Mini Reviews in Medicinal Chemistry - Volume 16, Issue 13, 2016
Volume 16, Issue 13, 2016
-
-
Mechanisms of Microcystin-induced Cytotoxicity and Apoptosis
Authors: Liang Chen and Ping XieIn recent years, cyanobacterial blooms have dramatically increased and become an ecological disaster worldwide. Cyanobacteria are also known to produce a wide variety of toxic secondary metabolites, i.e. cyanotoxins. Microcystins (MCs), a group of cyclic heptapeptides, are considered to be one of the most common and dangerous cyanobacterial toxins. MCs can be incorporated into the cells via organic anion transporting pol Read More
-
-
-
New Insights on the Mode of Action of Microcystins in Animal Cells - A Review
Authors: Elisabete Valério, Vitor Vasconcelos and Alexandre CamposMicrocystins (MCs) are the most commonly occurring hepatotoxins produced by cyanobacteria. The inhibition of PP2A is widely assumed as the principal mechanism of toxicity of MCs, however recently it has been found that MC modulates PP2A activity not only by direct inhibition of its activity, but also by regulating its expression. Nevertheless the mechanisms of toxicity of MCs seem to be more complex to interpret tha Read More
-
-
-
An Overview of the Mechanisms of Microcystin-LR Genotoxicity and Potential Carcinogenicity
More LessMicrocystins (MCs) are hepatotoxic cyclic peptides, and microcystin-LR (MCLR) is one of the most abundant and toxic congeners. MCLR-induced hepatotoxicity occurs through specific inhibition of serine/threonine protein phosphatases 1 and 2A, which leads to hyperphosphorylation of many cellular proteins. This eventually results in cytoskeletal damage, loss of cell morphology, and the consequent cell death. It is generally ac Read More
-
-
-
The Effects of Microcystins (Cyanobacterial Heptapeptides) on the Eukaryotic Cytoskeletal System
Authors: Csaba Máthé, Dániel Beyer, Márta M-Hamvas and Gábor VasasMicrocystins (MCYs) are cyanobacterial heptapeptides known for their high toxicity in eukaryotic cells and for their potential human health hazards. They are potent and specific inhibitors of type 1 and 2A, serine-threonine protein phosphatases (PP1 and PP2A) and as such, interfere with key cellular and metabolic events. Moreover, they induce oxidative stress involving reactive oxygen species (ROS) generation. Their cytoskel Read More
-
-
-
Biotransformation of Microcystins in Eukaryotic Cells - Possible Future Research Directions
More LessDue to eutrophication processes in our water bodies, cyanobacterial blooms can develop worldwide. Most of these blooms are toxic. The most prominent cyanobacterial toxins are the group of the microcystins, which are cyclic heptapeptides, currently with more than 100 congeners known. The biotransformation of microcystins starts with the conjugation to the cell internal tripeptide glutathione, catalysed by glutathione S-tr Read More
-
-
-
Trypanosoma cruzi Invasion into Host Cells: A Complex Molecular Targets Interplay
More LessChagas’ disease is still a worldwide threat, with estimated from 6 to 7 million infected people, mainly in Latin America. Despite all efforts, especially from international consortia (DNDi, NMTrypI), to develop an innovative therapeutic strategy against this disease, no candidate has achieved full requirements for clinical use yet. In this review, we point out the general molecular and cellular mechanisms involved in T. cruzi cell inva Read More
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
Article
content/journals/mrmc
Journal
10
5
false
en
