Skip to content
2000
image of Advances in the Application of Mass Spectrometry in the Study of Alkaloid Structure

Abstract

As an efficient analytical method, mass spectrometry can identify the structure of alkaloid compounds, providing important support for drug development and clinical applications. In this manuscript, the basic principles and rules of alkaloid mass spectrometry analysis are reviewed, and the breakage modes and characteristic ions of different types of alkaloids in mass spectrometry are emphatically introduced. By discussing the fragmentation behavior of various alkaloids in negative ion mode and positive ion mode in detail, the mass spectrometry cleavage laws of various alkaloids are revealed, and the application of these laws in practical detection is summarized.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298357295250214114611
2025-03-18
2025-09-15
Loading full text...

Full text loading...

References

  1. Dong S. Guo X. Han F. He Z. Wang Y. Emerging role of natural products in cancer immunotherapy. Acta Pharm. Sin. B 2022 12 3 1163 1185 10.1016/j.apsb.2021.08.020 35530162
    [Google Scholar]
  2. Cragg G.M. Newman D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta. Gen. Subj. 2013 1830 6 3670 3695 10.1016/j.bbagen.2013.02.008 23428572
    [Google Scholar]
  3. Butler M.S. Robertson A.A.B. Cooper M.A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep. 2014 31 11 1612 1661 10.1039/C4NP00064A 25204227
    [Google Scholar]
  4. Harvey A.L. Edrada-Ebel R. Quinn R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug. Discov. 2015 14 2 111 129 10.1038/nrd4510 25614221
    [Google Scholar]
  5. Crane E.A. Gademann K. Capturing biological activity in natural product fragments by chemical synthesis. Angew. Chem. Int. Ed. 2016 55 12 3882 3902 10.1002/anie.201505863 26833854
    [Google Scholar]
  6. Xiao Z. Morris-Natschke S.L. Lee K.H. Strategies for the optimization of natural leads to anticancer drugs or drug candidates. Med. Res. Rev. 2016 36 1 32 91 10.1002/med.21377 26359649
    [Google Scholar]
  7. Shen B. A new golden age of natural products drug discovery. Cell 2015 163 6 1297 1300 10.1016/j.cell.2015.11.031 26638061
    [Google Scholar]
  8. Atanasov A.G. Waltenberger B. Pferschy-Wenzig E.M. Linder T. Wawrosch C. Uhrin P. Temml V. Wang L. Schwaiger S. Heiss E.H. Rollinger J.M. Schuster D. Breuss J.M. Bochkov V. Mihovilovic M.D. Kopp B. Bauer R. Dirsch V.M. Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015 33 8 1582 1614 10.1016/j.biotechadv.2015.08.001 26281720
    [Google Scholar]
  9. Newman D.J. Cragg G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016 79 3 629 661 10.1021/acs.jnatprod.5b01055 26852623
    [Google Scholar]
  10. Waltenberger B. Mocan A. Šmejkal K. Heiss E. Atanasov A. Natural products to counteract the epidemic of cardiovascular and metabolic disorders. Molecules 2016 21 6 807 807 10.3390/molecules21060807 27338339
    [Google Scholar]
  11. Tintore M. Vidal-Jordana A. Sastre-Garriga J. Treatment of multiple sclerosis success from bench to bedside. Nat. Rev. Neurol. 2019 15 1 53 58 10.1038/s41582‑018‑0082‑z 30315270
    [Google Scholar]
  12. Feher M. Schmidt J.M. Property distributions: Differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 2003 43 1 218 227 10.1021/ci0200467 12546556
    [Google Scholar]
  13. Barnes E.C. Kumar R. Davis R.A. The use of isolated natural products as scaffolds for the generation of chemically diverse screening libraries for drug discovery. Nat. Prod. Rep. 2016 33 3 372 381 10.1039/C5NP00121H 26739749
    [Google Scholar]
  14. Li J.W.H. Vederas J.C. Drug discovery and natural products: End of an era or an endless frontier? Science 2009 325 5937 161 165 10.1126/science.1168243 19589993
    [Google Scholar]
  15. Clardy J. Walsh C. Lessons from natural molecules. Nature 2004 432 7019 829 837 10.1038/nature03194 15602548
    [Google Scholar]
  16. Lawson A.D.G. MacCoss M. Heer J.P. Importance of rigidity in designing small molecule drugs to tackle protein–protein interactions (PPIs) through stabilization of desired conformers. J. Med. Chem. 2018 61 10 4283 4289 10.1021/acs.jmedchem.7b01120 29140691
    [Google Scholar]
  17. Kallscheuer N. Classen T. Drepper T. Marienhagen J. Production of plant metabolites with applications in the food industry using engineered microorganisms. Curr. Opin. Biotechnol. 2019 56 7 17 10.1016/j.copbio.2018.07.008 30114548
    [Google Scholar]
  18. Fatma S.A. Niu Y. Wang H. Zhou L. Meng L. Chen S. Sun-Waterhouse D. Neil Waterhouse G.I. Natural products: Regulating glucose metabolism and improving insulin resistance. Food Sci. Hum. Wellness 2020 9 3 214 228
    [Google Scholar]
  19. Al-Subaie S.F. Alowaifeer A.M. Mohamed M.E. Pyrrolizidine alkaloid extraction and analysis: Recent updates. Foods 2022 11 23 3873 10.3390/foods11233873 36496681
    [Google Scholar]
  20. Dembitsky V.M. Naturally occurring bioactive Cyclobutane-containing (CBC) alkaloids in fungi, fungal endophytes, and plants. Phytomedicine 2014 21 12 1559 1581 10.1016/j.phymed.2014.07.005 25442265
    [Google Scholar]
  21. Zotchev S.B. Alkaloids from marine bacteria. Adv. Bot. Res. 2013 68 301 333 10.1016/B978‑0‑12‑408061‑4.00011‑0
    [Google Scholar]
  22. Tamariz J. Burgueño-Tapia E. Vázquez M.A. Delgado F. Pyrrolizidine alkaloids. Alkaloids Chem. Biol. 2018 80 1 314 10.1016/bs.alkal.2018.03.001 30001795
    [Google Scholar]
  23. Thawabteh A. Juma S. Bader M. Karaman D. Scrano L. Bufo S. Karaman R. The Biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins 2019 11 11 656 10.3390/toxins11110656 31717922
    [Google Scholar]
  24. Evans W.C. Evans D. Trease and Evans Pharmacognosy. Saunders Ltd. 16th ed 2009 353 415 10.1016/B978‑0‑7020‑2933‑2.00026‑5
    [Google Scholar]
  25. Dembitsky V.M. Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides. Lipids 2005 40 11 1081 1105 10.1007/s11745‑005‑1473‑2 16459921
    [Google Scholar]
  26. Othman L. Sleiman A. Abdel-Massih R.M. Antimicrobial activity of polyphenols and alkaloids in middle Eastern plants. Front. Microbiol. 2019 10 911 10.3389/fmicb.2019.00911 31156565
    [Google Scholar]
  27. Tyler V. E. Speedie M. K. Robbers J. E. Pharmacognosy and Pharmacobiotechnology Williams and Wilkins 1996 144 185
    [Google Scholar]
  28. Cushnie T.P.T. Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005 26 5 343 356 10.1016/j.ijantimicag.2005.09.002 16323269
    [Google Scholar]
  29. Casciaro B. Mangiardi L. Cappiello F. Romeo I. Loffredo M.R. Iazzetti A. Calcaterra A. Goggiamani A. Ghirga F. Mangoni M.L. Botta B. Quaglio D. Naturally-occurring alkaloids of plant origin as potential antimicrobials against antibiotic-resistant infections. Molecules 2020 25 16 3619 10.3390/molecules25163619 32784887
    [Google Scholar]
  30. Amirkia V. Heinrich M. Alkaloids as drug leads: A predictive structural and biodiversity-based analysis Phytochem. Lett. 2014 10 48 10.1016/j.phytol.2014.06.015
    [Google Scholar]
  31. André B. Ras C. Pierick A.T. Dam J.C. Heijnen J.J. Gulik W. Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics 2008 4 3 226 239
    [Google Scholar]
  32. Kopp T. Abdel-Tawab M. Mizaikoff B. Extracting and analyzing pyrrolizidine alkaloids in medicinal plants: A review. Toxins 2020 12 5 320 10.3390/toxins12050320 32413969
    [Google Scholar]
  33. Yates J.R. Ruse C.I. Nakorchevsky A. Proteomics by mass spectrometry: Approaches, advances, and applications. Annu. Rev. Biomed. Eng. 2009 11 1 49 79 10.1146/annurev‑bioeng‑061008‑124934 19400705
    [Google Scholar]
  34. Welham K. J. Domin M. A. Scannell D. E. Cohen E. Ashton D. S. The characterization of micro‐organisms by matrix‐assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1998 12 4 176 180
    [Google Scholar]
  35. Clarke W. Mass spectrometry in the clinical laboratory: Determining the need and avoiding pitfalls. Mass Spectrometry for the Clinical Laboratory. Academic Press 2017 10.1016/B978‑0‑12‑800871‑3.00001‑8
    [Google Scholar]
  36. Saraswathy N Ramalingam P Mass spectrometry for proteomics. Concepts and Techniques in Genomics and Proteomics Woodhead Publishing 2011 171 183 10.1533/9781908818058.171
    [Google Scholar]
  37. Laremore T. N. Leach F. E. Solakyildirim K. Glycosaminoglycan characterization by electrospray ionization mass spectrometry including fourier transform mass spectrometry. Methods in Enzymology Academic Press 2010 79 108
    [Google Scholar]
  38. Wang Z. Zhu H. Xiong W. Advances in mass spectrometry-based multi-scale metabolomic methodologies and their applications in biological and clinical investigations. Sci. Bull. (Beijing) 2023 68 19 2268 2284 10.1016/j.scib.2023.08.047 37666722
    [Google Scholar]
  39. McConkey B. J. Theory and applications of proteomics. Comprehensive Biotechnology. Pergamon 2011 448 455
    [Google Scholar]
  40. Carbonell-Rozas L. Gámiz-Gracia L. Lara F.J. García-Campaña A.M. Determination of the main ergot alkaloids and their epimers in oat-based functional foods by ultra-high performance liquid chromatography tandem mass spectrometry. Molecules 2021 26 12 3717 10.3390/molecules26123717 34207051
    [Google Scholar]
  41. Lorensen M.D.B.B. Bjarnholt N. St-Pierre B. Heinicke S. Courdavault V. O’Connor S. Janfelt C. Spatial localization of monoterpenoid indole alkaloids in Rauvolfia tetraphylla by high resolution mass spectrometry imaging. Phytochemistry 2023 209 113620 10.1016/j.phytochem.2023.113620 36863602
    [Google Scholar]
  42. Sproll C. Perz R.C. Lachenmeier D.W. Optimized LC/MS/MS analysis of morphine and codeine in poppy seed and evaluation of their fate during food processing as a basis for risk analysis. J. Agric. Food Chem. 2006 54 15 5292 5298 10.1021/jf0608975 16848508
    [Google Scholar]
  43. Song D. Hao J. Fan D. Biological properties and clinical applications of berberine. Front. Med. 2020 14 5 564 582 10.1007/s11684‑019‑0724‑6 32335802
    [Google Scholar]
  44. Chen Y.J. Ma K.Y. Du S.S. Zhang Z.J. Wu T.L. Sun Y. Liu Y.Q. Yin X.D. Zhou R. Yan Y.F. Wang R.X. He Y.H. Chu Q.R. Tang C. Antifungal exploration of quinoline derivatives against phytopathogenic fungi inspired by quinine alkaloids. J. Agric. Food Chem. 2021 69 41 12156 12170 10.1021/acs.jafc.1c05677 34623798
    [Google Scholar]
  45. Friederike F. Stegemann T. Çiçek S.S Zidorn C. Sequestration of pyridine alkaloids anabasine and nicotine from Nicotiana (Solanaceae) by Orobanche ramosa(Orobanchaceae). Biochem. Syst. Ecol. 2019 86 103908 103908
    [Google Scholar]
  46. Lin S.X. Curtis M.A. Sperry J. Pyridine alkaloids with activity in the central nervous system. Bioorg. Med. Chem. 2020 28 24 115820 10.1016/j.bmc.2020.115820 33120080
    [Google Scholar]
  47. Seipp K. Geske L. Opatz T. Marine pyrrole alkaloids. Mar. Drugs 2021 19 9 514 10.3390/md19090514 34564176
    [Google Scholar]
  48. Mishra A. Punia J.K. Bladen C. Zamponi G.W. Goel R.K. Anticonvulsant mechanisms of piperine, a piperidine alkaloid. Channels (Austin) 2015 9 5 317 323 10.1080/19336950.2015.1092836 26542628
    [Google Scholar]
  49. Xiang M.L. Hu B.Y. Qi Z.H. Wang X.N. Xie T.Z. Wang Z.J. Ma D.Y. Zeng Q. Luo X.D. Chemistry and bioactivities of natural steroidal alkaloids. Nat. Prod. Bioprospect. 2022 12 1 23 10.1007/s13659‑022‑00345‑0 35701630
    [Google Scholar]
  50. Gou G.H. Liu L. Abdubakiev S. Xin X.L. Akber Aisa H. Li J. Anti‐diabetic effects and molecular mechanisms of amide alkaloids from Piper longum based on network pharmacology integrated with cellular assays. Chem. Biodivers. 2023 20 1 e202200904 10.1002/cbdv.202200904 36469428
    [Google Scholar]
  51. Lawson D.R. Green T.P. Haynes L.R.W. Miller A.R. Nuclear magnetic resonance spectroscopy and mass spectrometry of solanidine, leptinidine, and acetylleptinidine. Steroidal alkaloids from Solanum chacoense bitter. J. Agric. Food Chem. 1997 45 10 4122 4126 10.1021/jf9702914
    [Google Scholar]
  52. Osman S. Sinden S.L. Deahl K. Moreau R. The metabolism of solanidine by microsomal fractions from Solanum chacoense. Phytochemistry 1987 26 12 3163 3165 10.1016/S0031‑9422(00)82462‑0
    [Google Scholar]
  53. Mohammat A. Yili A. Aisa H.A. Rapid quantification and quantitation of alkaloids in xinjiang fritillaria by ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Molecules 2017 22 5 719 719 10.3390/molecules22050719 28468304
    [Google Scholar]
  54. Zhou J.L. Xin G.Z. Shi Z.Q. Ren M.T. Qi L.W. Li H.J. Li P. Characterization and identification of steroidal alkaloids in Fritillaria species using liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J. Chromatogr. A 2010 1217 45 7109 7122 10.1016/j.chroma.2010.09.019 20926090
    [Google Scholar]
  55. Del Rio D. Stewart A.J. Mullen W. Burns J. Lean M.E.J. Brighenti F. Crozier A. HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J. Agric. Food Chem. 2004 52 10 2807 2815 10.1021/jf0354848 15137818
    [Google Scholar]
  56. Bartella L. Di Donna L. Napoli A. Siciliano C. Sindona G. Mazzotti F. A rapid method for the assay of methylxanthines alkaloids: Theobromine, theophylline and caffeine, in cocoa products and drugs by paper spray tandem mass spectrometry. Food Chem. 2019 278 261 266 10.1016/j.foodchem.2018.11.072 30583372
    [Google Scholar]
  57. Qing Fu. Li Z.Y. Sun C.C. Xin H.X. Ke Y.X. Liang X.M. Rapid and simultaneous analysis of sesquiterpene pyridine alkaloids from Tripterygium wilfordii Hook. f. Using supercritical fluid chromatography-diode array detector-tandem mass spectrometry. J. Supercrit. Fluids 2015 104 85 93
    [Google Scholar]
  58. Rodríguez-Cabo T. Moniruzzaman M. Rodríguez I. Ramil M. Cela R. Gan S.H. Time-of-flight accurate mass spectrometry identification of quinoline alkaloids in honey. Anal. Bioanal. Chem. 2015 407 20 6159 6170 10.1007/s00216‑015‑8791‑2 26041455
    [Google Scholar]
  59. Won T.J. Lim H.B. Jung. An S. Rapid Determination of furoquinoline alkaloids in rutaceae species by ultra-performance liquid chromatography (UPLC) with photodiode array (PDA) and electrospray ionization–quadrupole time-of-flight mass spectrometry (ESI-Q-TOF/MS). Anal. Lett. 2020 54 4 698 715
    [Google Scholar]
  60. Kilbane J.J. II Ranganathan R. Cleveland L. Kayser K.J. Ribiero C. Linhares M.M. Selective removal of nitrogen from quinoline and petroleum by Pseudomonas ayucida IGTN9m. Appl. Environ. Microbiol. 2000 66 2 688 693 10.1128/AEM.66.2.688‑693.2000 10653737
    [Google Scholar]
  61. Marufa N. Kim S. Lee S.H. Rakhmat S.H. Islam S.. Alam R. Metabolite profiling of Nymphaea rubra (Burm. f.) flower extracts using cyclic ion mobility–mass spectrometry and their associated biological activities. Food. Chem. 2023 404 0 134544 134544
    [Google Scholar]
  62. Singh A. Bajpai V. Kumar S. Singh Rawat A.K. Kumar B. Analysis of isoquinoline alkaloids from Mahonia leschenaultia and Mahonia napaulensis roots using UHPLC-Orbitrap-MSn and UHPLC-QqQLIT-MS/MS. J. Pharm. Anal. 2017 7 2 77 86 10.1016/j.jpha.2016.10.002 29404021
    [Google Scholar]
  63. Li A. Du Z. Liao M. Feng Y. Ruan H. Jiang H. Discovery and characterisation of lycorine‐type alkaloids in Lycoris spp. (Amaryllidaceae) using UHPLC‐QTOF‐MS. Phytochem. Anal. 2019 30 3 268 277 10.1002/pca.2811 30548356
    [Google Scholar]
  64. Wei J. Fang L. Liang X. Su D. Guo X. A sensitive and selective UPLC–MS/MS method for simultaneous determination of 10 alkaloids from Rhizoma Menispermi in rat plasma and its application to a pharmacokinetic study. Talanta 2015 144 662 670 10.1016/j.talanta.2015.07.023 26452875
    [Google Scholar]
  65. Shang Z.C. Qin S. Li K. Liu Y. Wu J.L. Yan F. Cai W. A systematic method for the identification of aporphine alkaloid constituents in Sabia schumanniana Diels using UHPLC-Q-Exactive Orbitrap/Mass spectrometry. Molecules 2022 27 21 7643 10.3390/molecules27217643 36364479
    [Google Scholar]
  66. Conceição R.S. Perez C.J. Branco A. Botura M.B. Ifa D.R. Identification ofSassafras albidum alkaloids by high‐performance thin‐layer chromatography tandem mass spectrometry and mapping by desorption electrospray ionization mass spectrometry imaging. J. Mass Spectrom. 2021 56 1 e4674 10.1002/jms.4674 33155339
    [Google Scholar]
  67. Contreras M.M. Bribi N. Gómez-Caravaca A.M. Gálvez J. Segura-Carretero A. Alkaloids profiling of Fumaria capreolata by analytical platforms based on the hyphenation of gas chromatography and liquid chromatography with quadrupole-Time-of-Flight Mass Spectrometry. Int. J. Anal. Chem. 2017 2017 1 16 10.1155/2017/5178729 29348751
    [Google Scholar]
  68. Liu C. Liu Q. Nian M. Wu H. Cao S. Wu H. Dong T. Wu P. Zhou A. Identification and quantitative analysis of the chemical constituents of Gandouling tablets using ultra‐high‐performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry. J. Sep. Sci. 2023 46 16 2300060 10.1002/jssc.202300060 37344982
    [Google Scholar]
  69. Zhao X. Yuan Y. Wei H. Fei Q. Luan Z. Wang X. Xu Y. Lu J. Identification and characterization of higenamine metabolites in human urine by quadrupole-orbitrap LC-MS/MS for doping control. J. Pharm. Biomed. Anal. 2022 214 114732 10.1016/j.jpba.2022.114732 35325800
    [Google Scholar]
  70. Menéndez-Perdomo I.M. Hagel J.M. Facchini P.J. Benzylisoquinoline alkaloid analysis using high‐resolution Orbitrap LC‐MS n. J. Mass Spectrom. 2021 56 2 e4683 10.1002/jms.4683 33410198
    [Google Scholar]
  71. Sun M. Liu J. Lin C. Miao L. Lin L. Alkaloid profiling of the traditional Chinese medicine Rhizoma corydalis using high performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. Acta Pharm. Sin. B 2014 4 3 208 216 10.1016/j.apsb.2014.04.003 26579385
    [Google Scholar]
  72. Shan J. Zhao X. Shen C. Ji J. Xu J. Wang S. Xie T. Tong W. Liquid chromatography coupled with linear ion trap hybrid orbitrapmass spectrometry for determination of alkaloids in Sinomeniumacutum. Molecules 2018 23 7 1634 10.3390/molecules23071634 29973556
    [Google Scholar]
  73. Zhang Z. Yan B. Liu K. Bo T. Liao Y. Liu H. Fragmentation pathways of heroin‐related alkaloids revealed by ion trap and quadrupole time‐of‐flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2008 22 18 2851 2862 10.1002/rcm.3686 18712703
    [Google Scholar]
  74. Carnevale   Neto F. Andréo M.A. Raftery D. Lopes J.L.C. Lopes N.P. Castro‐Gamboa I. Lameiro de Noronha Sales Maia B.H. Costa E.V. Vessecchi R. Characterization of aporphine alkaloids by electrospray ionization tandem mass spectrometry and density functional theory calculations. Rapid. Commun. Mass. Spectrom. 2019 34 3 e8533 10.1002/rcm.8533.
    [Google Scholar]
  75. Dushna O. Dubenska L. Gawor A. Karasińki J. Barabash O. Ostapiuk Y. Blazheyevskiy M. Bulska E. Structural characterization and electrochemical studies of selected alkaloid N-Oxides. Molecules 2024 29 12 2721 10.3390/molecules29122721 38930787
    [Google Scholar]
  76. Sean R. Brandon, Pybus. CYP450 phenotyping and metabolite identification of quinine by accurate mass UPLC-MS analysis: A possible metabolic link to blackwater fever. Malaria J. 2013 12 1
    [Google Scholar]
  77. Iurchenko I. Blazheyevskiy M. Koretnik O. Shlusar O. Iodometric determination of Quinine Sulfate in tablets using N-Oxidation with diperoxysebacic acid. Int. J. Sch. Res. Chem. Pharm. 2023 3 001 012
    [Google Scholar]
  78. Qing Z. Xu Y. Yu L. Liu J. Huang X. Tang Z. Cheng P. Zeng J. Investigation of fragmentation behaviours of isoquinoline alkaloids by mass spectrometry combined with computational chemistry. Sci. Rep. 2020 10 1 733 10.1038/s41598‑019‑57406‑7 31959815
    [Google Scholar]
  79. Jeong E.K. Lee S.Y. Yu S.M. Park N.H. Lee H.S. Yim Y.H. Hwang G.S. Cheong C. Jung J.H. Hong J. Identification of structurally diverse alkaloids in Corydalis species by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid. Commun. Mass Spectrom. 2012 26 15 1661 1674 10.1002/rcm.6272 22730087
    [Google Scholar]
  80. Schmidt J. Boettcher C. Kuhnt C. Kutchan T.M. Zenk M.H. Jürgen Poppy alkaloid profiling by electrospray tandem mass spectrometry and electrospray FT-ICR mass spectrometry after [ring-13C6]-tyramine feeding. Phytochemistry 2007 68 2 189 202 10.1016/j.phytochem.2006.10.003 17113612
    [Google Scholar]
  81. Schmidt J. Raith K. Boettcher C. Zenk M.H. Analysis of Benzylisoquinoline-type alkaloids by electrospray tandem mass spectrometry and atmospheric pressure photoionization. Eur. J. Mass Spectrom. (Chichester, Eng.) 2005 11 3 325 333 10.1255/ejms.745
    [Google Scholar]
  82. Yu Y. Wei X. Liu Y. Dong G. Hao C. Zhang J. Jiang J. Cheng J. Liu A. Chen S. Identification and quantification of oligomeric proanthocyanidins, alkaloids, and flavonoids in lotus seeds: A potentially rich source of bioactive compounds. Food Chem. 2022 379 132124 10.1016/j.foodchem.2022.132124 35065486
    [Google Scholar]
  83. Vallejo M.G. Cifuente D.A. Cecati F.M. Ortega M.G. Cabrera J.L. Martín V.S. Tonn C.E. Agnese A.M. Ardanaz C.E. Mass spectrometry studies of Lycopodium alkaloid sauroine. Rapid Commun. Mass Spectrom. 2012 26 23 2827 2831 10.1002/rcm.6380 23124675
    [Google Scholar]
  84. Jain V. Garg A. Parascandola M. Chaturvedi P. Khariwala S.S. Stepanov I. Analysis of alkaloids in areca nut-containing products by liquid chromatography–tandem mass spectrometry. J. Agric. Food Chem. 2017 65 9 1977 1983 10.1021/acs.jafc.6b05140 28190359
    [Google Scholar]
  85. Dong Y. Jia G. Hu J. Liu H. Wu T. Yang S. Li Y. Cai T. Determination of alkaloids and flavonoids in Sophora flavescens by UHPLC-Q-TOF/MS. J. Anal. Methods Chem. 2021 2021 1 13 10.1155/2021/9915027 34367714
    [Google Scholar]
  86. Chen Q. Zhang W. Zhang Y. Chen J. Chen Z. Identification and quantification of active alkaloids in Catharanthus roseus by liquid chromatography–ion trap mass spectrometry. Food. Chem. 2013 139 1-4 845 852 10.1016/j.foodchem.2013.01.088 23561180
    [Google Scholar]
  87. Nam M. Kim D. Kim M.S. Simultaneous determination of total ergot alkaloids in wheat flour by Orbitrap mass spectrometry. Food Chem. 2024 441 138363 10.1016/j.foodchem.2024.138363 38199100
    [Google Scholar]
  88. Long J. Wang Y. Xu C. Liu T. Duan G. Yu Y. Identification and quantification of alkaloid in KHR98 and fragmentation pathways in HPLC-Q-TOF-MS. Chem. Pharm. Bull. (Tokyo) 2018 66 5 527 534 10.1248/cpb.c17‑00710 29503397
    [Google Scholar]
  89. Akhgari A. Laakso I. Seppänen-Laakso T. Yrjönen T. Vuorela H. Oksman-Caldentey K.M. Rischer H. Analysis of indole alkaloids from Rhazya strictahairy roots by ultra-performance liquid chromatography-mass spectrometry. Molecules 2015 20 12 22621 22634 10.3390/molecules201219873 26694342
    [Google Scholar]
  90. Kumar S. Singh A. Bajpai V. Srivastava M. Singh B.P. Kumar B. Structural characterization of monoterpene indole alkaloids in ethanolic extracts of Rauwolfia species by liquid chromatography with quadrupole time-of-flight mass spectrometry. J. Pharm. Anal. 2016 6 6 363 373 10.1016/j.jpha.2016.04.008 29404005
    [Google Scholar]
  91. Aigotti R. Santoro V. Gastaldi D. Zorzi M. Dal Bello F. Grandi M. Baiocchi C. Characterization of alkaloids in bark extracts of Geissospermum vellosii by HPLC-UV-diode array-multistage high-resolution mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022 1203 123307 10.1016/j.jchromb.2022.123307 35665643
    [Google Scholar]
  92. Basiliere S. Brower J. Winecker R. Friederich L. Kerrigan S. Identification of five mitragyna alkaloids in blood and tissues using liquid chromatography-quadrupole/time-of-flight mass spectrometry. Forensic Toxicol. 2020 38 2 420 435 10.1007/s11419‑020‑00537‑8
    [Google Scholar]
  93. Liu F. Wan S.Y. Jiang Z. Li S.F.Y. Ong E.S. Osorio J.C.C. Determination of pyrrolizidine alkaloids in comfrey by liquid chromatography–electrospray ionization mass spectrometry. Talanta 2009 80 2 916 923 10.1016/j.talanta.2009.08.020 19836573
    [Google Scholar]
  94. Zhu L. Ruan J.Q. Li N. Fu P.P. Ye Y. Lin G. A novel ultra-performance liquid chromatography hyphenated with quadrupole time of flight mass spectrometry method for rapid estimation of total toxic retronecine-type of pyrrolizidine alkaloids in herbs without requiring corresponding standards. Food Chem. 2016 194 1320 1328 10.1016/j.foodchem.2014.11.093 26471688
    [Google Scholar]
  95. Lu A.J. Lu Y.L. Tan D.P. Qin L. Ling H. Wang C.H. He Y.Q. Identification of pyrrolizidine alkaloids in Senecio plants by liquid chromatography-mass spectrometry. J. Anal. Methods Chem. 2021 2021 1 13 10.1155/2021/1957863 34824876
    [Google Scholar]
  96. Han H. Jiang C. Wang C. Wang Z. Chai Y. Zhang X. Liu X. Lu C. Chen H. Development, optimization, validation and application of ultra high performance liquid chromatography tandem mass spectrometry for the analysis of pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides in teas and weeds. Food. Control 2022 132 108518 108518 10.1016/j.foodcont.2021.108518
    [Google Scholar]
  97. Avula B. Sagi S. Wang Y.H. Zweigenbaum J. Wang M. Khan I.A. Characterization and screening of pyrrolizidine alkaloids and N-oxides from botanicals and dietary supplements using UHPLC-high resolution mass spectrometry. Food Chem. 2015 178 136 148 10.1016/j.foodchem.2015.01.053 25704694
    [Google Scholar]
  98. Yoon S.H. Kim M.S. Kim S.H. Park H.M. Pyo H. Lee Y.M. Lee K.T. Hong J. Effective application of freezing lipid precipitation and SCX-SPE for determination of pyrrolizidine alkaloids in high lipid foodstuffs by LC-ESI-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015 992 56 66 10.1016/j.jchromb.2015.04.007 25958321
    [Google Scholar]
  99. Wang H. Xu X. Wang X. Guo W. Jia W. Zhang F. An analytical strategy for discovering structural analogues of alkaloids in plant food using characteristic structural fragments extraction by high resolution orbitrap mass spectrometry. Lebensm. Wiss. Technol. 2022 154 112329 112329 10.1016/j.lwt.2021.112329
    [Google Scholar]
  100. Zhao T. Zheng S.S. Zhang B.F. Li Y.Y. Bligh S.W.A. Wang C.H. Wang Z.T. Metabolic pathways of the psychotropic-carboline alkaloids, harmaline and harmine, by liquid chromatography/mass spectrometry and NMR spectroscopy. Food Chem. 2012 134 2 1096 1105 10.1016/j.foodchem.2012.03.024 23107733
    [Google Scholar]
  101. Shi Y. Wang R. Zhu X. Xu D. Liu W. Feng F. A self-feedback network based on liquid chromatography-quadrupole-time of flight mass spectrometry for system identification of β-carboline alkaloids in Picrasma quassioides. Sci. Rep. 2017 7 1 13841 10.1038/s41598‑017‑13106‑8 29062115
    [Google Scholar]
  102. Zhang J. Huang Z.H. Qiu X.H. Yang Y.M. Zhu D.Y. Xu W. Neutral fragment filtering for rapid identification of new diester-diterpenoid alkaloids in roots of Aconitum carmichaeli by ultra-high-pressure liquid chromatography coupled with linear ion trap-orbitrap mass spectrometry. PLoS One 2012 7 12 e52352 10.1371/journal.pone.0052352 23285005
    [Google Scholar]
  103. Wu W. Liang Z. Zhao Z. Cai Z. Direct analysis of alkaloid profiling in plant tissue by using matrix‐assisted laser desorption/ionization mass spectrometry. J. Mass Spectrom. 2007 42 1 58 69 10.1002/jms.1138 17149797
    [Google Scholar]
  104. Yue H. Pi Z. Song F. Liu Z. Cai Z. Liu S. Studies on the aconitine-type alkaloids in the roots of Aconitum Carmichaeli Debx. by HPLC/ESIMS/MSn. Talanta 2009 77 5 1800 1807 10.1016/j.talanta.2008.10.022 19159802
    [Google Scholar]
  105. Chen L.H. Jin L.H. Su Z.M. Qiu Y.Q. Wang Y. Wang Y. Liu S.Y. ESI-MS~(n) behavior and quantum chemistry calculation of stability of fragment ions of diester-diterpenoid alkaloids(DDA). Chem. Res. Chin. Univ. 2005 26 12 2340 2344
    [Google Scholar]
  106. Wang Y. Liu Z. Song F. Liu S. Electrospray ionization tandem mass spectrometric study of the aconitines in the roots of aconite. Rapid Commun. Mass Spectrom. 2002 16 22 2075 2082 10.1002/rcm.828 12415539
    [Google Scholar]
  107. Guo Q. Xia H. Wu Y. Shao S. Xu C. Zhang T. Shi J. Structure, property, biogenesis, and activity of diterpenoid alkaloids containing a sulfonic acid group from Aconitum carmichaelii. Acta Pharm. Sin. B 2020 10 10 1954 1965 10.1016/j.apsb.2020.01.013 33163346
    [Google Scholar]
  108. Corrêa dos Santos C.H. Geraldo de Carvalho M. Laub A. Franke K. Wessjohann L. UHPLC-ESI-Orbitrap-HR-MS analysis of cyclopeptide alkaloids From Ziziphus joazeiro. Nat. Prod. Commun. 2021 16 11 10.1177/1934578X211054955
    [Google Scholar]
  109. Song C. Zhang Y. Manzoor M.A. Li G. Identification of alkaloids and related intermediates of Dendrobium officinale by solid-phase extraction coupled with high-performance liquid chromatography tandem mass spectrometry. Front. Plant Sci. 2022 13 952051 10.3389/fpls.2022.952051 35991437
    [Google Scholar]
  110. Luo R.Y. Comstock K. Ding C. Wu A.H.B. Lynch K.L. Comparison of liquid chromatography-high-resolution tandem mass spectrometry (MS2) and multi-stage mass spectrometry (MS3) for screening toxic natural products. J. Mass Spectrom. Adv. Clin. Lab 2023 30 38 44 10.1016/j.jmsacl.2023.09.002 37876549
    [Google Scholar]
  111. Eduardo V. Eugelio F. Fanti F. Palmieri S. Bafile E. Compagnone D. Sergi M. Analysis of carbazole alkaloids in Murraya koenigii by means of high performance liquid chromatography coupled to Tandem mass spectrometry with a predictive multi experiment approach. J. Chromatogr. Open 2022 2 100055 100055
    [Google Scholar]
  112. Katja O OffsampleAI: artificial intelligence approach to recognize off-sample mass spectrometry images. BMC Bioinformatics 2020 21 1 129 10.1186/s12859‑020‑3425‑x.
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298357295250214114611
Loading
/content/journals/mroc/10.2174/0118756298357295250214114611
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test