Skip to content
2000
Volume 22, Issue 7
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Polymer modification encompasses a diverse array of techniques aimed at enhancing the physical and chemical properties of polymers, thereby expanding their applicability across various fields. Physical modification methods include self-assembled monolayers, radiation-induced surface modifications, UV irradiation, γ-irradiation, and laser-induced surface modifications. These techniques primarily focus on altering surface properties and enhancing characteristics such as strength, toughness, and thermal stability through non-chemical means. Chemical modification methods, on the other hand, involve reactions that change the polymer’s chemical structure. Common chemical reactions used in polymer modification include PEGylation, conjugation, wet chemical oxidation treatments, and plasma treatments. These processes introduce new functional groups, improve compatibility with other materials, and tailor properties like solubility, adhesion, and biodegradability. Despite the significant advancements in polymer modification techniques, challenges such as maintaining polymer integrity, controlling modification precision, and ensuring scalability persist. This review provides a comprehensive overview of both physical and chemical polymer modification methods, discussing their mechanisms, applications, and the challenges involved, thereby highlighting their critical role in the development of advanced materials for industrial, biomedical, and environmental applications.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298367223250112224739
2025-01-27
2025-10-02
Loading full text...

Full text loading...

References

  1. NemaniS.K. AnnavarapuR.K. MohammadianB. RaiyanA. HeilJ. HaqueM.A. AbdelaalA. SojoudiH. Surface modification of polymers: methods and applications.Adv. Mater. Interfaces2018524180124710.1002/admi.201801247
    [Google Scholar]
  2. MaD. ZhangZ. ZouY. ChenJ. ShiJ.W. The progress of g-C3N4 in photocatalytic H2 evolution: From fabrication to modification.Coord. Chem. Rev.202450021548910.1016/j.ccr.2023.215489
    [Google Scholar]
  3. LinY. KouznetsovaT.B. ForetA.G. CraigS.L. Solvent polarity effects on the mechanochemistry of spiropyran ring opening.J. Am. Chem. Soc.202414663920392510.1021/jacs.3c11621 38308653
    [Google Scholar]
  4. MasinaN. ChoonaraY.E. KumarP. du ToitL.C. GovenderM. IndermunS. PillayV. A review of the chemical modification techniques of starch.Carbohydr. Polym.20171571226123610.1016/j.carbpol.2016.09.094 27987827
    [Google Scholar]
  5. GeorgeA. SanjayM.R. SrisukR. ParameswaranpillaiJ. SiengchinS. A comprehensive review on chemical properties and applications of biopolymers and their composites.Int. J. Biol. Macromol.202015432933810.1016/j.ijbiomac.2020.03.120 32179114
    [Google Scholar]
  6. MathewS.S. GeorgeG. SajnaM.S. PrakashanV.P. Anna JoseT. VasudevanP. SarithaA.C. BijuP.R. JosephC. UnnikrishnanN.V. Recent advancements in multifunctional applications of sol-gel derived polymer incorporated TiO2-ZrO2 composite coatings: A comprehensive review.Appl. Surf. Sci. Adv.2021610017310.1016/j.apsadv.2021.100173
    [Google Scholar]
  7. YanatM. SchroënK. Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging.React. Funct. Polym.202116110484910.1016/j.reactfunctpolym.2021.104849
    [Google Scholar]
  8. NarainR. Polymer science and nanotechnology: fundamentals and applications.1st EdQuebec, CanadaDokumen Pub2020470
    [Google Scholar]
  9. AnjumolK.S. SumeshK.R. VackovaT. HannaJ.M. ThomasS. SpatenkaP. Effect of plasma treatment on the morphology, mechanical, and wetting properties of polyethylene/banana fiber composites.Biomass Convers. Biorefin.202321210.1007/s13399‑023‑04884‑5
    [Google Scholar]
  10. FabbriP. MessoriM. Surface Modification of Polymers: Chemical, Physical, and Biological Routes.modification of Polymer PropertiesWilliam Andrew Publishing: Norwich, New York201710913010.1016/B978‑0‑323‑44353‑1.00005‑1
    [Google Scholar]
  11. NemaniS.K. AnnavarapuR.K. MohammadianB. RaiyanA. HeilJ. HaqueM.A. AbdelaalA. SojoudiH. Surface modification: surface modification of polymers: methods and applications.Adv. Mater. Interfaces2018524187012110.1002/admi.201870121
    [Google Scholar]
  12. AguilarZ. Nanomaterials for Medical Applications, Newnes.2012Available from: https://www.google.co.in/books/edition/Nanomaterials_for_Medical_Applications/mdEuU5h0WZUC?hl=en&gbpv=1
    [Google Scholar]
  13. BaioJ.E. GrahamD.J. CastnerD.G. Surface analysis tools for characterizing biological materials.Chem. Soc. Rev.202049113278329610.1039/D0CS00181C 32390029
    [Google Scholar]
  14. ChanJ.W. ZhangY. UhrichK.E. Amphiphilic macromolecule self-assembled monolayers suppress smooth muscle cell proliferation.Bioconjug. Chem.20152671359136910.1021/acs.bioconjchem.5b00208 26042535
    [Google Scholar]
  15. JaganathanS.K. BalajiA. VellayappanM.V. SubramanianA.P. JohnA.A. AsokanM.K. SupriyantoE. Review: Radiation-induced surface modification of polymers for biomaterial application.J. Mater. Sci.20155052007201810.1007/s10853‑014‑8718‑x
    [Google Scholar]
  16. FuZ. GuX. HuL. LiY. LiJ. Radiation induced surface modification of nanoparticles and their dispersion in the polymer matrix.Nanomaterials20201011223710.3390/nano10112237 33187251
    [Google Scholar]
  17. BarsbayM. GüvenO. Surface modification of cellulose via conventional and controlled radiation-induced grafting.Radiat. Phys. Chem.20191601810.1016/j.radphyschem.2019.03.002
    [Google Scholar]
  18. XieK. DongZ. ZhaiM. ShiW. ZhaoL. Radiation-induced surface modification of silanized silica with n-alkyl-imidazolium ionic liquids and their applications for the removal of ReO4− as an analogue for TcO4−.Appl. Surf. Sci.202155114940610.1016/j.apsusc.2021.149406
    [Google Scholar]
  19. ChernyshV.S. IeshkinA.E. KireevD.S. TatarintsevA.A. SenatulinB.R. SkrylevaE.A. Surface modification of NiTi alloy by ion and gas cluster ion irradiation. The role of chemical segregation.Nucl. Instrum. Methods Phys. Res. B202455416546310.1016/j.nimb.2024.165463
    [Google Scholar]
  20. HarchenkoA.A. BrinkevichD.I. BrinkevichS.D. LukashevichM.G. OdzhaevV.B. Radiation-induced modification of polymer surfaces.J. Surf. Invest. X-ray, Synchrotron Neutron Tech.20159237137610.1134/S1027451015020317
    [Google Scholar]
  21. CangialosiD. McGrailP.T. EmmersonG. ValenzaA. CalderaroE. SpadaroG. Properties and morphology of PMMA/ABN blends obtained via MMA in situ polymerisation through γ-rays.Nucl. Instrum. Methods Phys. Res. B20011851-426226610.1016/S0168‑583X(01)00805‑9
    [Google Scholar]
  22. SpadaroG. DispenzaC. Mc GrailP.T. ValenzaA. CangialosiD. Submicron structured polymethyl methacrylate/acrylonitrile–butadiene rubber blends obtained via gamma radiation induced “in situ” polymerization.Adv. Polym. Technol.200423321122110.1002/adv.20010
    [Google Scholar]
  23. AlessiS. CondurutaD. PitarresiG. DispenzaC. SpadaroG. Hydrothermal ageing of radiation cured epoxy resin-polyether sulfone blends as matrices for structural composites.Polym. Degrad. Stabil.201095467768310.1016/j.polymdegradstab.2009.11.038
    [Google Scholar]
  24. AlessiS. DispenzaC. FuochiP.G. CordaU. LavalleM. SpadaroG. E-beam curing of epoxy-based blends in order to produce high-performance composites.Radiat. Phys. Chem.2007768-91308131110.1016/j.radphyschem.2007.02.021
    [Google Scholar]
  25. AlessiS. DispenzaC. SpadaroG. Thermal properties of e‐beam cured epoxy/thermoplastic matrices for advanced composite materials.Macromol. Symp.2007247123824310.1002/masy.200750127
    [Google Scholar]
  26. WhbaR. Su’aitM.S. WhbaF. SahinbayS. AltinS. AhmadA. Intrinsic challenges and strategic approaches for enhancing the potential of natural rubber and its derivatives: A review.Int. J. Biol. Macromol.2024276Pt 113379610.1016/j.ijbiomac.2024.133796 39004255
    [Google Scholar]
  27. JhaR.K. NeyhouseB.J. YoungM.S. FagnaniD.E. McNeilA.J. Revisiting poly(vinyl chloride) reactivity in the context of chemical recycling.Chem. Sci.202415165802581310.1039/D3SC06758K 38665509
    [Google Scholar]
  28. AgarwalR. SinghM. Ray ChowdhuryS. PantH.J. Effect of electron beam radiation on the mechanical, electrical, heat shrinkable and morphological properties of linear low-density polyethylene/polyolefin elastomer blends.Prog. Rubber Plast. Recycl. Technol.202440328730410.1177/14777606231220421
    [Google Scholar]
  29. MaraveasC. KyrtopoulosI.V. ArvanitisK.G. BartzanasT. The aging of polymers under electromagnetic radiation.Polymers202416568910.3390/polym16050689
    [Google Scholar]
  30. SpadaroG. AciernoD. DispenzaC. CalderaroE. ValenzaA. Physical and structural characterization of blends made with polyamide 6 and gamma-irradiated polyethylenes.Radiat. Phys. Chem.199648220721610.1016/0969‑806X(95)00422‑T
    [Google Scholar]
  31. SpadaroG. AciernoD. DispenzaC. ValenzaA. Thermal analysis of blends made with polyamide 6 and γ-irradiated polyethylenes.Thermochim. Acta1995269-27026127210.1016/0040‑6031(95)02365‑8
    [Google Scholar]
  32. ZhouY. ZhangY. ZhangY. HuW. HanS. UV light-induced photodegradation of condensed tannins: obtaining bayberry tannins with different mean polymerization degrees.Wood Sci. Technol.2025591510.1007/s00226‑024‑01603‑9
    [Google Scholar]
  33. GnilitskyiI. DolgovL. TammA. FerrariaA.M. DiedkovaK. KopanchukS. TsekhmisterY. VeiksinaS. PolewczykV. PogorielovM. Enhanced osteointegration and osteogenesis of osteoblast cells by laser-induced surface modification of Ti implants.Nanomedicine20246210278510.1016/j.nano.2024.102785 39306023
    [Google Scholar]
  34. OnyiriukaE.C. The effects of high-energy radiation on the surface chemistry of polystyrene: A mechanistic study.J. Appl. Polym. Sci.199347122187219410.1002/app.1993.070471213
    [Google Scholar]
  35. YamagishiH. CrivelloJ.V. BelfortG. Development of a novel photochemical technique for modifying poly (arylsulfone) ultrafiltration membranes.J. Membr. Sci.1995105323724710.1016/0376‑7388(95)00063‑I
    [Google Scholar]
  36. PieracciJ. WoodD.W. CrivelloJ.V. BelfortG. UV-assisted graft polymerization of N -vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes: comparison of dip versus immersion modification techniques.Chem. Mater.20001282123213310.1021/cm9907864
    [Google Scholar]
  37. FathyE.S. IbrahimS. ElnaggarM.Y. FahmyH. LotfyS. Polypropylene based bio-composites for packaging materials: Physico-mechanical impacts of prepared hyper-branched polyamidoamine and gamma-irradiation.J. Thermoplast. Compos. Mater.2024371668310.1177/08927057231169902
    [Google Scholar]
  38. Ramos‐BallesterosA. Pino‐RamosV.H. López‐SaucedoF. Flores‐RojasG.G. BucioE. γ‐rays and ions irradiation.Surf. Modif. Polym. Methods Appl.2019118520910.1002/9783527819249.ch7
    [Google Scholar]
  39. SonnierR. TaguetA. RouifS. Modification of Polymer Blends by E-Beam and Gamma Irradiation.Functional Polymer Blends.1st EdBoca Raton, FLCRC Press201226130410.1201/b11799‑13
    [Google Scholar]
  40. XiaoY. ZhangF. WeiR. QinD. TangZ. BaoY. CaiZ. Influence of γ‐irradiation dose on the mechanical and tribological properties of fluoroelastomer.Polym. Eng. Sci.202464105186519710.1002/pen.26912
    [Google Scholar]
  41. BenavidesR. VieiraL.F. AcostaD.M. DA SilvaL. RodríguezM.T. Martínez-PardoM.E. Gamma crosslinking of sulfonated styrene-co-butyl acrylate membranes for their use in fuel cells.PlumX Metrics20241501443410.2139/ssrn.5014434
    [Google Scholar]
  42. NechiforC.D. DorohoiD.O. CiobanuC. The influence of gamma radiations on physico-chemical properties of some polymer membranes.Rom. J. Phys.200954349359
    [Google Scholar]
  43. MadridJ.F. AbadL.V. Modification of microcrystalline cellulose by gamma radiation-induced grafting.Radiat. Phys. Chem.201511514314710.1016/j.radphyschem.2015.06.025
    [Google Scholar]
  44. BreuerJ. MetevS. SepoldG. Photolytical pretreatment of polymers with UV-laser radiation.Mater. Manuf. Process.199510222923910.1080/10426919508935018
    [Google Scholar]
  45. BreuerJ. MetevS. SepoldG. HennemannO.D. KollekH. KrügerG. Laser-induced photochemical adherence enhancement.Appl. Surf. Sci.1990461-433634110.1016/0169‑4332(90)90166‑W
    [Google Scholar]
  46. BuchmanA. DodiukH. RotelM. ZahaviJ. Laser-induced adhesion enhancement of polymer composites and metal alloys.J. Adhes. Sci. Technol.19948101211122410.1163/156856194X01031
    [Google Scholar]
  47. LaurichesseS. AvérousL. Chemical modification of lignins: Towards biobased polymers.Prog. Polym. Sci.20143971266129010.1016/j.progpolymsci.2013.11.004
    [Google Scholar]
  48. XinJ. LuX. CaoJ. WuW. LiuQ. WangD. ZhouX. DingD. Fluorinated organic polymers for cancer drug delivery.Adv. Mater.20243630240464510.1002/adma.202404645 38678386
    [Google Scholar]
  49. ShatabayevaE.O. KaldybekovD.B. UlmanovaL. ZhaisanbayevaB.A. MunE.A. KenessovaZ.A. KudaibergenovS.E. KhutoryanskiyV.V. Enhancing mucoadhesive properties of gelatin through chemical modification with unsaturated anhydrides.Biomacromolecules20242531612162810.1021/acs.biomac.3c01183 38319691
    [Google Scholar]
  50. BokatyiA.N. DubashynskayaN.V. SkorikY.A. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems.Carbohydr. Polym.202433712214510.1016/j.carbpol.2024.122145 38710553
    [Google Scholar]
  51. SrinadhuE.S. ThanuD.P. PuttaS. ZhaoM. SenguptaB. ArabandiL.P. KumarJ. ShyamR. KeswaniV.H. KeswaniM. Chapter 7 - Adhesion Enhancement of Polymer Surfaces by Ion Beam Treatment.Polymer Surface Modification to Enhance AdhesionChapter 7Scrivener Publishing LLC: Beverly, MA202427332810.1002/9781394231034.ch7
    [Google Scholar]
  52. BertinM. LeitaoE.M. BickertonS. VerbeekC.J.R. A review of polymer surface modification by cold plasmas toward bulk functionalization.Plasma Process. Polym.2024215230020810.1002/ppap.202300208
    [Google Scholar]
  53. SultanaN. NishinaY. NizamiM.Z.I. Surface modifications of medical grade stainless steel.Coatings202414324810.3390/coatings14030248
    [Google Scholar]
  54. GhorbanizamaniF. CelikE.G. MoulahoumH. TimurS. Self-assembled monolayer–based nanoscaled surfaces.Biophysics At the Nanoscale.New YorkAcademic Press202412510.1016/B978‑0‑443‑15359‑4.00001‑2
    [Google Scholar]
  55. SugiyamaK. KatoK. KidoM. ShiraishiK. OhgaK. OkadaK. MatsuoO. Grafting of vinyl monomers on the surface of a poly(ethylene terephthalate) film using Ar plasma-post polymerization technique to increase biocompatibility.Macromol. Chem. Phys.199819961201120810.1002/(SICI)1521‑3935(19980601)199:6<1201:AID‑MACP1201>3.0.CO;2‑6
    [Google Scholar]
  56. LuuC.H. NguyenN.T. TaH.T. Unravelling surface modification strategies for preventing medical device‐induced thrombosis.Adv. Healthc. Mater.2024131230103910.1002/adhm.202301039 37725037
    [Google Scholar]
  57. WangH. XuJ. HuJ. HangG. ZhangT. ZhengS. Reprocessing and shape recovery of polyurethane enabled by crosslinking with poly(β-cyclodextrin) via host-guest interactions.Polymer202328112612210.1016/j.polymer.2023.126122
    [Google Scholar]
  58. BaylissN. SchmidtB.V.K.J. Hydrophilic polymers: Current trends and visions for the future.Prog. Polym. Sci.202314710175310.1016/j.progpolymsci.2023.101753
    [Google Scholar]
  59. NevesL.B. AfonsoI.S. NobregaG. BarbosaL.G. LimaR.A. RibeiroJ.E. A review of methods to modify the pdms surface wettability and their applications.Micromachines202415667010.3390/mi15060670 38930640
    [Google Scholar]
  60. MirzadehH. KatbabA.A. BurfordR.P. CO2-Pulsed laser induced surface grafting of acrylamide onto ethylene-propylene-rubber (EPR)—I.Radiat. Phys. Chem.199341350751910.1016/0969‑806X(93)90013‑K
    [Google Scholar]
  61. MirzadehH. KatbabA.A. KhorasaniM.T. BurfordR.P. GorginE. GolestaniA. Cell attachment to laser-induced AAm-and HEMA-grafted ethylenepropylene rubber as biomaterial: In vivo study.Biomaterials199516864164810.1016/0142‑9612(95)93862‑8 7548615
    [Google Scholar]
  62. CasettariL. VllasaliuD. MantovaniG. HowdleS.M. StolnikS. IllumL. Effect of PEGylation on the toxicity and permeability enhancement of chitosan.Biomacromolecules201011112854286510.1021/bm100522c 20873757
    [Google Scholar]
  63. PengY.Y. SrinivasS. NarainR. Modification of polymers.Inpolym. Sci. Nanotechnol.202019510410.1016/B978‑0‑12‑816806‑6.00005‑4 32000485
    [Google Scholar]
  64. YuY. ChenC.K. LawW.C. WeinheimerE. SenguptaS. PrasadP.N. ChengC. Polylactide-graft-doxorubicin nanoparticles with precisely controlled drug loading for pH-triggered drug delivery.Biomacromolecules201415252453210.1021/bm401471p 24446700
    [Google Scholar]
  65. WangY. XinD. LiuK. ZhuM. XiangJ. Heparin-paclitaxel conjugates as drug delivery system: synthesis, self-assembly property, drug release, and antitumor activity.Bioconjug. Chem.200920122214222110.1021/bc8003809 19950889
    [Google Scholar]
  66. SinghaN.K. GibsonM.I. KoiryB.P. DanialM. KlokH-A. Side-chain peptidesynthetic polymer conjugates via tandem “ester-amide/thiol–ene” post-polymerization modification of poly (pentafluorophenyl methacrylate) obtained using ATRP.Biomacromolecules20111282908291310.1021/bm200469a
    [Google Scholar]
  67. ZhongX. JordanR. ChenJ.R. RaymondJ. LahannJ. Systematic studies into the area selectivity of chemical vapor deposition polymerization.ACS Appl. Mater. Interfaces20231517216182162810.1021/acsami.3c01268 37079371
    [Google Scholar]
  68. MengF. EngbersG.H.M. GessnerA. MüllerR.H. FeijenJ. Pegylated polystyrene particles as a model system for artificial cells.J. Biomed. Mater. Res. A20047019710610.1002/jbm.a.30068
    [Google Scholar]
  69. O’BrienP. Chemical Vapor Deposition.Encyclopedia of Materials: Science and Technology. BuschowK.H.J. CahnR.W. FlemingsM.C. IlschnerB. KramerE.J. MahajanS. OxfordElsevier20011173117810.1016/B0‑08‑043152‑6/00219‑9
    [Google Scholar]
  70. ZhangA. HouY. WangY. WangQ. ShanX. LiuJ. Highly efficient low-temperature biodegradation of polyethylene microplastics by using cold-active laccase cell-surface display system.Bioresour. Technol.202338212916410.1016/j.biortech.2023.129164 37207695
    [Google Scholar]
  71. SchumanTP Chapter 13 - Adhesion Promotors for Polymer Surfaces.Polymer Surface Modification to Enhance Adhesion: Techniques and ApplicationsScrivener Publishing LLC: Beverly, MA202451755810.1002/9781394231034.ch13
    [Google Scholar]
  72. BaszkinA. NishinoM. Ter Minassian-SaragaL. Solid—liquid adhesion of oxidized polyethylene films: Effect of temperature.J. Colloid Interface Sci.197654331732810.1016/0021‑9797(76)90311‑8
    [Google Scholar]
  73. BaszkinA. NishinoM. Ter-Minassian-SaragaL. Solid-liquid adhesion of oxidized polyethylene films. Effect of temperature on polar forces.J. Coll. Interf. Sci.197759351652410.1016/0021‑9797(77)90047‑9
    [Google Scholar]
  74. RanaM.S. RahmanN. ChowdhuryT.A. SultanaS. SardarM.N. KayserM.N. Investigations of applicability of sulfonated-GMA-g-non-woven PE adsorbent for the efficient removal of uranium from aqueous solutions.J. Radioanal. Nucl. Chem.2023332373774610.1007/s10967‑023‑08802‑x
    [Google Scholar]
  75. PennL.S. BowlerE.R. A new approach to surface energy characterization for adhesive performance prediction.Surf. Interface Anal.19813416116410.1002/sia.740030405
    [Google Scholar]
  76. SilversteinM.S. BreuerO. Relationship between surface properties and adhesion for etched ultra-high-molecular-weight polyethylene fibers.Compos. Sci. Technol.1993481-415115710.1016/0266‑3538(93)90131‑Y
    [Google Scholar]
  77. GagnonD.R. McCarthyT.J. Polymer surface reconstruction by diffusion of organic functional groups from and to the surface.J. Appl. Polym. Sci.198429124335434010.1002/app.1984.070291262
    [Google Scholar]
  78. PennL.S. WangH. Chemical modification of polymer surfaces: A review.Polym. Adv. Technol.199451280981710.1002/pat.1994.220051207
    [Google Scholar]
  79. CooperG.D. ProberM. The action of oxygen corona and of ozone on polyethylene.J. Polym. Sci.19604414439740910.1002/pol.1960.1204414411
    [Google Scholar]
  80. DoleN. AhmadiK. SolankiD. SwaminathanV. KeswaniV. KeswaniM. Chapter 2 -Corona Treatment of Polymer Surfaces to Enhance Adhesion; Polymer Surface Modification to Enhance Adhesion.Chapter 2Beverly, MAScrivener Publishing LLC2024457610.1002/9781394231034.ch2
    [Google Scholar]
  81. ChenC.H. KaoS.Y. LinH.M. Surface modification of poly(ethylene terephthalate) fabric using conductive polyaniline.Mod. Phys. Lett. B20233717234001210.1142/S0217984923400122
    [Google Scholar]
  82. ZhangS. LiuY. LvS. ChengJ. Surface modification of polymers by ion irradiation: Reactivity principle and application.Nucl. Instrum. Methods Phys. Res. B202354316509710.1016/j.nimb.2023.165097
    [Google Scholar]
  83. HolländerA. BehnischJ. ZimmermannH. Surface modification of poly(ethylene) in an rf downstream remote plasma reactor.J. Appl. Polym. Sci.199349101857186310.1002/app.1993.070491016
    [Google Scholar]
  84. CourvalG.J. GrayD.G. GoringD.A.I. Chemical modification of polyethylene surfaces in a nitrogen corona.J. Polym. Sci. Polym. Lett. Ed.197614423123510.1002/pol.1976.130140410
    [Google Scholar]
  85. WuS. Polymer interface and adhesion.1st EdNew YorkRoutledge201763010.1201/9780203742860
    [Google Scholar]
  86. KumarP. S.; Jayanarayanan, K.; Balachandran, M. High-performance thermoplastic polyaryletherketone/carbon fiber composites: Comparison of plasma, carbon nanotubes/graphene nano-anchoring, surface oxidation techniques for enhanced interface adhesion and properties.Compos., Part B Eng.202325311056010.1016/j.compositesb.2023.110560
    [Google Scholar]
  87. ChappellP.J.C. BrownJ.R. GeorgeG.A. WillisH.A. Surface modification of extended chain polyethylene fibres to improve adhesion to epoxy and unsaturated polyester resins.Surf. Interface Anal.199117314315010.1002/sia.740170305
    [Google Scholar]
  88. PillaiR.R. ThomasV. Plasma surface engineering of natural and sustainable polymeric derivatives and their potential applications.Polymers202315240010.3390/polym15020400
    [Google Scholar]
  89. LiuS. Characterizing blood protein surface interactions for the development of thromboresistant fluoropolymer coatings.2023Available from: https://www.proquest.com/dissertations-theses/characterizing-blood-protein-surface-interactions/docview/2798531383/se-2?accountid=131615
    [Google Scholar]
  90. TanK.L. WoonL.L. WongH.K. KangE.T. NeohK.G. Surface modification of plasma-pretreated poly(tetrafluoroethylene) films by graft copolymerization.Macromolecules199326112832283610.1021/ma00063a030
    [Google Scholar]
  91. VeselA. MozeticM. Surface modification and ageing of PMMA polymer by oxygen plasma treatment.Vacuum201286663463710.1016/j.vacuum.2011.07.005
    [Google Scholar]
  92. VeselA. Deposition of chitosan on plasma-treated polymers: A review.Polymers2023155110910.3390/polym15051109
    [Google Scholar]
  93. BhattP. KumarV. SubramaniyanV. NagarajanK. SekarM. ChinniS.V. RamachawolranG. Plasma modification techniques for natural polymer-based drug delivery systems.Pharmaceutics2023158206610.3390/pharmaceutics15082066 37631280
    [Google Scholar]
  94. PrimcG. MozetičM. Surface modification of polymers by plasma treatment for appropriate adhesion of coatings.Materials2024177149410.3390/ma17071494 38612009
    [Google Scholar]
  95. YoshidaS. HagiwaraK. HasebeT. HottaA. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release.Surf. Coat. Tech.20132339910710.1016/j.surfcoat.2013.02.042
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298367223250112224739
Loading
/content/journals/mroc/10.2174/0118756298367223250112224739
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test