Skip to content
2000
image of Exploring the Potential of Anacardic Acid, its Natural and Synthetic Analogues, and Nanoformulations as a Potential Antibacterial Agent, including Multidrug-Resistant Bacteria: A Comprehensive Review

Abstract

The increasing rise of multidrug-resistant bacteria necessitates an urgent need for the discovery of novel antibacterial agents. Natural products have long been a source for identifying and isolating novel antibacterial agents. Anacardic acids (AAs), a phenolic lipid isolated from solvent-extracted cashew nutshell liquid (CNSL) of (Family Anacardiaceae), have garnered potential attention for their potent antibacterial properties. Besides , different analogues of AAs have also been isolated from various natural sources. These natural and structurally optimized derivatives exhibited potential antibacterial properties against other bacterial strains. Although AAs are associated with a high level of antimicrobial activity against for their clinical translation. Encapsulating AAs in nanoformulations could be beneficial, as it can improve their poor pharmacokinetic properties, prevent enzymatic degradation during transport in the body, and facilitate site-specific release, thereby enhancing their therapeutic potential. Among the different nanocarriers studied, zein nanoparticles loaded with anacardic acid showed strong antibiofilm activity against , , and

In contrast, the DNase-chitosan-coated solid lipid nanoparticles (Ana-SLNs-CH-DNase) demonstrated superior activity in disrupting mature biofilms. Additionally, we have discussed the structure-activity relationship and mechanism of action of AAs, where it was found that AAs disrupt cell membrane functioning, inhibit bacterial respiration, quorum sensing, and cellular respiration, among other effects. These findings suggest that AAs and their analogues exhibit promising antibacterial activity, while nanoformulations offer a promising strategy to optimize their therapeutic potential.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575431411251009045624
2025-11-05
2025-12-17
Loading full text...

Full text loading...

References

  1. Naghavi M. Vollset S.E. Ikuta K.S. Swetschinski L.R. Gray A.P. Wool E.E. Robles Aguilar G. Mestrovic T. Smith G. Han C. Hsu R.L. Chalek J. Araki D.T. Chung E. Raggi C. Gershberg Hayoon A. Davis Weaver N. Lindstedt P.A. Smith A.E. Altay U. Bhattacharjee N.V. Giannakis K. Fell F. McManigal B. Ekapirat N. Mendes J.A. Runghien T. Srimokla O. Abdelkader A. Abd-Elsalam S. Aboagye R.G. Abolhassani H. Abualruz H. Abubakar U. Abukhadijah H.J. Aburuz S. Abu-Zaid A. Achalapong S. Addo I.Y. Adekanmbi V. Adeyeoluwa T.E. Adnani Q.E.S. Adzigbli L.A. Afzal M.S. Afzal S. Agodi A. Ahlstrom A.J. Ahmad A. Ahmad S. Ahmad T. Ahmadi A. Ahmed A. Ahmed H. Ahmed I. Ahmed M. Ahmed S. Ahmed S.A. Akkaif M.A. Al Awaidy S. Al Thaher Y. Alalalmeh S.O. AlBataineh M.T. Aldhaleei W.A. Al-Gheethi A.A.S. Alhaji N.B. Ali A. Ali L. Ali S.S. Ali W. Allel K. Al-Marwani S. Alrawashdeh A. Altaf A. Al-Tammemi A.B. Al-Tawfiq J.A. Alzoubi K.H. Al-Zyoud W.A. Amos B. Amuasi J.H. Ancuceanu R. Andrews J.R. Anil A. Anuoluwa I.A. Anvari S. Anyasodor A.E. Apostol G.L.C. Arabloo J. Arafat M. Aravkin A.Y. Areda D. Aremu A. Artamonov A.A. Ashley E.A. Asika M.O. Athari S.S. Atout M.M.W. Awoke T. Azadnajafabad S. Azam J.M. Aziz S. Azzam A.Y. Babaei M. Babin F-X. Badar M. Baig A.A. Bajcetic M. Baker S. Bardhan M. Barqawi H.J. Basharat Z. Basiru A. Bastard M. Basu S. Bayleyegn N.S. Belete M.A. Bello O.O. Beloukas A. Berkley J.A. Bhagavathula A.S. Bhaskar S. Bhuyan S.S. Bielicki J.A. Briko N.I. Brown C.S. Browne A.J. Buonsenso D. Bustanji Y. Carvalheiro C.G. Castañeda-Orjuela C.A. Cenderadewi M. Chadwick J. Chakraborty S. Chandika R.M. Chandy S. Chansamouth V. Chattu V.K. Chaudhary A.A. Ching P.R. Chopra H. Chowdhury F.R. Chu D-T. Chutiyami M. Cruz-Martins N. da Silva A.G. Dadras O. Dai X. Darcho S.D. Das S. De la Hoz F.P. Dekker D.M. Dhama K. Diaz D. Dickson B.F.R. Djorie S.G. Dodangeh M. Dohare S. Dokova K.G. Doshi O.P. Dowou R.K. Dsouza H.L. Dunachie S.J. Dziedzic A.M. Eckmanns T. Ed-Dra A. Eftekharimehrabad A. Ekundayo T.C. El Sayed I. Elhadi M. El-Huneidi W. Elias C. Ellis S.J. Elsheikh R. Elsohaby I. Eltaha C. Eshrati B. Eslami M. Eyre D.W. Fadaka A.O. Fagbamigbe A.F. Fahim A. Fakhri-Demeshghieh A. Fasina F.O. Fasina M.M. Fatehizadeh A. Feasey N.A. Feizkhah A. Fekadu G. Fischer F. Fitriana I. Forrest K.M. Fortuna Rodrigues C. Fuller J.E. Gadanya M.A. Gajdács M. Gandhi A.P. Garcia-Gallo E.E. Garrett D.O. Gautam R.K. Gebregergis M.W. Gebrehiwot M. Gebremeskel T.G. Geffers C. Georgalis L. Ghazy R.M. Golechha M. Golinelli D. Gordon M. Gulati S. Gupta R.D. Gupta S. Gupta V.K. Habteyohannes A.D. Haller S. Harapan H. Harrison M.L. Hasaballah A.I. Hasan I. Hasan R.S. Hasani H. Haselbeck A.H. Hasnain M.S. Hassan I.I. Hassan S. Hassan Zadeh Tabatabaei M.S. Hayat K. He J. Hegazi O.E. Heidari M. Hezam K. Holla R. Holm M. Hopkins H. Hossain M.M. Hosseinzadeh M. Hostiuc S. Hussein N.R. Huy L.D. Ibáñez-Prada E.D. Ikiroma A. Ilic I.M. Islam S.M.S. Ismail F. Ismail N.E. Iwu C.D. Iwu-Jaja C.J. Jafarzadeh A. Jaiteh F. Jalilzadeh Yengejeh R. Jamora R.D.G. Javidnia J. Jawaid T. Jenney A.W.J. Jeon H.J. Jokar M. Jomehzadeh N. Joo T. Joseph N. Kamal Z. Kanmodi K.K. Kantar R.S. Kapisi J.A. Karaye I.M. Khader Y.S. Khajuria H. Khalid N. Khamesipour F. Khan A. Khan M.J. Khan M.T. Khanal V. Khidri F.F. Khubchandani J. Khusuwan S. Kim M.S. Kisa A. Korshunov V.A. Krapp F. Krumkamp R. Kuddus M. Kulimbet M. Kumar D. Kumaran E.A.P. Kuttikkattu A. Kyu H.H. Landires I. Lawal B.K. Le T.T.T. Lederer I.M. Lee M. Lee S.W. Lepape A. Lerango T.L. Ligade V.S. Lim C. Lim S.S. Limenh L.W. Liu C. Liu X. Liu X. Loftus M.J. Amin M. H.I.; Maass, K.L.; Maharaj, S.B.; Mahmoud, M.A.; Maikanti-Charalampous, P.; Makram, O.M.; Malhotra, K.; Malik, A.A.; Mandilara, G.D.; Marks, F.; Martinez-Guerra, B.A.; Martorell, M.; Masoumi-Asl, H.; Mathioudakis, A.G.; May, J.; McHugh, T.A.; Meiring, J.; Meles, H.N.; Melese, A.; Melese, E.B.; Minervini, G.; Mohamed, N.S.; Mohammed, S.; Mohan, S.; Mokdad, A.H.; Monasta, L.; Moodi Ghalibaf, A.A.; Moore, C.E.; Moradi, Y.; Mossialos, E.; Mougin, V.; Mukoro, G.D.; Mulita, F.; Muller-Pebody, B.; Murillo-Zamora, E.; Musa, S.; Musicha, P.; Musila, L.A.; Muthupandian, S.; Nagarajan, A.J.; Naghavi, P.; Nainu, F.; Nair, T.S.; Najmuldeen, H.H.R.; Natto, Z.S.; Nauman, J.; Nayak, B.P.; Nchanji, G.T.; Ndishimye, P.; Negoi, I.; Negoi, R.I.; Nejadghaderi, S.A.; Nguyen, Q.A.P.; Noman, E.A.; Nwakanma, D.C.; O’Brien, S.; Ochoa, T.J.; Odetokun, I.A.; Ogundijo, O.A.; Ojo-Akosile, T.R.; Okeke, S.R.; Okonji, O.C.; Olagunju, A.T.; Olivas-Martinez, A.; Olorukooba, A.A.; Olwoch, P.; Onyedibe, K.I.; Ortiz-Brizuela, E.; Osuolale, O.; Ounchanum, P.; Oyeyemi, O.T.; P A, M.P.; Paredes, J.L.; Parikh, R.R.; Patel, J.; Patil, S.; Pawar, S.; Peleg, A.Y.; Peprah, P.; Perdigão, J.; Perrone, C.; Petcu, I-R.; Phommasone, K.; Piracha, Z.Z.; Poddighe, D.; Pollard, A.J.; Poluru, R.; Ponce-De-Leon, A.; Puvvula, J.; Qamar, F.N.; Qasim, N.H.; Rafai, C.D.; Raghav, P.; Rahbarnia, L.; Rahim, F.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.A.; Ramadan, H.; Ramasamy, S.K.; Ramesh, P.S.; Ramteke, P.W.; Rana, R.K.; Rani, U.; Rashidi, M-M.; Rathish, D.; Rattanavong, S.; Rawaf, S.; Redwan, E.M.M.; Reyes, L.F.; Roberts, T.; Robotham, J.V.; Rosenthal, V.D.; Ross, A.G.; Roy, N.; Rudd, K.E.; Sabet, C.J.; Saddik, B.A.; Saeb, M.R.; Saeed, U.; Saeedi Moghaddam, S.; Saengchan, W.; Safaei, M.; Saghazadeh, A.; Saheb Sharif-Askari, N.; Sahebkar, A.; Sahoo, S.S.; Sahu, M.; Saki, M.; Salam, N.; Saleem, Z.; Saleh, M.A.; Samodra, Y.L.; Samy, A.M.; Saravanan, A.; Satpathy, M.; Schumacher, A.E.; Sedighi, M.; Seekaew, S.; Shafie, M.; Shah, P.A.; Shahid, S.; Shahwan, M.J.; Shakoor, S.; Shalev, N.; Shamim, M.A.; Shamshirgaran, M.A.; Shamsi, A.; Sharifan, A.; Shastry, R.P.; Shetty, M.; Shittu, A.; Shrestha, S.; Siddig, E.E.; Sideroglou, T.; Sifuentes-Osornio, J.; Silva, L.M.L.R.; Simões, E.A.F.; Simpson, A.J.H.; Singh, A.; Singh, S.; Sinto, R.; Soliman, S.S.M.; Soraneh, S.; Stoesser, N.; Stoeva, T.Z.; Swain, C.K.; Szarpak, L.; T y, S.S.; Tabatabai, S.; Tabche, C.; Taha, Z.M-A.; Tan, K-K.; Tasak, N.; Tat, N.Y.; Thaiprakong, A.; Thangaraju, P.; Tigoi, C.C.; Tiwari, K.; Tovani-Palone, M.R.; Tran, T.H.; Tumurkhuu, M.; Turner, P.; Udoakang, A.J.; Udoh, A.; Ullah, N.; Ullah, S.; Vaithinathan, A.G.; Valenti, M.; Vos, T.; Vu, H.T.L.; Waheed, Y.; Walker, A.S.; Walson, J.L.; Wangrangsimakul, T.; Weerakoon, K.G.; Wertheim, H.F.L.; Williams, P.C.M.; Wolde, A.A.; Wozniak, T.M.; Wu, F.; Wu, Z.; Yadav, M.K.K.; Yaghoubi, S.; Yahaya, Z.S.; Yarahmadi, A.; Yezli, S.; Yismaw, Y.E.; Yon, D.K.; Yuan, C-W.; Yusuf, H.; Zakham, F.; Zamagni, G.; Zhang, H.; Zhang, Z-J.; Zielińska, M.; Zumla, A.; Zyoud, S.H.H.; Zyoud, S.H.; Hay, S.I.; Stergachis, A.; Sartorius, B.; Cooper, B.S.; Dolecek, C.; Murray, C.J.L. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024 404 10459 1199 1226 10.1016/S0140‑6736(24)01867‑1 39299261
    [Google Scholar]
  2. Swami O.C. Kohli G.S. Katekhaye V.M. Swami O.C. Strategies to combat antimicrobial resistance. J. Clin. Diagn. Res. 2014 8 7 ME01 ME04 10.7860/JCDR/2014/8925.4529 25177596
    [Google Scholar]
  3. Prestinaci F. Pezzotti P. Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob Health 2015 109 7 309 318 10.1179/2047773215Y.0000000030 26343252
    [Google Scholar]
  4. Moloney M.G. Natural Products as a Source for Novel Antibiotics. Trends Pharmacol. Sci. 2016 37 8 689 701 10.1016/j.tips.2016.05.001 27267698
    [Google Scholar]
  5. Guedes B.N. Krambeck K. Durazzo A. Lucarini M. Santini A. Oliveira M.B.P.P. Fathi F. Souto E.B. Natural antibiotics against antimicrobial resistance: Sources and bioinspired delivery systems. Braz. J. Microbiol. 2024 55 3 2753 2766 10.1007/s42770‑024‑01410‑1 38888693
    [Google Scholar]
  6. Zhao S. Jing Z. New pimarane diterpenoids with antibacterial activity from fungus Arthrinium sp. ZS03. Chin. J. Nat. Med. 2024 22 4 356 364 10.1016/S1875‑5364(24)60629‑1 38658098
    [Google Scholar]
  7. Wu J. Song T. Zhang L. Huang Z. Huang F. Yin C. Zhang S. Liu X. Zhang Y. Antibacterial and cytotoxic metabolites produced by Streptomyces tanashiensis BYF-112 isolated from Odontotermes formosanus. Chin. J. Nat. Med. 2024 22 9 822 830 10.1016/S1875‑5364(24)60720‑X 39326976
    [Google Scholar]
  8. Tyman J.H.P. Non-isoprenoid long chain phenols. Chem. Soc. Rev. 1979 8 4 499 537 10.1039/cs9790800499
    [Google Scholar]
  9. Morais S. Silva K. Araujo H. Vieira I. Alves D. Fontenelle R. Silva A. Anacardic acid constituents from cashew nut shell liquid: nmr characterization and the effect of unsaturation on its biological activities. Pharmaceuticals (Basel) 2017 10 1 31 10.3390/ph10010031 28300791
    [Google Scholar]
  10. Hamad F. Mubofu E. Potential biological applications of bio-based anacardic acids and their derivatives. Int. J. Mol. Sci. 2015 16 4 8569 8590 10.3390/ijms16048569 25894225
    [Google Scholar]
  11. Jones T.H. Brunner S.R. Edwards A.A. Davidson D.W. Snelling R.R. 6-alkylsalicylic acids and 6-alkylresorcylic acids from ants in the genus Crematogaster from Brunei. J. Chem. Ecol. 2005 31 2 407 417 10.1007/s10886‑005‑1349‑6 15856792
    [Google Scholar]
  12. Liu J. Li F. Lee Y.M. Li J.L. Hong J. Yoon W.D. Kim E.K. Jung J. An Anacardic acid Analog from the Jellyfish-derived Fungus Paecilomyces variotii. Nat. Prod. Sci. 2012 18 1 8
    [Google Scholar]
  13. Kim N. Shin J.C. Kim W. Hwang B.Y. Kim B.S. Hong Y.S. Lee D. Cytotoxic 6-alkylsalicylic acids from the endophytic Streptomyces laceyi. J. Antibiot. (Tokyo) 2006 59 12 797 800 10.1038/ja.2006.105 17323647
    [Google Scholar]
  14. van Beek T.A. Wintermans M.S. Preparative isolation and dual column high-performance liquid chromatography of ginkgolic acids from Ginkgo biloba. J. Chromatogr A 2001 930 1-2 109 117 10.1016/S0021‑9673(01)01194‑3 11681568
    [Google Scholar]
  15. Ng’ang’a M.M. Hussain H. Chhabra S. Langat-Thoruwa C. Krohn K. Chemical constituents from the root bark of Ozoroa insignis. Biochem. Syst. Ecol. 2009 37 2 116 119 10.1016/j.bse.2008.11.019
    [Google Scholar]
  16. Ventura G. Calvano C.D. Blasi D. Coniglio D. Losito I. Cataldi T.R.I. Uncovering heterogeneity of anacardic acids from pistachio shells: A novel approach for structural characterization. Food Chem. 2023 426 136636 10.1016/j.foodchem.2023.136636 37348403
    [Google Scholar]
  17. Yalpani M.H.P. Tyman J. The phenolic acids of Pistachia vera. Phytochemistry 1983 22 10 2263 2266 10.1016/S0031‑9422(00)80158‑2
    [Google Scholar]
  18. Fu F.Y. Yu D.Q. Sung W.L. Jai Y.F. Sun N.C. The chemical study of hydroginkgolinic acid a new constituent of Ginkgo biloba L. Acta. Chimi Sin 1962 28 1 52 56 [J
    [Google Scholar]
  19. Rivero-Cruz B.E. Esturau N. Sánchez-Nieto S. Romero I. Castillo-Juárez I. Rivero-Cruz J.F. Isolation of the new anacardic acid 6-[16′Z-nonadecenyl]-salicylic acid and evaluation of its antimicrobial activity against Streptococcus mutans and Porphyromonas gingivalis. Nat. Prod. Res. 2011 25 13 1282 1287 10.1080/14786419.2010.534996 21815722
    [Google Scholar]
  20. Kubo I. Kim M. Naya K. Komatsu S. Yamagiwa Y. Ohashi K. Sakamoto Y. Hirakawa S. Kamikawa T. Prostaglandin Synthetase Inhibitors from the African medicinal plant Ozoroa mucronata. Chem. Lett. 1987 16 6 1101 1104 10.1246/cl.1987.1101
    [Google Scholar]
  21. Kubo I. Ochi M. Vieira P.C. Komatsu S. Antitumor agents from the cashew (Anacardium occidentale) apple juice. J. Agric. Food Chem. 1993 41 6 1012 1015 10.1021/jf00030a035
    [Google Scholar]
  22. Walters D.S. Minard R. Craig R. Mumma R.O. Geranium defensive agents. III. Structural determination and biosynthetic considerations of anacardic acids of geranium. J. Chem. Ecol. 1988 14 3 743 751 10.1007/BF01018769 24276127
    [Google Scholar]
  23. Castillo-Juárez I. Rivero-Cruz F. Celis H. Romero I. Anti-Helicobacter pylori activity of anacardic acids from Amphipterygium adstringens. J. Ethnopharmacol. 2007 114 1 72 77 10.1016/j.jep.2007.07.022 17768020
    [Google Scholar]
  24. Rwahwire S. Tomkova B. Periyasamy A.P. Kale B.M. Green thermoset reinforced biocomposites. Green Composites for Automotive Applications. Koronis G. Silva A. Cambridge Woodhead Publishing 2019 61 80 10.1016/B978‑0‑08‑102177‑4.00003‑3
    [Google Scholar]
  25. Kumar P. Paramashivappa R. Vithayathil P.J. Subba Rao P.V. Srinivasa Rao A. Process for isolation of cardanol from technical cashew (Anacardium occidentale L.) nut shell liquid. J. Agric. Food Chem. 2002 50 16 4705 4708 10.1021/jf020224w 12137500
    [Google Scholar]
  26. Prithiviraj B. Singh U.P. Manickam M. Ray A.B. Antifungal activity of anacardic acid, a naturally occurring derivative of salicylic acid. Can. J. Bot. 1997 75 1 207 211 10.1139/b97‑021
    [Google Scholar]
  27. Ha T.J. Kubo I. Lipoxygenase inhibitory activity of anacardic acids. J. Agric. Food. Chem. 2005 53 11 4350 4354 10.1021/jf048184e 15913294
    [Google Scholar]
  28. Tsujimoto K. Hayashia A. Ha T.J. Kubo I. Anacardic acids and ferric ion chelation. Z Naturforsch C J. Biosci 2007 62 9-10 710 716 10.1515/znc‑2007‑9‑1014 18069245
    [Google Scholar]
  29. Shobha S.V. Ramadoss C.S. Ravindranath B. Regio specific hydro peroxidation of anacardic acid (15:2) by soybean lipoxygenase 1. J. Nat. Prod. 1992 55 6 818 821 10.1021/np50084a020
    [Google Scholar]
  30. Kubo I. Ha K. Tsujimoto K. Tocoli F.E. Green I.R. Evaluation of lipoxygenase inhibitory activity of anacardic acids. Z Naturforsch C J. Biosci 2008 63 7-8 539 546 10.1515/znc‑2008‑7‑812 18810998
    [Google Scholar]
  31. Sung B. Pandey M.K. Ahn K.S. Yi T. Chaturvedi M.M. Liu M. Aggarwal B.B. Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-κB–regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-κBα kinase, leading to potentiation of apoptosis. Blood 2008 111 10 4880 4891 10.1182/blood‑2007‑10‑117994 18349320
    [Google Scholar]
  32. de Souza M.Q. Teotônio I.M.S.N. de Almeida F.C. Heyn G.S. Alves P.S. Romeiro L.A.S. Pratesi R. de Medeiros Nóbrega Y.K. Pratesi C.B. Molecular evaluation of anti-inflammatory activity of phenolic lipid extracted from cashew nut shell liquid (CNSL). BMC Complement Altern. Med. 2018 18 1 181 10.1186/s12906‑018‑2247‑0 29890972
    [Google Scholar]
  33. Lipka D. Legut M. Filipczak N. Gubernator J. Piwoni A. Kozubek A. Anacardic acid enhances the anticancer activity of liposomal mitoxantrone towards melanoma cell lines – in vitro studies. Int. J. Nanomedicine 2014 9 653 668 10.2147/IJN.S54911 24489469
    [Google Scholar]
  34. Park M. Upton D. Blackmon M. Dixon V. Craver S. Neal D. Perkins D. Anacardic acid inhibits pancreatic cancer cell growth, and potentiates chemotherapeutic effect by Chmp1A - ATM - p53 signaling pathway. BMC Complement. Altern. Med. 2018 18 1 71 10.1186/s12906‑018‑2139‑3 29463243
    [Google Scholar]
  35. Zhao Q. Zhang X. Cai H. Zhang P. Kong D. Ge X. Du M. Liang R. Dong W. Anticancer effects of plant derived Anacardic acid on human breast cancer MDA-MB-231 cells. Am J. Transl. Res. 2018 10 8 2424 2434 30210681
    [Google Scholar]
  36. Mlowe S.S. Pullabhotla R.R. Mubofu E.B. Ngassapa F.N. Revaprasadu N.N. Low temperature synthesis of anacardic-acid-capped cadmium chalcogenide nanoparticles. Int. Nano Lett. 2014 4 106 111 10.1007/s40089‑014‑0106‑7
    [Google Scholar]
  37. Mlowe S. Nejo A.A. Pullabhotla V.S.R.R. Mubofu E.B. Ngassapa F.N. O’Brien P. Revaprasadu N. Lead chalcogenides stabilized by anacardic acid. Mater. Sci. Semicond Process. 2013 16 2 263 268 10.1016/j.mssp.2012.10.017
    [Google Scholar]
  38. Eichbaum F.W. Biological properties of anacardic acid (o-pentadecadienylsalicylic acid) and related compounds. Mem. Inst. Butantan. 1946 19 71 96
    [Google Scholar]
  39. Gellerman J.L. Walsh N.J. Werner N.K. Schlenk H. Antimicrobial effects of anacardic acids. Can J. Microbiol. 1969 15 10 1219 1223 10.1139/m69‑220 4984318
    [Google Scholar]
  40. Himejima M. Kubo I. Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. J. Agric. Food Chem. 1991 39 2 418 421 10.1021/jf00002a039
    [Google Scholar]
  41. Kubo I. Kim M. De Boer G. Efficient isolation of insect growth inhibitory macrolide alkaloids using recycle high-performance gel permeation chromatography. J. Chromatogr. A 1987 402 354 357 10.1016/0021‑9673(87)80036‑5 3654873
    [Google Scholar]
  42. Kubo I. Muroi H. Himejima M. Yamagiwa Y. Mera H. Tokushima K. Ohta S. Kamikawa T. Structure-antibacterial activity relationships of anacardic acids. J. Agric. Food. Chem. 1993 41 6 1016 1019 10.1021/jf00030a036
    [Google Scholar]
  43. Matsumoto T. Sei T. Antifeedant Activities of Ginkgo biloba L. Components against the Larva of Pieris rapae crucivora. Agric. Biol. Chem. 1987 51 1 249 250 10.1080/00021369.1987.10868016
    [Google Scholar]
  44. Ingram L.O.N. Buttke T.M. Effects of alcohols on micro-organisms. Adv. Microb. Physiol. 1985 25 253 300 10.1016/S0065‑2911(08)60294‑5 6398622
    [Google Scholar]
  45. Kubo J. Lee J.R. Kubo I. Anti-Helicobacter pylori agents from the cashew apple. J. Agric. Food. Chem. 1999 47 2 533 537 10.1021/jf9808980 10563928
    [Google Scholar]
  46. Hirai Y. Haque M. Yoshida T. Yokota K. Yasuda T. Oguma K. Unique cholesteryl glucosides in Helicobacter pylori: composition and structural analysis. J. Bacteriol. 1995 177 18 5327 5333 10.1128/jb.177.18.5327‑5333.1995 7665522
    [Google Scholar]
  47. Kasemura K. Nomura M. Tada T. Fujihara Y. Shimomura K. Antimicrobial and tyrosinase inhibitory activities of 6-[(8Z)-8-pentadecenyl]salicylic acid derivatives. J. Oleo Sci. 2002 51 10 637 642 10.5650/jos.51.637
    [Google Scholar]
  48. Takahashi N. Nyvad B. The role of bacteria in the caries process: Ecological perspectives. J. Dent. Res. 2011 90 3 294 303 10.1177/0022034510379602 20924061
    [Google Scholar]
  49. Wang B.Y. Deutch A. Hong J. Kuramitsu H.K. Proteases of an early colonizer can hinder Streptococcus mutans colonization in vitro. J. Dent. Res. 2011 90 4 501 505 10.1177/0022034510388808 21088146
    [Google Scholar]
  50. Green I.R. Tocoli F.E. Lee S.H. Nihei K. Kubo I. Design and evaluation of anacardic acid derivatives as anticavity agents. Eur J. Med. Chem. 2008 43 6 1315 1320 10.1016/j.ejmech.2007.08.012 17959274
    [Google Scholar]
  51. Nallamilli S.R. Kumar V.R. Himabindu V. Ram B. Aalapati S.R. Synthesis and antibacterial activity of anacardic acid derivatives. Lett. Drug Des. Discov. 2011 8 7 626 632 10.2174/157018011796235167
    [Google Scholar]
  52. Reddy N.S. Rao A.S. Chari M.A. Kumar R. Jyothy V. Himabindu V. Synthesis and antibacterial activity of sulfonamide derivatives at C-8 alkyl chain of anacardic acid mixture isolated from a natural product cashew nut shell liquid (CNSL). J. Chem. Sci. 2012 124 3 723 730 10.1007/s12039‑012‑0253‑1
    [Google Scholar]
  53. Reddy N.S. Rao A.S. Chari M.A. kumar, V.R.; Jyothy, V.; Himabindu, V. Synthesis and antibacterial activity of urea and thiourea derivatives of anacardic acid mixture isolated from a natural product cashew nut shell liquid (CNSL). Int. J. Org. Chem. (Irvine) 2012 2 3 267 275 10.4236/ijoc.2012.23036
    [Google Scholar]
  54. Vempati R.K. Reddy N.S. Alapati S.R. Dubey P.K. Synthesis of Azabicyclo[3.1.0]amine analogues of anacardic acid as potent antibacterial agents. Asian J. Chem. 2013 25 2 986 994 10.14233/ajchem.2013.13338
    [Google Scholar]
  55. Koteich K.S. Bullón J. Vivas J. Ali B. Yolima R. Ronald M. Ana F. Jean S. Synthesis, characterization, evaluation of interfacial properties and antibacterial activities of dicarboxylateanacardic acid derivatives from cashew nut shell liquid of Anacardium occidentale L. J. Surfactants Deterg. 2020 23 3 10.1002/jsde.12384
    [Google Scholar]
  56. da Silva F.F.M. de Medeiros Costa A.K. Barbosa P.T. de Paiva Mota J.C. de Lemos T.L.G. Extraction, isolation and chemical modification of the anacardic acids from the peel of the cashew nuts (anacardium occidentale l.) and biological assay. Curr. Res. Bioorg. Org. Chem. J. 2018 CRBOC 110
    [Google Scholar]
  57. Stefani S. Chung D.R. Lindsay J.A. Friedrich A.W. Kearns A.M. Westh H. MacKenzie F.M. Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. Int. J. Antimicrob. Agents 2012 39 4 273 282 10.1016/j.ijantimicag.2011.09.030 22230333
    [Google Scholar]
  58. Turner N.A. Sharma-Kuinkel B.K. Maskarinec S.A. Eichenberger E.M. Shah P.P. Carugati M. Holland T.L. Fowler V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019 17 4 203 218 10.1038/s41579‑018‑0147‑4 30737488
    [Google Scholar]
  59. Muroi H. Kubo I. Bactericidal effects of anacardic acid and totarol on methicillin-resistant Staphylococcus aureus (MRSA). Biosci. Biotechnol. Biochem. 1994 58 10 1925 1926 10.1271/bbb.58.1925
    [Google Scholar]
  60. Muroi H. Kubo I. Antibacterial activity of anacardic acid and totarol, alone and in combination with methicillin, against methicillinresistant Staphylococcus aureus. J. Appl. Bacteriol. 1996 80 4 387 394 10.1111/j.1365‑2672.1996.tb03233.x 8849640
    [Google Scholar]
  61. Kubo I. Nihei K. Tsujimoto K. Antibacterial action of anacardic acids against methicillin resistant Staphylococcus aureus (MRSA). J. Agric. Food. Chem. 2003 51 26 7624 7628 10.1021/jf034674f 14664518
    [Google Scholar]
  62. Muroi H. Nihei K. Tsujimoto K. Kubo I. Synergistic effects of anacardic acids and methicillin against methicillin resistant Staphylococcus aureus. Bioorg. Med. Chem. 2004 12 3 583 587 10.1016/j.bmc.2003.10.046 14738968
    [Google Scholar]
  63. Sorrell T.C. Packham D.R. Shanker S. Foldes M. Munro R. Vancomycin therapy for methicillin-resistant Staphylococcus aureus. Ann. Intern. Med. 1982 97 3 344 350 10.7326/0003‑4819‑97‑3‑344 7114631
    [Google Scholar]
  64. Bouttier S. Fourniat J. Garofalo C. Gleye C. Laurens A. Hocquemiller R. ß-Lactamase Inhibitors from Anacardium occidentale. Pharm. Biol. 2002 40 3 231 234 10.1076/phbi.40.3.231.5827
    [Google Scholar]
  65. Achanath R. Srinivas M. Seshadri R.C. Antimicrobial derivatives of anacardic acid and process for preparing the same. United States Patent Application 20100016630 A1 2010
    [Google Scholar]
  66. Mamidyala S.K. Ramu S. Huang J.X. Robertson A.A.B. Cooper M.A. Efficient synthesis of anacardic acid analogues and their antibacterial activities. Bioorg. Med. Chem. Lett. 2013 23 6 1667 1670 10.1016/j.bmcl.2013.01.074 23416004
    [Google Scholar]
  67. Saedtler M. Förtig N. Ohlsen K. Faber F. Masota N. Kowalick K. Holzgrabe U. Meinel L. Antibacterial anacardic acid derivatives. ACS Infect. Dis. 2020 6 7 1674 1685 10.1021/acsinfecdis.9b00378 32519844
    [Google Scholar]
  68. Rajagopal M. Walker S. Envelope Structures of Gram-Positive Bacteria. Curr. Top Microbiol. Immunol. 2015 404 1 44 10.1007/82_2015_5021 26919863
    [Google Scholar]
  69. Saxena D Maitra R Bormon R Tackling the outer membrane: facilitating compound entry into Gram-negative bacterial pathogens. npj Antimicrob. Resist 2023 17 17 10.1038/s44259‑023‑00016‑1
    [Google Scholar]
  70. Acevedo H.R. Rojas M.D. Arceo S.D.B. Soto Hernández M. Martínez Vázquez M. Terrazas T. del Toro G.V. Effect of 6-nonadecyl salicylic acid and its methyl ester on the induction of micronuclei in polychromatic erythrocytes in mouse peripheral blood. Mutat. Res. Genet. Toxicol. Environ. Mutagen 2006 609 1 43 46 10.1016/j.mrgentox.2006.06.002 16857418
    [Google Scholar]
  71. Nagabhushana K.S. Umamaheshwari S. Tocoli F.E. Prabhu S.K. Green I.R. Ramadoss C.S. Inhibition of soybean and potato lipoxygenases by bhilawanols from bhilawan (Semecarpus anacardium) nut shell liquid and some synthetic salicylic acid analogues. J. Enzyme Inhib. Med. Chem. 2002 17 4 255 259 10.1080/1475636021000006243 12530478
    [Google Scholar]
  72. Arora A. Nair M.G. Strasburg G.M. Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol. Med. 1998 24 9 1355 1363 10.1016/S0891‑5849(97)00458‑9 9641252
    [Google Scholar]
  73. Kaprelyants A.S. Suleimenov M.K. Sorokina A.D. Deborin G.A. El-Registan G.I. Stoyanovich F.M. Lille Y.E. Ostrovsky D.N. Structural-functional changes in bacterial and model membranes induced by phenolic lipids. Biol. Membr. 1987 4 254 261
    [Google Scholar]
  74. Stasiuk M. Kozubek A. Biological activity of phenolic lipids. Cell. Mol. Life. Sci. 2010 67 6 841 860 10.1007/s00018‑009‑0193‑1 20213924
    [Google Scholar]
  75. Castillo-Juárez I. García-Contreras R. Velázquez-Guadarrama N. Soto-Hernández M. Martínez-Vázquez M. Amphypterygium adstringens anacardic acid mixture inhibits quorum sensing-controlled virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa. Arch. Med. Res. 2013 44 7 488 494 10.1016/j.arcmed.2013.10.004 24126126
    [Google Scholar]
  76. Kitpipit W. Scholfield C.N. Sangkanu S. Nissapatorn V. Pereira M.L. Paul A.K. Mitsuwan W. Virulence factors and quorum sensing as targets of new therapeutic options by plant-derived compounds against bacterial infections caused by human and animal pathogens. Vet. World 2023 16 6 1346 1355 10.14202/vetworld.2023.1346‑1355 37577190
    [Google Scholar]
  77. Asfour H. Anti-quorum sensing natural compounds. J. Microsc. Ultrastruct. 2018 6 1 1 10 10.4103/JMAU.JMAU_10_18 30023261
    [Google Scholar]
  78. Gómez S. Querol-García J. Sánchez-Barrón G. Subias M. González-Alsina À. Franco-Hidalgo V. Albertí S. Rodríguez de Córdoba S. Fernández F.J. Vega M.C. The antimicrobials anacardic acid and curcumin are not-competitive inhibitors of Gram-positive bacterial pathogenic glyceraldehyde-3-phosphate dehydrogenase by a mechanism unrelated to human C5a anaphylatoxin binding. Front. Microbiol. 2019 10 326 10.3389/fmicb.2019.00326 30863383
    [Google Scholar]
  79. Zafar F. Gupta A. Thangavel K. Khatana K. Sani A.A. Ghosal A. Tandon P. Nishat N. Physicochemical and pharmacokinetic analysis of anacardic acid derivatives. ACS Omega 2020 5 11 6021 6030 10.1021/acsomega.9b04398 32226883
    [Google Scholar]
  80. Silva A.P.M. Silva G.S. OiramFilho, F.; Silva, M. F. S.; Zocolo, G. J.; &Brito, E. S. d. structural characterization and in vitro and in silico studies on the anti-α-Glucosidase Activity of Anacardic Acids from Anacardiumoccidentale. Foods 2024 13 24 4107 10.3390/foods13244107 39767049
    [Google Scholar]
  81. Pasparakis G. Recent developments in the use of gold and silver nanoparticles in biomedicine. Wiley Interdiscip Rev. Nanomed Nanobiotechnol. 2022 14 5 e1817 10.1002/wnan.1817 35775611
    [Google Scholar]
  82. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric Nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  83. Negrescu A.M. Killian M.S. Raghu S.N.V. Schmuki P. Mazare A. Cimpean A. metal oxide nanoparticles: Review of synthesis, characterization and biological effects. J. Funct. Biomater 2022 13 4 274 10.3390/jfb13040274 36547533
    [Google Scholar]
  84. Priyadarsini S. Mukherjee S. Mishra M. Nanoparticles used in dentistry: A review. J. Oral Biol. Craniofac. Res. 2018 8 1 58 67 10.1016/j.jobcr.2017.12.004 29556466
    [Google Scholar]
  85. Moraes G. Zambom C. Siqueira W.L. Nanoparticles in Dentistry: A Comprehensive review. Pharmaceuticals (Basel) 2021 14 8 752 10.3390/ph14080752 34451849
    [Google Scholar]
  86. Gronwald B. Kozłowska L. Kijak K. Lietz-Kijak D. Skomro P. Gronwald K. Gronwald H. Nanoparticles in dentistry—current literature review. Coatings 2023 13 1 102 10.3390/coatings13010102
    [Google Scholar]
  87. Li P. Chen X. Shen Y. Li H. Zou Y. Yuan G. Hu P. Hu H. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm. J. Control. Release 2019 300 52 63 10.1016/j.jconrel.2019.02.039 30825476
    [Google Scholar]
  88. Patel P. Garala K. Singh S. Prajapati B.G. Chittasupho C. Lipid-based nanoparticles in delivering bioactive compounds for improving therapeutic efficacy. Pharmaceuticals (Basel) 2024 17 3 329 10.3390/ph17030329 38543115
    [Google Scholar]
  89. García-Pinel B. Porras-Alcalá C. Ortega-Rodríguez A. Sarabia F. Prados J. Melguizo C. López-Romero J.M. Lipid-Based Nanoparticles: Application and recent advances in cancer treatment. Nanomaterials (Basel) 2019 9 4 638 10.3390/nano9040638 31010180
    [Google Scholar]
  90. Lima R.A. de Souza S.L.X. Lima L.A. Batista A.L.X. de Araújo J.T.C. Sousa F.F.O. Rolim J.P.M.L. Bandeira T.D.J.P.G. Antimicrobial effect of anacardic acid–loaded zein nanoparticles loaded on Streptococcus mutans biofilms. Braz. J. Microbiol. 2020 51 4 1623 1630 10.1007/s42770‑020‑00320‑2 32562202
    [Google Scholar]
  91. Aligiannis N. Kalpoutzakis E. Mitaku S. Chinou I.B. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food. Chem. 2001 49 9 4168 4170 10.1021/jf001494m 11559104
    [Google Scholar]
  92. Borges I.G. de Araújo J.T.C. de Sousa F.F.O. Bactericidal and antibiofilm activity of anacardic acid loaded-Zein nanoparticles against Enterococcus faecalis ex vivo. J. Comput. Theor. Nanosci. 2020 17 7 2918 2925 10.1166/jctn.2020.9270
    [Google Scholar]
  93. Di Martino P. Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol. 2018 4 2 274 288 10.3934/microbiol.2018.2.274 31294215
    [Google Scholar]
  94. Balducci E. Papi F. Capialbi D.E. Del Bino L. Polysaccharides’ structures and functions in biofilm architecture of antimicrobial-resistant (AMR) pathogens. Int. J. Mol. Sci. 2023 24 4 4030 10.3390/ijms24044030 36835442
    [Google Scholar]
  95. Panlilio H. Rice C.V. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnol. Bioeng. 2021 118 6 2129 2141 10.1002/bit.27760 33748946
    [Google Scholar]
  96. George J. Halami P.M. Presence of extracellular DNA & protein in biofilm formation by gentamicin-resistant Lactobacillus plantarum. Indian J. Med. Res. 2019 149 2 257 262 10.4103/ijmr.IJMR_2022_17 31219091
    [Google Scholar]
  97. Deng W. Lei Y. Tang X. Li D. Liang J. Luo J. Liu L. Zhang W. Ye L. Kong J. Wang K. Chen Z. DNase inhibits early biofilm formation in Pseudomonas aeruginosa- or Staphylococcus aureus-induced empyema models. Front. Cell. Infect. Microbiol. 2022 12 917038 10.3389/fcimb.2022.917038 36310876
    [Google Scholar]
  98. Lander SM Fisher G Everett BA Secreted nucleases reclaim extracellular DNA during biofilm development. npj Biofilms Microbiomes 2024 10 1 103 10.1038/s41522‑024‑00575‑9
    [Google Scholar]
  99. Anjum M.M. Patel K.K. Dehari D. Pandey N. Tilak R. Agrawal A.K. Singh S. Anacardic acid encapsulated solid lipid nanoparticles for Staphylococcus aureus biofilm therapy: chitosan and DNase coating improves antimicrobial activity. Drug Deliv. Transl. Res. 2021 11 1 305 317 10.1007/s13346‑020‑00795‑4 32519201
    [Google Scholar]
  100. Araujo J.T.C. Martín-Pastor M. Pérez L. Pinazo A. Sousa F.F.O. Development of anacardic acid-loaded zein nanoparticles: Physical chemical characterization, stability and antimicrobial improvement. J. Mol. Liq. 2021 332 115808 10.1016/j.molliq.2021.115808
    [Google Scholar]
  101. Nurzyńska-Wierdak R. Phenolic compounds from new natural sources—plant genotype and ontogenetic variation. Molecules 2023 28 4 1731 10.3390/molecules28041731 36838719
    [Google Scholar]
  102. Hampil B. Bactericidal properties of the acyl and alkyl derivatives of resorcinol. J. Infect. Dis. 1928 43 1 25 40
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575431411251009045624
Loading
/content/journals/mrmc/10.2174/0113895575431411251009045624
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test