Skip to content
2000
Volume 16, Issue 13
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

In recent years, cyanobacterial blooms have dramatically increased and become an ecological disaster worldwide. Cyanobacteria are also known to produce a wide variety of toxic secondary metabolites, i.e. cyanotoxins. Microcystins (MCs), a group of cyclic heptapeptides, are considered to be one of the most common and dangerous cyanobacterial toxins. MCs can be incorporated into the cells via organic anion transporting polypeptides (Oatps). It’s widely accepted that inhibition of protein phosphatases (PPs) and induction of oxidative stress are the main toxic mechanisms of MCs. MCs are able to induce a variety of toxic cellular effects, including DNA damage, cytoskeleton disruption, mitochondria dysfunction, endoplasmic reticulum (ER) disturbance and cell cycle deregulation, all of which can contribute to apoptosis/programmed cell death. This review aimed to summarize the increasing data regarding the intracellular biochemical and molecular mechanisms of MC-induced toxicity and cell death.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/1389557516666160219130407
2016-09-01
2025-10-28
Loading full text...

Full text loading...

/content/journals/mrmc/10.2174/1389557516666160219130407
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test