL. 4-Methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties.Food Chem.20131391-448849510.1016/j.foodchem.2013.01.027 23561135
    [Google Scholar]
  238. KwanP. SillsG.J. BrodieM.J. The mechanisms of action of commonly used antiepileptic drugs.Pharmacol. Ther.2001901213410.1016/S0163‑7258(01)00122‑X 11448723
    [Google Scholar]
  239. RogawskiM.A. Diverse mechanisms of antiepileptic drugs in the development pipeline.Epilepsy Res.200669327329410.1016/j.eplepsyres.2006.02.004 16621450
    [Google Scholar]
  240. Karaküçük-İyidoğanA. BaşaranE. Tatar-YılmazG. Oruç-EmreE.E. Development of new chiral 1,2,4-triazole-3-thiones and 1,3,4-thiadiazoles with promising in vivo anticonvulsant activity targeting GABAergic system and voltage-gated sodium channels (VGSCs).Bioorg. Chem.202415110766210.1016/j.bioorg.2024.107662 39079390
    [Google Scholar]
  241. OluwaseyeA. UzairuA. ShallangwaG.A. AbechiS.E. In silico study on anticonvulsant activity of isoxazole and thiazole derivatives active in subcutaneous pentylenetetrazole animal model.J. King Saud Univ. Sci.202032111612410.1016/j.jksus.2018.03.022
    [Google Scholar]
  242. Archana; Srivastava, V.K.; Kumar, A. Synthesis of newer thiadiazolyl and thiazolidinonyl quinazolin-4(3H)-ones as potential anticonvulsant agents.Eur. J. Med. Chem.2002371187388210.1016/S0223‑5234(02)01389‑2 12446046
    [Google Scholar]
  243. CapanG. UlusoyN. ErgençN. Cevdet EkinciA. VidinA. Synthesis and anticonvulsant activity of new 3-[(2-furyl)carbonyl]amino-4-thiazolidinone and 2-[(2-furyl)carbonyl]hydrazono-4-thiazoline derivatives.Farmaco19965111729732 9035380
    [Google Scholar]
  244. RaveeshaR. KumarK.Y. RaghuM.S. PrasadS.B.B. AlsalmeA. KrishnaiahP. PrashanthM.K. Synthesis, molecular docking, antimicrobial, antioxidant and anticonvulsant assessment of novel S and C-linker thiazole derivatives.Chem. Phys. Lett.20227911613940810.1016/j.cplett.2022.139408
    [Google Scholar]
  245. El-FekyS.A.H. Abd El-SamiiZ.K. Synthesis and anticonvulsant properties of some novel quinazolone-thiosemicarbazone and 4-thiazolidone derivatives.Arch. Pharm.1991324638138310.1002/ardp.19913240613 1763950
    [Google Scholar]
  246. ErgençN. CapanG. Synthesis and anticonvulsant activity of new 4-thiazolidone and 4-thiazoline derivatives.Farmaco1994496449451 8074788
    [Google Scholar]
  247. RagabF.A. EidN.M. el-TawabH.A. Synthesis and anticonvulsant activity of new thiazolidinone and thioxoimidazolidinone derivatives derived from furochromones.Pharmazie19975212926929 9442556
    [Google Scholar]
  248. NagarS. SinghH.H. SinhaJ.N. ParmarS.S. Anticonvulsant and cardiovascular effects of substituted thiazolidones.J. Med. Chem.197316217818010.1021/jm00260a027 4683119
    [Google Scholar]
  249. ParmarS.S. DwivediC. ChaudhariA. GuptaT.K. Substituted thiazolidones and their selective inhibition of nicotinamide-adenine dinucleotide dependent oxidations.J. Med. Chem.19721519910110.1021/jm00271a030 4331920
    [Google Scholar]
  250. AminK.M. RahmanD.E.A. Al-EryaniY.A. Synthesis and preliminary evaluation of some substituted coumarins as anticonvulsant agents.Bioorg. Med. Chem.200816105377538810.1016/j.bmc.2008.04.021 18467106
    [Google Scholar]
  251. KaurH. KumarS. VishwakarmaP. SharmaM. SaxenaK.K. KumarA. Synthesis and antipsychotic and anticonvulsant activity of some new substituted oxa/thiadiazolylazetidinonyl/thiazolidinonylcarbazoles.Eur. J. Med. Chem.20104572777278310.1016/j.ejmech.2010.02.060 20392546
    [Google Scholar]
  252. ShingalapurR.V. HosamaniK.M. KeriR.S. HugarM.H. Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles.Eur. J. Med. Chem.2010451753175910.1016/j.ejmech.2010.01.007 20122763
    [Google Scholar]
  253. GhogareJ.G. BhandariS.V. BotharaK.G. MadgulkarA.R. ParasharG.A. SonawaneB.G. InamdarP.R. Design, synthesis and pharmacological screening of potential anticonvulsant agents using hybrid approach.Eur. J. Med. Chem.201045385786310.1016/j.ejmech.2009.09.014 20034707
    [Google Scholar]
  254. AgarwalA. LataS. SaxenaK.K. SrivastavaV.K. KumarA. Synthesis and anticonvulsant activity of some potential thiazolidinonyl 2-oxo/thiobarbituric acids.Eur. J. Med. Chem.200641101223122910.1016/j.ejmech.2006.03.029 16919852
    [Google Scholar]
  255. RohiniR.M. ManjunathM. Synthesis and anti-convulsant activity of triazothiole/thiazolyl thiazolidinone derivatives of indole.Pharma. Chem.20124624382441
    [Google Scholar]
  256. MorensD.M. FolkersG.K. FauciA.S. The challenge of emerging and re-emerging infectious diseases.Nature2004430699624224910.1038/nature02759 15241422
    [Google Scholar]
  257. LevyS.B. MarshallB. Antibacterial resistance worldwide: Causes, challenges and responses.Nat. Med.200410S12S122S12910.1038/nm1145
    [Google Scholar]
  258. MarlovitsT.C. KuboriT. SukhanA. ThomasD.R. GalánJ.E. UngerV.M. Structural insights into the assembly of the type III secretion needle complex.Science200430656981040104210.1126/science.1102610 15528446
    [Google Scholar]
  259. MarlovitsT.C. KuboriT. Lara-TejeroM. ThomasD. UngerV.M. GalánJ.E. Assembly of the inner rod determines needle length in the type III secretion injectisome.Nature2006441709363764010.1038/nature04822 16738660
    [Google Scholar]
  260. TangD.W. ChenI.C. ChouP.Y. LaiM.J. LiuZ.Y. TsaiK.K. ChengL.H. ZhaoJ.X. ChoE.C. ChangH.H. LinT.E. HsuK.C. ChenM.C. LiouJ.P. HSP90/LSD1 dual inhibitors against prostate cancer as well as patient-derived colorectal organoids.Eur. J. Med. Chem.202427811680110.1016/j.ejmech.2024.116801 39241481
    [Google Scholar]
  261. KauppiA.M. NordfelthR. UvellH. Wolf-WatzH. ElofssonM. Targeting bacterial virulence: Inhibitors of type III secretion in Yersinia.Chem. Biol.200310324124910.1016/S1074‑5521(03)00046‑2 12670538
    [Google Scholar]
  262. TsouL.K. DossaP.D. HangH.C. Small molecules aimed at type III secretion systems to inhibit bacterial virulence.MedChemComm201341687910.1039/C2MD20213A 23930198
    [Google Scholar]
  263. FeliseH.B. NguyenH.V. PfuetznerR.A. BarryK.C. JacksonS.R. BlancM.P. BronsteinP.A. KlineT. MillerS.I. An inhibitor of gram-negative bacterial virulence protein secretion.Cell Host Microbe20084432533610.1016/j.chom.2008.08.001 18854237
    [Google Scholar]
  264. KlineT. BarryK.C. JacksonS.R. FeliseH.B. NguyenH.V. MillerS.I. Tethered thiazolidinone dimers as inhibitors of the bacterial type III secretion system.Bioorg. Med. Chem. Lett.20091951340134310.1016/j.bmcl.2009.01.047 19195888
    [Google Scholar]
  265. KnowlesJ.R. Penicillin resistance: The chemistry of. beta.-lactamase inhibition.Acc. Chem. Res.19851849710410.1021/ar00112a001
    [Google Scholar]
  266. PatelH. MishraL. NoolviM. KarpoormathR. Singh CameotraS. Synthesis, in vitro evaluation, and molecular docking studies of azetidinones and thiazolidinones of 2-amino-5-cyclopropyl-1,3,4-thiadiazole as antibacterial agents.Arch. Pharm.2014347966868410.1002/ardp.201400140 25066774
    [Google Scholar]
  267. DeepA. KumarP. NarasimhanB. RamasamyK. ManiV. MishraR. MajeedA. Synthesis, antimicrobial, anticancer evaluation of 2-(aryl)-4- thiazolidinone derivatives and their QSAR studies.Curr. Top. Med. Chem.20151511990100210.2174/1568026615666150317221849 25786509
    [Google Scholar]
  268. Shokooh SaljooghiA. KhabazzadehH. KhaleghiM. Synthesis of novel 1,8-dioxo octahydroacridine functionalized thioureas and thiazolidinones and evaluation of their antimicrobial activities.J. Indian Chem. Soc.201714372773610.1007/s13738‑016‑1024‑6
    [Google Scholar]
  269. NechakR. BouzrouraS.A. BenmalekY. SalhiL. MartiniS.P. MorizurV. DunachE. KolliB.N. Synthesis and antimicrobial activity evaluation of novel 4-Thiazolidinones containing a pyrone moiety.Synth. Commun.201545226227210.1080/00397911.2014.970278
    [Google Scholar]
  270. AhmedS. ZayedM. El-MesseryS. Al-AgamyM. Abdel-RahmanH. Design, synthesis, antimicrobial evaluation and molecular modeling study of 1,2,4-Triazole-based 4-Thiazolidinones.Molecules201621556810.3390/molecules21050568 27144547
    [Google Scholar]
  271. AndresC.J. BronsonJ.J. D’AndreaS.V. DeshpandeM.S. FalkP.J. Grant-YoungK.A. HarteW.E. HoH.T. MiscoP.F. RobertsonJ.G. StockD. SunY. WalshA.W. 4-Thiazolidinones: Novel inhibitors of the bacterial enzyme murB.Bioorg. Med. Chem. Lett.200010871571710.1016/S0960‑894X(00)00073‑1 10782671
    [Google Scholar]
  272. HarounM. TratratC. TsolakiE. GeronikakiA. Thiazole-based thiazolidinones as potent antimicrobial agents. Design, synthesis and biological evaluation.Comb. Chem. High Throughput Screen.2016191515710.2174/1386207319666151203002348 26632442
    [Google Scholar]
  273. KhanS.A. AsiriA.M. SharmaK. Synthesis of steroidal thiazolidinones as antibacterial agents based on the in vitro and quantum chemistry calculation.Med. Chem. Res.20132241998200410.1007/s00044‑012‑0155‑2
    [Google Scholar]
  274. KüçükgüzelŞ.G. OruçE.E. RollasS. ŞahinF. ÖzbekA. Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds.Eur. J. Med. Chem.200237319720610.1016/S0223‑5234(01)01326‑5 11900864
    [Google Scholar]
  275. BallellL. FieldR.A. DuncanK. YoungR.J. New small-molecule synthetic antimycobacterials.Antimicrob. Agents Chemother.20054962153216310.1128/AAC.49.6.2153‑2163.2005 15917508
    [Google Scholar]
  276. KulkarniA.R. Anti-microbial activity and film characterization of thiazolidinone derivatives of chitosan.Macromol. Biosci.2005549049310.1002/mabi.200400207 15948225
    [Google Scholar]
  277. LuH.F. XieC. ChangJ. LinG.Q. SunX. Synthesis, cytotoxicity, metabolic stability and pharmacokinetic evaluation of fluorinated docetaxel analogs.Eur. J. Med. Chem.20114651743174810.1016/j.ejmech.2011.02.027 21396751
    [Google Scholar]
  278. BondeC.G. GaikwadN.J. Synthesis and preliminary evaluation of some pyrazine containing thiazolines and thiazolidinones as antimicrobial agents.Bioorg. Med. Chem.20041292151216110.1016/j.bmc.2004.02.024 15080915
    [Google Scholar]
  279. CesurN. CesurZ. ErgençN. UzunM. KirazM. KasimoǧluÖ. KayaD. Synthesis and antifungal activity of some 2-aryl-3-substituted 4-thiazolidinones.Arch. Pharm.1994327427127210.1002/ardp.19943270414 8204028
    [Google Scholar]
  280. KeyserP. ElofssonM. RosellS. Wolf-WatzH. Virulence blockers as alternatives to antibiotics: Type III secretion inhibitors against Gram‐negative bacteria.J. Intern. Med.20082641172910.1111/j.1365‑2796.2008.01941.x 18393958
    [Google Scholar]
  281. NguyenT.C. LeT.D. HoangT.K.D. PhamC.T. AlhajiJ.A. NguyenT.C. TruongN.A. DinhC.P. Van MeerveltL. Synthesis, evaluation of α-glucosidase inhibitory and antimicrobial activities of novel N-(5-arylidene-4-oxo-2-thioxothiazolidin-3-yl)-2-(naphthalen-1-yl)acetamide derivatives.J. Mol. Struct.2025132614106810.1016/j.molstruc.2024.141068
    [Google Scholar]
  282. DuncanM.C. Chemical inhibitors of the type three secretion system: Disarming bacterial pathogens.Antimicrob. Agents Chemother.201256115433544110.1128/AAC.00975‑12
    [Google Scholar]
  283. ViciniP. GeronikakiA. IncertiM. ZaniF. DeardenJ. HewittM. 2-Heteroarylimino-5-benzylidene-4-thiazolidinones analogues of 2-thiazolylimino-5-benzylidene-4-thiazolidinones with antimicrobial activity: Synthesis and structure–activity relationship.Bioorg. Med. Chem.20081673714372410.1016/j.bmc.2008.02.001 18299196
    [Google Scholar]
  284. PatelR.V. PatelP.K. KumariP. RajaniD.P. ChikhaliaK.H. Synthesis of benzimidazolyl-1,3,4-oxadiazol-2ylthio-N-phenyl (benzothiazolyl) acetamides as antibacterial, antifungal and antituberculosis agents.Eur. J. Med. Chem.201253415110.1016/j.ejmech.2012.03.033 22516426
    [Google Scholar]
  285. ChawlaP. SinghR. SarafS.K. Syntheses and evaluation of 2,5-disubstituted 4-thiazolidinone analogues as antimicrobial agents.Med. Chem. Res.20122182064207110.1007/s00044‑011‑9730‑1
    [Google Scholar]
  286. ChawlaP. SinghR. SarafS.K. Effect of chloro and fluoro groups on the antimicrobial activity of 2,5-disubstituted 4-thiazolidinones: A comparative study.Med. Chem. Res.201221103263327110.1007/s00044‑011‑9864‑1
    [Google Scholar]
  287. BondockS. KhalifaW. FaddaA.A. Synthesis and antimicrobial evaluation of some new thiazole, thiazolidinone and thiazoline derivatives starting from 1-chloro-3,4-dihydronaphthalene-2-carboxaldehyde.Eur. J. Med. Chem.200742794895410.1016/j.ejmech.2006.12.025 17316908
    [Google Scholar]
  288. KhanS.A. YusufM. YusufM. Synthesis and biological evaluation of some thiazolidinone derivatives of steroid as antibacterial agents.Eur. J. Med. Chem.20094462597260010.1016/j.ejmech.2008.09.004 19211172
    [Google Scholar]
  289. SharmaM.C. QSAR, synthesis and biological activity studies of some thiazolidinones derivatives.Dig. J. Nanomater. Biostruct.20094223232
    [Google Scholar]
  290. El-GabyM.S.A. El-Hag AliG.A.M. El-MaghrabyA.A. Abd El-RahmanM.T. HelalM.H.M. Synthesis, characterization and in vitro antimicrobial activity of novel 2-thioxo-4-thiazolidinones and 4,4′-bis(2-thioxo-4-thiazolidinone-3-yl)diphenylsulfones.Eur. J. Med. Chem.200944104148415210.1016/j.ejmech.2009.05.005 19540629
    [Google Scholar]
  291. PalekarV.S. DamleA.J. ShuklaS.R. Synthesis and antibacterial activity of some novel bis-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and bis-4-thiazolidinone derivatives from terephthalic dihydrazide.Eur. J. Med. Chem.200944125112511610.1016/j.ejmech.2009.07.023 19683841
    [Google Scholar]
  292. YangX.C. ZhangP.L. KumarK.V. LiS. GengR.X. ZhouC.H. Discovery of unique thiazolidinone-conjugated coumarins as novel broad spectrum antibacterial agents.Eur. J. Med. Chem.202223211419210.1016/j.ejmech.2022.114192 35168149
    [Google Scholar]
  293. Abo-AshourM.F. EldehnaW.M. GeorgeR.F. Abdel-AzizM.M. ElaasserM.M. Abdel GawadN.M. GuptaA. BhaktaS. Abou-SeriS.M. Novel indole-thiazolidinone conjugates: Design, synthesis and whole-cell phenotypic evaluation as a novel class of antimicrobial agents.Eur. J. Med. Chem.2018160496010.1016/j.ejmech.2018.10.008 30317025
    [Google Scholar]
  294. ArineitweC. OderinloO. TukululaM. KhanyeS. KhathiA. SibiyaN. Discovery of novel thiazolidinedione-derivatives with multi-modal antidiabetic activities in vitro and in silico.Int. J. Mol. Sci.2023243302410.3390/ijms24033024 36769344
    [Google Scholar]
  295. MaityT.K. PaulA. MajiA. SarkarA. SahaS. JanahP. Approaches in the synthesis of 5-arylidene-2,4-thiazolidinedione derivatives using Knoevenagel condensation.Mini Rev. Org. Chem.202320153410.2174/1570193X19666220331155705
    [Google Scholar]
  296. LevshinI.B. SimonovA.Y. LavrenovS.N. PanovA.A. GrammatikovaN.E. AlexandrovA.A. GhazyE.S.M.O. SavinN.A. GorelkinP.V. ErofeevA.S. PolshakovV.I. Antifungal thiazolidines: Synthesis and biological evaluation of mycosidine congeners.Pharmaceuticals202215556310.3390/ph15050563 35631390
    [Google Scholar]
  297. OttanáR. MazzonE. DugoL. MonforteF. MaccariR. SautebinL. De LucaG. VigoritaM.G. AlcaroS. OrtusoF. CaputiA.P. CuzzocreaS. Modeling and biological evaluation of 3,3′-(1,2-ethanediyl)bis[2-(4-methoxyphenyl)-thiazolidin-4-one], a new synthetic cyclooxygenase-2 inhibitor.Eur. J. Pharmacol.20024481718010.1016/S0014‑2999(02)01888‑5 12126974
    [Google Scholar]
  298. VigoritaM.G. Chiral 3,3′-(1,2-ethanediyl)-bis[2-(3,4-dimethoxyphenyl)-4-thiazolidinones] with anti-inflammatory activity.Bioorg. Med. Chem.200311999100610.1016/S0968‑0896(02)00518‑7 12614885
    [Google Scholar]
  299. VigoritaM.G. 3,3′-Bi(1,3-thiazolidin-4-one) system. VIII. 3,3′-(1,2-Ethanediyl) derivatives and corresponding 1,1′-disulfones: Synthesis, stereochemistry and anti-inflammatory activity.Farmaco1997524348 9181681
    [Google Scholar]
  300. AbdellatifK.R.A. AbdelgawadM.A. ElshemyH.A.H. AlsayedS.S.R. Design, synthesis and biological screening of new 4-thiazolidinone derivatives with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile.Bioorg. Chem.20166411210.1016/j.bioorg.2015.11.001 26561742
    [Google Scholar]
  301. SilvaA.A.R. GóesA.J. LimaW.T. MaiaM.B. Antiedematogenic activity of two thiazolidine derivatives: N-Tryptophyl-5-(3,5-di-tert-butyl-4-hydroxybenzylidene) Rhodanine (GS26) and N-Tryptophyl-5-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2,4-thiazolidinedione (GS28).Chem. Pharm. Bull.200351121351135510.1248/cpb.51.1351 14646308
    [Google Scholar]
  302. SongY. ConnorD.T. DoubledayR. SorensonR.J. SercelA.D. UnangstP.C. RothB.D. GilbertsenR.B. ChanK. SchrierD.J. GugliettaA. BornemeierD.A. DyerR.D. Synthesis, structure-activity relationships, and in vivo evaluations of substituted di-tert-butylphenols as a novel class of potent, selective, and orally active cyclooxygenase-2 inhibitors. 1. Thiazolone and oxazolone series.J. Med. Chem.19994271151116010.1021/jm9805081 10197959
    [Google Scholar]
  303. ChoH. TaiH.H. Thiazolidinediones as a novel class of NAD+-dependent 15-hydroxyprostaglandin dehydrogenase inhibitors.Arch. Biochem. Biophys.2002405224725110.1016/S0003‑9861(02)00352‑1 12220539
    [Google Scholar]
  304. MicheletJ.F. ColombeL. GautierB. GaillardO. BenechF. PereiraR. BoulleC. Dalko-CsibaM. RozotR. NeuwelsM. BernardB.A. Expression of NAD+ dependent 15‐hydroxyprostaglandin dehydrogenase and protection of prostaglandins in human hair follicle.Exp. Dermatol.2008171082182810.1111/j.1600‑0625.2008.00706.x 18328086
    [Google Scholar]
  305. WuY. TaiH.H. ChoH. Synthesis and SAR of thiazolidinedione derivatives as 15-PGDH inhibitors.Bioorg. Med. Chem.20101841428143310.1016/j.bmc.2010.01.016 20122835
    [Google Scholar]
  306. ChadhaN. BahiaM.S. KaurM. SilakariO. Thiazolidine-2,4-dione derivatives: Programmed chemical weapons for key protein targets of various pathological conditions.Bioorg. Med. Chem.201523132953297410.1016/j.bmc.2015.03.071 25890697
    [Google Scholar]
  307. PanicoA. MaccariR. CardileV. CrasciL. RonsisvalleS. OttanàR. 5-Arylidene-4-thiazolidinone derivatives active as antidegenerative agents on human chondrocyte cultures.Med. Chem.201391849010.2174/157340613804488378 22762165
    [Google Scholar]
  308. PanicoA.M. ViciniP. GeronikakiA. IncertiM. CardileV. CrascìL. MessinaR. RonsisvalleS. Heteroarylimino-4-thiazolidinones as inhibitors of cartilage degradation.Bioorg. Chem.2011391485210.1016/j.bioorg.2010.11.002 21208635
    [Google Scholar]
  309. OttanàR. MaccariR. BarrecaM.L. BrunoG. RotondoA. RossiA. ChiricostaG. Di PaolaR. SautebinL. CuzzocreaS. VigoritaM.G. 5-Arylidene-2-imino-4-thiazolidinones: Design and synthesis of novel anti-inflammatory agents.Bioorg. Med. Chem.200513134243425210.1016/j.bmc.2005.04.058 15905093
    [Google Scholar]
  310. KumarA. RajputC.S. BhatiS.K. Synthesis of 3-[4′-(p-chlorophenyl)-thiazol-2′-yl]-2-[(substituted azetidinone/thiazolidinone)-aminomethyl]-6-bromoquinazolin-4-ones as anti-inflammatory agent.Bioorg. Med. Chem.20071583089309610.1016/j.bmc.2007.01.042 17317192
    [Google Scholar]
  311. BhatiS.K. KumarA. Synthesis of new substituted azetidinoyl and thiazolidinoyl-1,3,4-thiadiazino (6,5-b) indoles as promising anti-inflammatory agents.Eur. J. Med. Chem.200843112323233010.1016/j.ejmech.2007.10.012 18063224
    [Google Scholar]
  312. SaegusaH. KuriharaT. ZongS. KazunoA. MatsudaY. NonakaT. HanW. ToriyamaH. TanabeT. Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel.EMBO J.200120102349235610.1093/emboj/20.10.2349 11350923
    [Google Scholar]
  313. MiljanichG.P. Ziconotide: Neuronal calcium channel blocker for treating severe chronic pain.Curr. Med. Chem.200411233029304010.2174/0929867043363884 15578997
    [Google Scholar]
  314. KnutsenL.J.S. HobbsC.J. EarnshawC.G. FiumanaA. GilbertJ. MellorS.L. RadfordF. SmithN.J. BirchP.J. Russell BurleyJ. WardS.D.C. JamesI.F. Synthesis and SAR of novel 2-arylthiazolidinones as selective analgesic N-type calcium channel blockers.Bioorg. Med. Chem. Lett.200717366266710.1016/j.bmcl.2006.10.098 17134896
    [Google Scholar]
  315. EleftheriouP. GeronikakiA. Hadjipavlou-LitinaD. ViciniP. FilzO. FilimonovD. PoroikovV. ChaudhaeryS.S. RoyK.K. SaxenaA.K. Fragment-based design, docking, synthesis, biological evaluation and structure–activity relationships of 2-benzo/benzisothiazolimino-5-aryliden-4-thiazolidinones as cycloxygenase/lipoxygenase inhibitors.Eur. J. Med. Chem.201247111112410.1016/j.ejmech.2011.10.029 22119153
    [Google Scholar]
  316. RawalR.K. SolomonV.R. PrabhakarY.S. Topological descriptors in modeling the HIV inhibitory activity of 2-aryl-3-pyridyl-thiazolidin-4-ones.Comb. Chem. High Throughput Screen.20058543944310.2174/1386207054546496 16101583
    [Google Scholar]
  317. RawalR.K. TripathiR. KattiS.B. PannecouqueC. De ClercqE. Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents.Bioorg. Med. Chem.20071541725173110.1016/j.bmc.2006.12.003 17178227
    [Google Scholar]
  318. BarrecaM.L. ChimirriA. De LucaL. MonforteA.M. MonforteP. RaoA. ZappalàM. BalzariniJ. De ClercqE. PannecouqueC. WitvrouwM. Discovery of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV-1 agents.Bioorg. Med. Chem. Lett.200111131793179610.1016/S0960‑894X(01)00304‑3 11425562
    [Google Scholar]
  319. BarrecaM.L. BalzariniJ. ChimirriA. ClercqE.D. LucaL.D. HöltjeH.D. HöltjeM. MonforteA.M. MonforteP. PannecouqueC. RaoA. ZappalàM. Design, synthesis, structure-activity relationships, and molecular modeling studies of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV agents.J. Med. Chem.200245245410541310.1021/jm020977+ 12431069
    [Google Scholar]
  320. PrabhakarY.S. CP-MLR/PLS directed structure-activity modeling of the HIV-1 RT inhibitory activity of 2,3-diaryl-1,3-thiazolidin-4-ones.Mol. Inform.2004234234244
    [Google Scholar]
  321. ZhouL. ChenW. CaoC. ShiY. YeW. HuJ. WangL. ZhouW. Design and synthesis of α-naphthoflavone chimera derivatives able to eliminate cytochrome P450 (CYP)1B1-mediated drug resistance via targeted CYP1B1 degradation.Eur. J. Med. Chem.202018911202810.1016/j.ejmech.2019.112028 31945665
    [Google Scholar]
  322. RawalR.K. PrabhakarY.S. KattiS.B. De ClercqE. 2-(Aryl)-3-furan-2-ylmethyl-thiazolidin-4-ones as selective HIV-RT inhibitors.Bioorg. Med. Chem.200513246771677610.1016/j.bmc.2005.07.063 16198576
    [Google Scholar]
  323. SuryawanshiR. JadhavS. MakwanaN. DesaiD. ChaturbhujD. SonawaniA. Idicula-ThomasS. MurugesanV. KattiS.B. TripathyS. ParanjapeR. KulkarniS. Evaluation of 4-thiazolidinone derivatives as potential reverse transcriptase inhibitors against HIV-1 drug resistant strains.Bioorg. Chem.20177121121810.1016/j.bioorg.2017.02.007 28236450
    [Google Scholar]
  324. RavichandranV. PrashanthaK.B.R. SankarS. AgrawalR.K. Predicting anti-HIV activity of 1,3,4-thiazolidinone derivatives: 3D-QSAR approach.Eur. J. Med. Chem.20094431180118710.1016/j.ejmech.2008.05.036 18687505
    [Google Scholar]
  325. JiangS. TalaS.R. LuH. Abo-DyaN.E. AvanI. GyandaK. LuL. KatritzkyA.R. DebnathA.K. Design, synthesis, and biological activity of novel 5-((Arylfuran/1 H -pyrrol-2-yl)methylene)-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-4-ones as HIV-1 fusion inhibitors targeting gp41.J. Med. Chem.201154257257910.1021/jm101014v 21190369
    [Google Scholar]
  326. MagaG. FalchiF. GarbelliA. BelfioreA. WitvrouwM. ManettiF. BottaM. Pharmacophore modeling and molecular docking led to the discovery of inhibitors of human immunodeficiency virus-1 replication targeting the human cellular aspartic acid-glutamic acid-alanine-aspartic acid box polypeptide 3.J. Med. Chem.200851216635663810.1021/jm8008844 18834110
    [Google Scholar]
  327. DayamR. GundlaR. Al-MawsawiL.Q. NeamatiN. HIV‐1 integrase inhibitors: 2005–2006 update.Med. Res. Rev.200828111815410.1002/med.20116 17979144
    [Google Scholar]
  328. DayamR. SanchezT. ClementO. ShoemakerR. SeiS. NeamatiN. β-diketo acid pharmacophore hypothesis. 1. Discovery of a novel class of HIV-1 integrase inhibitors.J. Med. Chem.200548111112010.1021/jm0496077 15634005
    [Google Scholar]
  329. LangeC.M. Review article: Specifically targeted antiviral therapy for hepatitis C a new era in therapy.Aliment. Pharmacol. Ther.201032142810.1111/j.1365‑2036.2010.04317.x 20374226
    [Google Scholar]
  330. ParfieniukA. JaroszewiczJ. FlisiakR. Specifically targeted antiviral therapy for hepatitis C virus.World J. Gastroenterol.200713435673568110.3748/wjg.v13.i43.5673 17963291
    [Google Scholar]
  331. ThompsonA.J.V. McHutchisonJ.G. Antiviral resistance and specifically targeted therapy for HCV (STAT‐C).J. Viral Hepat.200916637738710.1111/j.1365‑2893.2009.01124.x 19472445
    [Google Scholar]
  332. VermehrenJ. SarrazinC. New HCV therapies on the horizon.Clin. Microbiol. Infect.201117212213410.1111/j.1469‑0691.2010.03430.x 21087349
    [Google Scholar]
  333. Küçükgüzelİ. SatılmışG. GurukumarK.R. BasuA. TatarE. NicholsD.B. TaleleT.T. Kaushik-BasuN. 2-Heteroarylimino-5-arylidene-4-thiazolidinones as a new class of non-nucleoside inhibitors of HCV NS5B polymerase.Eur. J. Med. Chem.20136993194110.1016/j.ejmech.2013.08.043 24161679
    [Google Scholar]
  334. BarrecaM.L. IraciN. ManfroniG. CecchettiV. Allosteric inhibition of the hepatitis C virus NS5B polymerase: In silico strategies for drug discovery and development.Future Med. Chem.2011381027105510.4155/fmc.11.53 21707403
    [Google Scholar]
  335. YanS. ApplebyT. LarsonG. WuJ.Z. HamatakeR. HongZ. YaoN. Structure-based design of a novel thiazolone scaffold as HCV NS5B polymerase allosteric inhibitors.Bioorg. Med. Chem. Lett.200616225888589110.1016/j.bmcl.2006.08.056 16934455
    [Google Scholar]
  336. YanS. ApplebyT. LarsonG. WuJ.Z. HamatakeR.K. HongZ. YaoN. Thiazolone-acylsulfonamides as novel HCV NS5B polymerase allosteric inhibitors: Convergence of structure-based drug design and X-ray crystallographic study.Bioorg. Med. Chem. Lett.20071771991199510.1016/j.bmcl.2007.01.024 17276060
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298368489250325083742
Loading
/content/journals/mroc/10.2174/0118756298368489250325083742
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-HIV; anticancer; antifungal; pharmacological; profiles; rhodanines; Thiazolidinones
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test