Skip to content
2000
image of A Comprehensive Review on Plant-based Fluorophores and their Diverse Applications

Abstract

Fluorescence, a phenomenon where substances emit light upon excitation, has been largely explored in synthetic materials. However, plants have been harnessing this property for millions of years, with various extracts exhibiting fascinating fluorescent properties. This review delves into the realm of plant extracts displaying fluorescence, highlighting their diverse applications, mechanisms, and potential uses. This study summarizes various classes of fluorescent phytochemicals, including alkaloids, phenolics, and terpenoids, coumarins, anthocyanins, and discusses their excitation and emission spectra. The review also examines the structural dependent functional diversity of plant secondary metabolites influencing fluorescence. Furthermore, the applications of fluorescent plant extracts in fields like biomedicine, food technology, and environmental monitoring in combination with bioimaging, biosensing, and optoelectronics are also highlighted. This comprehensive review aims to spark further research into the untapped potential of fluorescent plant extracts, unlocking new avenues for scientific discovery and innovation.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298343293250227023822
2025-03-27
2025-10-29
Loading full text...

Full text loading...

References

  1. James N. G. Jameson D. M. Steady-state fluorescence polarization/anisotropy for the study of protein interactions. Methods Mol. Biol. 2014 1076 29 42
    [Google Scholar]
  2. Raymo F.M. Photoactivatable synthetic fluorophores. Phys. Chem. Chem. Phys. 2013 15 36 14840 14850 10.1039/c3cp51822a 23780303
    [Google Scholar]
  3. Talamond P. Verdeil J.L. Conéjéro G. Secondary metabolite localization by autofluorescence in living plant cells. Molecules 2015 20 3 5024 5037 10.3390/molecules20035024 25808147
    [Google Scholar]
  4. Donaldson L. Williams N. Imaging and spectroscopy of natural fluorophores in pine needles. Plants 2018 7 1 10 10.3390/plants7010010 29393922
    [Google Scholar]
  5. Guo Y. Tan J. Recent advances in the application of chlorophyll a fluorescence from photosystem II. Photochem. Photobiol. 2015 91 1 1 14 10.1111/php.12362 25314903
    [Google Scholar]
  6. Donaldson L. Autofluorescence in Plants. Molecules 2020 25 10 2393 10.3390/molecules25102393 32455605
    [Google Scholar]
  7. Stoneman M.R. McCoy V.E. Gee C.T. Bober K.M.M. Raicu V. Two-photon excitation fluorescence microspectroscopy protocols for examining fluorophores in fossil plants. Commun. Biol. 2024 7 1 53 10.1038/s42003‑024‑05763‑z 38184735
    [Google Scholar]
  8. García-Plazaola J.I. Fernández-Marín B. Duke S.O. Hernández A. López-Arbeloa F. Becerril J.M. Autofluorescence: Biological functions and technical applications. Plant Sci. 2015 236 136 145 10.1016/j.plantsci.2015.03.010 26025527
    [Google Scholar]
  9. Sanderson M. J. Smith I. Parker I. Bootman M. D. Fluorescence microscopy. Cold Spring Harb. Protoc. 2014 2014 10 10.1101/pdb.top071795
    [Google Scholar]
  10. Sánchez-Moreiras A.M. Graña E. Reigosa M.J. Araniti F. Imaging of chlorophyll a fluorescence in natural compound-induced stress detection. Front. Plant Sci. 2020 11 583590 10.3389/fpls.2020.583590 33408728
    [Google Scholar]
  11. Zavafer A. Labeeuw L. Mancilla C. Global trends of usage of chlorophyll fluorescence and projections for the next decade. Plant Phenomics 2020 2020 6293145 10.34133/2020/6293145 33575667
    [Google Scholar]
  12. Havsteen B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002 96 2-3 67 202 10.1016/S0163‑7258(02)00298‑X 12453566
    [Google Scholar]
  13. Shen N. Wang T. Gan Q. Liu S. Wang L. Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022 383 132531 10.1016/j.foodchem.2022.132531 35413752
    [Google Scholar]
  14. De R. Jo K.W. Kim K.T. Influence of molecular structures on fluorescence of flavonoids and their detection in mammalian cells. Biomedicines 2022 10 6 1265 10.3390/biomedicines10061265 35740288
    [Google Scholar]
  15. Zhong Y. Chen Y. Feng X. Sun Y. Cui S. Li X. Jin X. Zhao G. Hydrogen-bond facilitated intramolecular proton transfer in excited state and fluorescence quenching mechanism of flavonoid compounds in aqueous solution. J. Mol. Liq. 2020 302 112562 10.1016/j.molliq.2020.112562
    [Google Scholar]
  16. Collings D.A. Anthocyanin in the vacuole of red onion epidermal cells quenches other fluorescent molecules. Plants 2019 8 12 596 10.3390/plants8120596 31842412
    [Google Scholar]
  17. Abid M.A. Zhou Q. Abbas M. He H. Meng Z. Wang Y. Wei Y. Guo S. Zhang R. Liang C. Natural variation in Beauty Mark is associated with UV-based geographical adaptation in Gossypium species. BMC Biol. 2023 21 1 106 10.1186/s12915‑023‑01591‑5 37173786
    [Google Scholar]
  18. Wei D. Lv S. Zuo J. Zhang S. Liang S. Recent advances research and application of lignin-based fluorescent probes. React. Funct. Polym. 2022 178 105354 10.1016/j.reactfunctpolym.2022.105354
    [Google Scholar]
  19. Jun J.V. Petersson E.J. Chenoweth D.M. Rational design and facile synthesis of a highly tunable quinoline-based fluorescent small-molecule scaffold for live cell imaging. J. Am. Chem. Soc. 2018 140 30 9486 9493 10.1021/jacs.8b03738 30028130
    [Google Scholar]
  20. Sun X. Liu T. Sun J. Wang X. Synthesis and application of coumarin fluorescence probes. RSC Advances 2020 10 18 10826 10847 10.1039/C9RA10290F 35492912
    [Google Scholar]
  21. Raunio H. Pentikäinen O. Juvonen R.O. Coumarin-based profluorescent and fluorescent substrates for determining xenobiotic-metabolizing enzyme activities in vitro. Int. J. Mol. Sci. 2020 21 13 4708 10.3390/ijms21134708 32630278
    [Google Scholar]
  22. Wu Y.H. Huang K. Chen S.F. Chen Y.Z. Tung C.H. Wu L.Z. Stiff-stilbene derivatives as new bright fluorophores with aggregation-induced emission. Sci. China Chem. 2019 62 9 1194 1197 10.1007/s11426‑019‑9514‑8
    [Google Scholar]
  23. Dunne R.P. Spectrophotometric measurement of chlorophyll pigments: A comparison of conventional monochromators and a reverse optic diode array design. Mar. Chem. 1999 66 3-4 245 251 10.1016/S0304‑4203(99)00035‑3
    [Google Scholar]
  24. Mukai R. Terao J. Shirai Y. Saito N. Ashida H. Determination of subcellular localization of flavonol in cultured cells by laser scanning. IntechOpen London 2011 10.5772/15717
    [Google Scholar]
  25. Agati G. Meyer S. Matteini P. Cerovic Z.G. Assessment of anthocyanins in grape (Vitis vinifera L.) berries using a noninvasive chlorophyll fluorescence method. J. Agric. Food Chem. 2007 55 4 1053 1061 10.1021/jf062956k 17261018
    [Google Scholar]
  26. Mukhtar A. Mansha A. Asim S. Shahzad A. Bibi S. Excited state complexes of coumarin derivatives. J. Fluoresc. 2022 32 1 1 17 10.1007/s10895‑021‑02807‑z 34580794
    [Google Scholar]
  27. Rafique S. Irshad H. Majeed S. Khadija Rubab R. Imran M. Khan A.M. Shahzad S.A. AIEE active stilbene based fluorescent sensor with red-shifted emission for vapor phase detection of nitrobenzene and moisture sensing. J. Photochem. Photobiol. Chem. 2023 437 114459 10.1016/j.jphotochem.2022.114459
    [Google Scholar]
  28. Ospina-Calvo B. De Gerónimo E. Villarruel F.D. Aparicio V.C. Ashworth L. Erra-Balsells R. Cabrerizo F.M. Distribution of photoactive β‐carboline alkaloids across Passiflora caerulea floral organs. Photochem. Photobiol. 2024 100 1 87 100 10.1111/php.13837 37448143
    [Google Scholar]
  29. Ferreira A.M. Leite A.C. Coutinho J.A.P. Freire M.G. Chlorophylls extraction from spinach leaves using aqueous solutions of surface-active ionic liquids. Sustain. Chem. 2021 2 4 764 777 10.3390/suschem2040040
    [Google Scholar]
  30. Hoshino M. Suetsugu T. Iwai H. Takamizu A. Tanaka M. Quitain A. Sasaki M. Goto M. Extraction of citrus flavonoids from peel of Citrus junos using supercritical carbon dioxide with polar solvent. Trans. Mater. Res. Soc. Jpn. 2014 39 3 309 311 10.14723/tmrsj.39.309
    [Google Scholar]
  31. Liazid A. Guerrero R.F. Cantos E. Palma M. Barroso C.G. Microwave assisted extraction of anthocyanins from grape skins. Food Chem. 2011 124 3 1238 1243 10.1016/j.foodchem.2010.07.053
    [Google Scholar]
  32. Rodríguez De Luna S.L. Ramírez-Garza R.E. Serna Saldívar S.O. Environmentally friendly methods for flavonoid extraction from plant material: Impact of their operating conditions on yield and antioxidant properties. Sci.WorldJ. 2020 2020 1 1 38 10.1155/2020/6792069 32908461
    [Google Scholar]
  33. DongSub Kim Prediction of carotenoid content in tomato fruit using a fluorescence screening method. Postharvest Biol. Technol. 2019 156 110917
    [Google Scholar]
  34. Fischer U.A. Carle R. Kammerer D.R. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem. 2011 127 2 807 821 10.1016/j.foodchem.2010.12.156 23140740
    [Google Scholar]
  35. Wang L. Weller C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 2006 17 6 300 312 10.1016/j.tifs.2005.12.004
    [Google Scholar]
  36. Sumanta N. Haque C.I. Nishika J. Suprakash R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res J Chem Sci 2014 2231 606X
    [Google Scholar]
  37. Lamb J.J. Røkke G. Hohmann-Marriott M.F. Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 K. Photosynthetica 2018 56 SPECIAL ISSUE 105 124 10.1007/s11099‑018‑0791‑y
    [Google Scholar]
  38. Berezin M.Y. Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 2010 110 5 2641 2684 10.1021/cr900343z 20356094
    [Google Scholar]
  39. Zaghdoudi K. Ngomo O. Vanderesse R. Arnoux P. Myrzakhmetov B. Frochot C. Guiavarc’h Y. Extraction, identification and photo-physical characterization of persimmon (Diospyros kaki L.) carotenoids. Foods 2017 6 1 4 10.3390/foods6010004 28231085
    [Google Scholar]
  40. Merzlyak M.N. Melø T.B. Naqvi K.R. Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: Signature analysis, assessment, modelling, and relevance to photoprotection. J. Exp. Bot. 2008 59 2 349 359 10.1093/jxb/erm316 18256050
    [Google Scholar]
  41. Kleinegris D.M.M. van Es M.A. Janssen M. Brandenburg W.A. Wijffels R.H. Carotenoid fluorescence in Dunaliella salina. J. Appl. Phycol. 2010 22 5 645 649 10.1007/s10811‑010‑9505‑y 20835349
    [Google Scholar]
  42. Ruwoldt J. Tanase-Opedal M. Syverud K. Ultraviolet spectrophotometry of lignin revisited: Exploring solvents with low harmfulness, lignin purity, hansen solubility parameter, and determination of phenolic hydroxyl groups. ACS Omega 2022 7 50 46371 46383 10.1021/acsomega.2c04982 36570215
    [Google Scholar]
  43. Guillon F. Gierlinger N. Devaux M-F. Gorzsás A. In situ imaging of lignin and related compounds by Raman, Fourier-transform infrared (FTIR) and fluorescence microscopy. Elsevier 2022
    [Google Scholar]
  44. Hafrén J. Excitation wavelength-specific changes in lignocellulosic autofluorescence. J. Wood Sci. 2007 53 4 358 360 10.1007/s10086‑006‑0862‑8
    [Google Scholar]
  45. Donaldson L. Softwood and hardwood lignin fluorescence spectra of wood cell walls in different mounting media. IAWA J. 2013 34 1 3 19 10.1163/22941932‑00000002
    [Google Scholar]
  46. Donaldson L. Radotić K. Kalauzi A. Djikanović D. Jeremić M. Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution. J. Struct. Biol. 2010 169 1 106 115 10.1016/j.jsb.2009.09.006 19747548
    [Google Scholar]
  47. Xue Y. Qiu X. Wu Y. Qian Y. Zhou M. Deng Y. Li Y. Aggregation-induced emission: The origin of lignin fluorescence. Polym. Chem. 2016 7 21 3502 3508 10.1039/C6PY00244G
    [Google Scholar]
  48. Yamagishi H. Matsui T. Kitayama Y. Aikyo Y. Tong L. Kuwabara J. Kanbara T. Morimoto M. Irie M. Yamamoto Y. Fluorescence switchable conjugated polymer microdisk arrays by cosolvent vapor annealing. Polymers 2021 13 2 269 10.3390/polym13020269 33467478
    [Google Scholar]
  49. Carnachan S.M. Harris P.J. Ferulic acid is bound to the primary cell walls of all gymnosperm families. Biochem. Syst. Ecol. 2000 28 9 865 879 10.1016/S0305‑1978(00)00009‑0 10913848
    [Google Scholar]
  50. Philippe G. Sørensen I. Jiao C. Sun X. Fei Z. Domozych D.S. Rose J.K.C. Cutin and suberin: Assembly and origins of specialized lipidic cell wall scaffolds. Curr. Opin. Plant Biol. 2020 55 11 20 10.1016/j.pbi.2020.01.008 32203682
    [Google Scholar]
  51. Urbanczyk J. Fernandez Casado M.A. Díaz T.E. Heras P. Infante M. Borrego A.G. Spectral fluorescence variation of pollen and spores from recent peat-forming plants. Int. J. Coal Geol. 2014 131 263 273 10.1016/j.coal.2014.06.024
    [Google Scholar]
  52. Bellow S. Latouche G. Brown S.C. Poutaraud A. Cerovic Z.G. In vivo localization at the cellular level of stilbene fluorescence induced by Plasmopara viticola in grapevine leaves. J. Exp. Bot. 2012 63 10 3697 3707 10.1093/jxb/ers060 22412183
    [Google Scholar]
  53. Mishra G. Collings D.A. Altaner C.M. Cell organelles and fluorescence of parenchyma cells in Eucalyptus bosistoana sapwood and heartwood investigated by microscopy. N. Z. J. For. Sci. 2018 48 1 13 10.1186/s40490‑018‑0118‑6
    [Google Scholar]
  54. Roshchina V.V. Kuchin A.V. Yashin V.A. Application of autofluorescence for analysis of medicinal plants. Spectroscopy. Int. J. 2017 1 8 10.1155/2017/7159609
    [Google Scholar]
  55. Porcar-Castell A. Tyystjärvi E. Atherton J. van der Tol C. Flexas J. Pfündel E.E. Moreno J. Frankenberg C. Berry J.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. J. Exp. Bot. 2014 65 15 4065 4095 10.1093/jxb/eru191 24868038
    [Google Scholar]
  56. Flexas J. Diaz-Espejo A. Gago J. Gallé A. Galmés J. Gulías J. Medrano H. Photosynthetic limitations in Mediterranean plants: A review. Environ. Exp. Bot. 2014 103 12 23 10.1016/j.envexpbot.2013.09.002
    [Google Scholar]
  57. Misson L. Rocheteau A. Rambal S. Ourcival J-M. Limousin J-M. Rodriguez R. Functional changes in the control of carbon fluxes after 3 years of increased drought in a Mediterranean evergreen forest? Glob. Change Biol. 2010 16 9 2461 2475 10.1111/j.1365‑2486.2009.02121.x
    [Google Scholar]
  58. Pinheiro C. Chaves M.M. Photosynthesis and drought: Can we make metabolic connections from available data? J. Exp. Bot. 2011 62 3 869 882 10.1093/jxb/erq340 21172816
    [Google Scholar]
  59. Guidi L. Degl’Innocenti E. Martinelli F. Piras M. Ozone effects on carbon metabolism in sensitive and insensitive Phaseolus cultivars. Environ. Exp. Bot. 2009 66 1 117 125 10.1016/j.envexpbot.2008.12.005
    [Google Scholar]
  60. Fini A. Guidi L. Ferrini F. Brunetti C. Di Ferdinando M. Biricolti S. Pollastri S. Calamai L. Tattini M. Drought stress has contrasting effects on antioxidant enzymes activity and phenylpropanoid biosynthesis in Fraxinus ornus leaves: An excess light stress affair? J. Plant Physiol. 2012 169 10 929 939 10.1016/j.jplph.2012.02.014 22537713
    [Google Scholar]
  61. Nogues I. Llusia J. Ogaya R. Munne-Bosch S. Sardans J. Penuelas J. Loreto F. Physiological and antioxidant responses of Quercus ilex to drought in two different seasons. Int. J. Plant Biol. 2013 148 2 268 278
    [Google Scholar]
  62. Tattini M. Loreto F. Fini A. Guidi L. Brunetti C. Velikova V. Gori A. Ferrini F. Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought‐stressedP latanus × acerifolia plants during Mediterranean summers. New Phytol. 2015 207 3 613 626 10.1111/nph.13380 25784134
    [Google Scholar]
  63. Driever S.M. Baker N.R. The water–water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO 2 assimilation is restricted. Plant Cell Environ. 2011 34 5 837 846 10.1111/j.1365‑3040.2011.02288.x 21332508
    [Google Scholar]
  64. Msilini N. Zaghdoudi M. Govindachary S. Lachaâl M. Ouerghi Z. Carpentier R. Inhibition of photosynthetic oxygen evolution and electron transfer from the quinone acceptor QA − to QB by iron deficiency. Photosynth. Res. 2011 107 3 247 256 10.1007/s11120‑011‑9628‑2 21311974
    [Google Scholar]
  65. Yadavalli V. Neelam S. Rao A.S.V.C. Reddy A.R. Subramanyam R. Differential degradation of photosystem I subunits under iron deficiency in rice. J. Plant Physiol. 2012 169 8 753 759 10.1016/j.jplph.2012.02.008 22445751
    [Google Scholar]
  66. Donnini S. Guidi L. Degl’Innocenti E. Zocchi G. Image changes in chlorophyll fluorescence of cucumber leaves in response to iron deficiency and resupply. J. Plant Nutr. Soil Sci. 2013 176 5 734 742 10.1002/jpln.201200479
    [Google Scholar]
  67. Osório J. Osório M.L. Correia P.J. de Varennes A. Pestana M. Chlorophyll fluorescence imaging as a tool to understand the impact of iron deficiency and resupply on photosynthetic performance of strawberry plants. Sci. Hortic. 2014 165 148 155 10.1016/j.scienta.2013.10.042
    [Google Scholar]
  68. Landi M. Pardossi A. Remorini D. Guidi L. Antioxidant and photosynthetic response of a purple-leaved and a green-leaved cultivar of sweet basil (Ocimum basilicum) to boron excess. Environ. Exp. Bot. 2013 85 64 75 10.1016/j.envexpbot.2012.08.008
    [Google Scholar]
  69. Georgieva K. Tsonev T. Velikova V. Yordanov I. Photosynthetic activity during high temperature treatment of pea plants. J. Plant Physiol. 2000 157 2 169 176 10.1016/S0176‑1617(00)80187‑X
    [Google Scholar]
  70. Oukarroum A. Schansker G. Strasser R.J. Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol. Plant. 2009 137 2 188 199 10.1111/j.1399‑3054.2009.01273.x 19719481
    [Google Scholar]
  71. Kadir S. Sidhu G. Al-Khatib K. Strawberry (Fragaria× ananassa Duch.) growth and productivity as affected by temperature. HortScience 2006 41 6 1423 1430 10.21273/HORTSCI.41.6.1423
    [Google Scholar]
  72. Mochizuki M.J. Daugovish O. Ahumada M.H. Ashkan S. Lovatt C.J. Carbon dioxide enrichment may increase yield of field-grown red raspberry under high tunnels. Horttechnology 2010 20 1 213 219 10.21273/HORTTECH.20.1.213
    [Google Scholar]
  73. Molina-Bravo R. Arellano C. Sosinski B.R. Fernandez G.E. A protocol to assess heat tolerance in a segregating population of raspberry using chlorophyll fluorescence. Sci. Hortic. 2011 130 3 524 530 10.1016/j.scienta.2011.07.022
    [Google Scholar]
  74. Fracheboud Y. Leipner J. The application of chlorophyll fluorescence to study light, temperature, and drought stress. Practical applications of chlorophyll fluorescence in plant biology. Springer 2003 125 150 10.1007/978‑1‑4615‑0415‑3_4
    [Google Scholar]
  75. Allen C.D. Macalady A.K. Chenchouni H. Bachelet D. McDowell N. Vennetier M. Kitzberger T. Rigling A. Breshears D.D. Hogg E.H.T. Gonzalez P. Fensham R. Zhang Z. Castro J. Demidova N. Lim J-H. Allard G. Running S.W. Semerci A. Cobb N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 2010 259 4 660 684 10.1016/j.foreco.2009.09.001
    [Google Scholar]
  76. Ogaya R. Peñuelas J. Asensio D. Llusià J. Chlorophyll fluorescence responses to temperature and water availability in two co-dominant Mediterranean shrub and tree species in a long-term field experiment simulating climate change. Environ. Exp. Bot. 2011 71 2 123 127 10.1016/j.envexpbot.2010.10.016
    [Google Scholar]
  77. Nagajyoti P.C. Lee K.D. Sreekanth T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010 8 3 199 216 10.1007/s10311‑010‑0297‑8
    [Google Scholar]
  78. Prasad M.N.V. Heavy metal stress in plants: From biomolecules to ecosystems. Springer Science & Business Media 2013
    [Google Scholar]
  79. Sharma S.S. Dietz K.J. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 2009 14 1 43 50 10.1016/j.tplants.2008.10.007 19070530
    [Google Scholar]
  80. Dietz K.J. Pfannschmidt T. Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol. 2011 155 4 1477 1485 10.1104/pp.110.170043 21205617
    [Google Scholar]
  81. Lin Y.F. Aarts M.G.M. The molecular mechanism of zinc and cadmium stress response in plants. Cell. Mol. Life Sci. 2012 69 19 3187 3206 10.1007/s00018‑012‑1089‑z 22903262
    [Google Scholar]
  82. Degl’Innocenti E. Castagna A. Ranieri A. Guidi L. Combined effects of cadmium and ozone on photosynthesis of Lycopersicon esculentum. Photosynthetica 2014 52 2 179 185 10.1007/s11099‑014‑0018‑9
    [Google Scholar]
  83. Gogorcena Y. Larbi A. Andaluz S. Carpena R.O. Abadía A. Abadía J. Effects of cadmium on cork oak (Quercus suber L.) plants grown in hydroponics. Tree Physiol. 2011 31 12 1401 1412 10.1093/treephys/tpr114 22121153
    [Google Scholar]
  84. Di Cagno R. Guidi L. De Gara L. Soldatini G.F. Combined cadmium and ozone treatments affect photosynthesis and ascorbate‐dependent defences in sunflower. New Phytol. 2001 151 3 627 636 10.1046/j.1469‑8137.2001.00217.x 33853266
    [Google Scholar]
  85. Pietrini F. Zacchini M. Iori V. Pietrosanti L. Ferretti M. Massacci A. Spatial distribution of cadmium in leaves and its impact on photosynthesis: examples of different strategies in willow and poplar clones. Plant Biol. 2010 12 2 355 363 10.1111/j.1438‑8677.2009.00258.x 20398241
    [Google Scholar]
  86. Wodala B. Eitel G. Gyula T.N. Ördög A. Horváth F. Monitoring moderate Cu and Cd toxicity by chlorophyll fluorescence and P 700 absorbance in pea leaves. Photosynthetica 2012 50 3 380 386 10.1007/s11099‑012‑0045‑3
    [Google Scholar]
  87. Paoletti E. Ozone and urban forests in Italy. Environ. Pollut. 2009 157 5 1506 1512 10.1016/j.envpol.2008.09.019 18977568
    [Google Scholar]
  88. Guidi L. Calatayud A. Non-invasive tools to estimate stress-induced changes in photosynthetic performance in plants inhabiting Mediterranean areas. Environ. Exp. Bot. 2014 103 42 52 10.1016/j.envexpbot.2013.12.007
    [Google Scholar]
  89. Bussotti F. Desotgiu R. Cascio C. Pollastrini M. Gravano E. Gerosa G. Marzuoli R. Nali C. Lorenzini G. Salvatori E. Manes F. Schaub M. Strasser R.J. Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. Environ. Exp. Bot. 2011 73 19 30 10.1016/j.envexpbot.2010.10.022
    [Google Scholar]
  90. Gottardini E. Cristofori A. Cristofolini F. Nali C. Pellegrini E. Bussotti F. Ferretti M. Chlorophyll-related indicators are linked to visible ozone symptoms: Evidence from a field study on native Viburnum lantana L. plants in northern Italy. Ecol. Indic. 2014 39 65 74 10.1016/j.ecolind.2013.11.021
    [Google Scholar]
  91. Guidi L. Stemmann L. Legendre L. Picheral M. Prieur L. Gorsky G. Vertical distribution of aggregates (>110 µm) and mesoscale activity in the northeastern Atlantic: Effects on the deep vertical export of surface carbon. Limnol. Oceanogr. 2007 52 1 7 18 10.4319/lo.2007.52.1.0007
    [Google Scholar]
  92. Chen C.P. Frank T.D. Long S.P. Is a short, sharp shock equivalent to long‐term punishment? Contrasting the spatial pattern of acute and chronic ozone damage to soybean leaves via chlorophyll fluorescence imaging. Plant Cell Environ. 2009 32 4 327 335 10.1111/j.1365‑3040.2008.01923.x 19054345
    [Google Scholar]
  93. Calatayud A. Pomares F. Barreno E. Interactions between nitrogen fertilization and ozone in watermelon cultivar Reina de Corazones in open-top chambers. Effects on chlorophyll a fluorescence, lipid peroxidation, and yield. Photosynthetica 2006 44 1 93 101 10.1007/s11099‑005‑0163‑2
    [Google Scholar]
  94. Guidi L. Degl’Innocenti E. Giordano C. Biricolti S. Tattini M. Ozone tolerance in Phaseolus vulgaris depends on more than one mechanism. Environ. Pollut. 2010 158 10 3164 3171 10.1016/j.envpol.2010.06.037 20656389
    [Google Scholar]
  95. Surówka E. Karolewski P. Niewiadomska E. Libik M. Miszalski Z. Antioxidative response of Mesembryanthemum crystallinum plants to exogenous SO2 application. Plant Sci. 2007 172 1 76 84 10.1016/j.plantsci.2006.07.018
    [Google Scholar]
  96. Chaves M.M. Flexas J. Pinheiro C. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 2009 103 4 551 560 10.1093/aob/mcn125 18662937
    [Google Scholar]
  97. Penella C. Nebauer S.G. Quiñones A. San Bautista A. López-Galarza S. Calatayud A. Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Sci. 2015 230 12 22 10.1016/j.plantsci.2014.10.007 25480004
    [Google Scholar]
  98. Penella C. González Nebauer S. López Galarza S.V. San Bautista Primo A. Gorbe E. Calatayud A. Evaluation for salt stress tolerance of pepper genotypes to be used as rootstocks. J. Food Agric. Environ. 2013 11 3 1101 1107
    [Google Scholar]
  99. Guidi L. Degl’Innocenti E. Carmassi G. Massa D. Pardossi A. Effects of boron on leaf chlorophyll fluorescence of greenhouse tomato grown with saline water. Environ. Exp. Bot. 2011 73 57 63 10.1016/j.envexpbot.2010.09.017
    [Google Scholar]
  100. Tattini M. Remorini D. Pinelli P. Agati G. Saracini E. Traversi M.L. Massai R. Morpho‐anatomical, physiological and biochemical adjustments in response to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs, Myrtus communis and Pistacia lentiscus. New Phytol. 2006 170 4 779 794 10.1111/j.1469‑8137.2006.01723.x 16684238
    [Google Scholar]
  101. Melgar J.C. Guidi L. Remorini D. Agati G. Degl’innocenti E. Castelli S. Camilla Baratto M. Faraloni C. Tattini M. Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance. Tree Physiol. 2009 29 9 1187 1198 10.1093/treephys/tpp047 19608597
    [Google Scholar]
  102. Tattini M. Traversi M. On the mechanism of salt tolerance in olive (Olea europaea L.) under low- or high-Ca2+ supply. Environ. Exp. Bot. 2009 65 1 72 81 10.1016/j.envexpbot.2008.01.005
    [Google Scholar]
  103. Lichtenthaler H.K. Babani F. Langsdorf G. Buschmann C. Measurement of differences in red chlorophyll fluorescence and photosynthetic activity between sun and shade leaves by fluorescence imaging. Photosynthetica 2000 38 4 521 529 10.1023/A:1012453205740
    [Google Scholar]
  104. Lichtenthaler H.K. Multi-colour fluorescence imaging of photosynthetic activity and plant stress. Photosynthetica 2021 59 SPECIAL ISSUE 364 380 10.32615/ps.2021.020
    [Google Scholar]
  105. Stewart H.L. Birch D.J.S. Fluorescence guided surgery. Methods Appl. Fluoresc. 2021 9 4 042002 10.1088/2050‑6120/ac1dbb 34399409
    [Google Scholar]
  106. Moore G.E. Peyton W.T. French L.A. Walker W.W. The clinical use of fluorescein in neurosurgery; the localization of brain tumors. J. Neurosurg. 1948 5 4 392 398 10.3171/jns.1948.5.4.0392 18872412
    [Google Scholar]
  107. Vahrmeijer A.L. Hutteman M. van der Vorst J.R. van de Velde C.J.H. Frangioni J.V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 2013 10 9 507 518 10.1038/nrclinonc.2013.123 23881033
    [Google Scholar]
  108. Nguyen Q.T. Tsien R.Y. Fluorescence-guided surgery with live molecular navigation — A new cutting edge. Nat. Rev. Cancer 2013 13 9 653 662 10.1038/nrc3566 23924645
    [Google Scholar]
  109. Sutton P.A. van Dam M.A. Cahill R.A. Mieog S. Polom K. Vahrmeijer A.L. van der Vorst J. Fluorescence-guided surgery: Comprehensive review. BJS Open 2023 7 3 zrad049 10.1093/bjsopen/zrad049 37183598
    [Google Scholar]
  110. Meira J. Marques M.L. Falcão-Reis F. Rebelo Gomes E. Carneiro Â. Immediate reactions to fluorescein and indocyanine green in retinal angiography: Review of literature and proposal for patient’s evaluation. Clin. Ophthalmol. 2020 14 171 178 10.2147/OPTH.S234858 32021082
    [Google Scholar]
  111. Nagaya T. Nakamura Y.A. Choyke P.L. Kobayashi H. Fluorescence-guided surgery. Front. Oncol. 2017 7 314 10.3389/fonc.2017.00314 29312886
    [Google Scholar]
  112. Taylor D.L. Salmon E.D. Basic fluorescence microscopy. Methods Cell Biol. 1988 29 207 237 10.1016/S0091‑679X(08)60196‑X 2643761
    [Google Scholar]
  113. Renz M. Fluorescence microscopy—A historical and technical perspective. Cytometry A 2013 83 9 767 779 10.1002/cyto.a.22295 23585290
    [Google Scholar]
  114. Lichtman J.W. Conchello J.A. Fluorescence microscopy. Nat. Methods 2005 2 12 910 919 10.1038/nmeth817 16299476
    [Google Scholar]
  115. Tilley P.A.G. Kanchana M.V. Knight I. Blondeau J. Antonishyn N. Deneer H. Detection of Bordetella pertussis in a clinical laboratory by culture, polymerase chain reaction, and direct fluorescent antibody staining; accuracy, and cost. Diagn. Microbiol. Infect. Dis. 2000 37 1 17 23 10.1016/S0732‑8893(00)00117‑6 10794935
    [Google Scholar]
  116. Hong G. Antaris A. L. Dai H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017 1 1 0010 10.1038/s41551‑016‑0010
    [Google Scholar]
  117. Rao J. Dragulescu-Andrasi A. Yao H. Fluorescence imaging in vivo: Recent advances. Curr. Opin. Biotechnol. 2007 18 1 17 25 10.1016/j.copbio.2007.01.003 17234399
    [Google Scholar]
  118. Georgiev N.I. Bakov V.V. Anichina K.K. Bojinov V.B. Fluorescent probes as a tool in diagnostic and drug delivery systems. Pharmaceuticals 2023 16 3 381 10.3390/ph16030381 36986481
    [Google Scholar]
  119. Imran S.M. Shao G.N. Kim H. Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications. J. Ind. Eng. Chem 2016 37 149 a56 10.1016/j.jiec.2015.03.026
    [Google Scholar]
  120. Patsenker L. Gellerman G. Fluorescent reporters for drug delivery monitoring. Isr. J. Chem. 2020 60 5-6 504 518 10.1002/ijch.201900137
    [Google Scholar]
  121. Kim E. Yang K.S. Kohler R.H. Dubach J.M. Mikula H. Weissleder R. Optimized near-IR fluorescent agents for in vivo imaging of Btk expression. Bioconjug. Chem. 2015 26 8 1513 1518 10.1021/acs.bioconjchem.5b00152 26017814
    [Google Scholar]
  122. Chakraborty C. Hsu C.H. Wen Z.H. Lin C.S. Recent advances of fluorescent technologies for drug discovery and development. Curr. Pharm. Des. 2009 15 30 3552 3570 10.2174/138161209789207006 19860700
    [Google Scholar]
  123. Collins L.A. Torrero M.N. Franzblau S.G. Green fluorescent protein reporter microplate assay for high-throughput screening of compounds against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 1998 42 2 344 347 10.1128/AAC.42.2.344 9527783
    [Google Scholar]
  124. Changsen C. Franzblau S.G. Palittapongarnpim P. Improved green fluorescent protein reporter gene-based microplate screening for antituberculosis compounds by utilizing an acetamidase promoter. Antimicrob. Agents Chemother. 2003 47 12 3682 3687 10.1128/AAC.47.12.3682‑3687.2003 14638465
    [Google Scholar]
  125. Askim J.R. Mahmoudi M. Suslick K.S. Optical sensor arrays for chemical sensing: The optoelectronic nose. Chem. Soc. Rev. 2013 42 22 8649 8682 10.1039/c3cs60179j 24091381
    [Google Scholar]
  126. Lu Y. Optical chemical sensor array based on functional nanomaterials. Huaxue Jinzhan 2014 26 06 931
    [Google Scholar]
  127. Lvova L. Caroleo F. Garau A. Lippolis V. Giorgi L. Fusi V. Zaccheroni N. Lombardo M. Prodi L. Di Natale C. Paolesse R. A fluorescent sensor array based on heteroatomic macrocyclic fluorophores for the detection of polluting species in natural water samples. Front Chem. 2018 6 258 10.3389/fchem.2018.00258 30003078
    [Google Scholar]
  128. Wang M. Meng G. Fluorophores-modified nanomaterials for trace detection of polychlorobiphenyls and heavy metal ions. Sens. Actuators B Chem. 2017 243 1137 1147 10.1016/j.snb.2016.12.092
    [Google Scholar]
  129. Carstea E.M. Fluorescence spectroscopy as a potential tool for in-situ monitoring of dissolved organic matter in surface water systems. Water Pollution 2012 1
    [Google Scholar]
  130. Lakowicz J. In Principles of Fluorescence Spectroscopy. Springer, US Boston, MA 2006 10.1007/978‑0‑387‑46312‑4
    [Google Scholar]
  131. Valeur B. Introduction: On the origin of the terms fluorescence, phosphorescence, and luminescence. New trends in fluorescence spectroscopy: applications to chemical and life sciences. Springer 2001 3 6 10.1007/978‑3‑642‑56853‑4_1
    [Google Scholar]
  132. Christensen J.H. Hansen A.B. Mortensen J. Andersen O. Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis. Anal. Chem. 2005 77 7 2210 2217 10.1021/ac048213k 15801755
    [Google Scholar]
  133. Vig S. Gaitan B. Frankle L. Chen Y. Elespuru R. Pfefer T.J. Huang H.C. Test method for evaluating the photocytotoxic potential of fluorescence imaging products. Photochem. Photobiol. 2024 100 6 1561 1578 37496175
    [Google Scholar]
  134. Ohno T. Bro R. Dissolved organic matter characterization using multiway spectral decomposition of fluorescence landscapes. Soil Sci. Soc. Am. J. 2006 70 6 2028 2037 10.2136/sssaj2006.0005
    [Google Scholar]
  135. Lemos M. Sárniková K. Bot F. Anese M. Hungerford G. Use of time-resolved fluorescence to monitor bioactive compounds in plant based foodstuffs. Biosensors 2015 5 3 367 397 10.3390/bios5030367 26132136
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298343293250227023822
Loading
/content/journals/mroc/10.2174/0118756298343293250227023822
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test