Skip to content
2000
image of Bitter Compounds as Multifunctional Agents against Diabetes-associated Cognitive Dysfunction: Bridging Metabolic Regulation and Neuroprotection

Abstract

The increasing prevalence of diabetes-associated cognitive dysfunction (DACD), driven by accelerated aging and unhealthy lifestyles, poses a significant global public health challenge. The current understanding of DACD pathogenesis remains incomplete, and effective interventions are lacking, underscoring the urgent need to elucidate its mechanisms and develop targeted therapies. Recent studies highlight bitter compounds as promising multifunctional agents due to their well-documented metabolic regulation, neuroprotection, broad availability, and established safety in the management of diabetes mellitus (DM). This review outlines established mechanisms of pathogenicity in DACD and summarizes the pharmacological effects of bitter compounds. These effects include anti-inflammatory actions, reduced oxidative stress, and improvements in mitochondrial dysfunction. Bitter compounds can also lower blood glucose levels, reduce advanced glycation end products (AGEs), and increase insulin sensitivity.

Additionally, they modulate gastrointestinal hormones and the gut microbiota, contributing to metabolic regulation and neuroprotection. By decreasing amyloid-beta (Aβ) deposition and inhibiting tau hyperphosphorylation, bitter compounds address metabolic and memory impairments associated with DACD. Despite their potential, challenges such as low bioavailability, target specificity, and interspecies variability hinder their clinical translation. Future research should prioritize interdisciplinary collaboration, advanced delivery systems (, nanocarriers), and rigorous preclinical/clinical validation to optimize therapeutic efficacy. This work provides critical insights into the use of bitter compounds as novel candidates for DACD prevention and treatment.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575414424251128113543
2026-01-12
2026-01-19
Loading full text...

Full text loading...

References

  1. Meng F. Fu J. Zhang L. Guo M. Zhuang P. Yin Q. Zhang Y. Function and therapeutic value of astrocytes in diabetic cognitive impairment. Neurochem. Int. 2023 169 105591 10.1016/j.neuint.2023.105591 37543309
    [Google Scholar]
  2. Sun H. Saeedi P. Karuranga S. Pinkepank M. Ogurtsova K. Duncan B.B. Stein C. Basit A. Chan J.C.N. Mbanya J.C. Pavkov M.E. Ramachandaran A. Wild S.H. James S. Herman W.H. Zhang P. Bommer C. Kuo S. Boyko E.J. Magliano D.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022 183 109119 10.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  3. Sebastian M.J. Khan S.K.A. Pappachan J.M. Jeeyavudeen M.S. Diabetes and cognitive function: An evidence-based current perspective. World J. Diabetes 2023 14 2 92 109 10.4239/wjd.v14.i2.92 36926658
    [Google Scholar]
  4. Arnold M. Nho K. Kueider-Paisley A. Massaro T. Huynh K. Brauner B. MahmoudianDehkordi, S.; Louie, G.; Moseley, M.A.; Thompson, J.W.; John-Williams, L.S.; Tenenbaum, J.D.; Blach, C.; Chang, R.; Brinton, R.D.; Baillie, R.; Han, X.; Trojanowski, J.Q.; Shaw, L.M.; Martins, R.; Weiner, M.W.; Trushina, E.; Toledo, J.B.; Meikle, P.J.; Bennett, D.A.; Krumsiek, J.; Doraiswamy, P.M.; Saykin, A.J.; Kaddurah-Daouk, R.; Kastenmüller, G. Sex and APOE ε4 genotype modify the Alzheimer’s disease serum metabolome. Nat. Commun. 2020 11 1 1148 10.1038/s41467‑020‑14959‑w 32123170
    [Google Scholar]
  5. Li Z. Lin C. Cai X. Lv F. Yang W. Ji L. Anti-diabetic agents and the risks of dementia in patients with type 2 diabetes: a systematic review and network meta-analysis of observational studies and randomized controlled trials. Alzheimers Res. Ther. 2024 16 1 272 10.1186/s13195‑024‑01645‑y 39716328
    [Google Scholar]
  6. Chu X. Zhu W. Li X. Su E. Wang J. Bitter flavors and bitter compounds in foods: identification, perception, and reduction techniques. Food Res. Int. 2024 183 114234 10.1016/j.foodres.2024.114234 38760147
    [Google Scholar]
  7. Qiao K. Zhao M. Huang Y. Liang L. Zhang Y. Bitter perception and effects of foods rich in bitter compounds on human health: A comprehensive review. Foods 2024 13 23 3747 10.3390/foods13233747 39682819
    [Google Scholar]
  8. Zhou X. Wang H. Huang M. Chen J. Chen J. Cheng H. Ye X. Wang W. Liu D. Role of bitter contributors and bitter taste receptors: a comprehensive review of their sources, functions and future development. Food Sci. Hum. Wellness 2024 13 4 1806 1824 10.26599/FSHW.2022.9250151
    [Google Scholar]
  9. Alkanad M. Hani U. v, A.H.; Ghazwani, M.; Haider, N.; Osmani, R.A.M.; M D, P.; Hamsalakshmi; Bhat, R. Bitter yet beneficial: The dual role of dietary alkaloids in managing diabetes and enhancing cognitive function. Biofactors 2024 50 4 634 673 10.1002/biof.2034 38169069
    [Google Scholar]
  10. Zeng Y.P. Huang Y.S. Hu Y.G. Effect of gegen qinlian decoction combined with short-term intensive insulin treatment on patients with type 2 diabetes mellitus of dampness-heat syndrome. Chin J. Integr Trad Western Med. 2006 26 6 514
    [Google Scholar]
  11. Wang W. Gu W. He C. Zhang T. Shen Y. Pu Y. Bioactive components of Banxia Xiexin decoction for the treatment of gastrointestinal diseases based on flavor-oriented analysis. J. Ethnopharmacol. 2022 291 115085 10.1016/j.jep.2022.115085 35150814
    [Google Scholar]
  12. Shoaib A. Salem-Bekhit M.M. Siddiqui H.H. Dixit R.K. Bayomi M. Khalid M. ntidiabetic activity of standardized driedtubers extract of Aconitum napellus in streptozotocin‐induced diabetic rats. 3 Biotech. 2020 10 56 10.1007/s13205‑019‑2043‑7
    [Google Scholar]
  13. Chen H. Guo J. Pang B. Zhao L. Tong X. Application of herbal medicines with bitter flavor and cold property on treating diabetes mellitus. Evid. Based Complement. Alternat. Med. 2015 2015 529491 10.1155/2015/529491
    [Google Scholar]
  14. Lane C.A. Hardy J. Schott J.M. Alzheimer’s disease. Eur. J. Neurol. 2018 25 1 59 70 10.1111/ene.13439 28872215
    [Google Scholar]
  15. Exalto L.G. Whitmer R.A. Kappele L.J. Biessels G.J. An update on type 2 diabetes, vascular dementia and Alzheimer’s disease. Exp. Gerontol. 2012 47 11 858 864 10.1016/j.exger.2012.07.014 22884853
    [Google Scholar]
  16. Sela Y. Grinberg K. Cukierman-Yaffe T. Natovich R. Relationship between cognitive function in individuals with diabetic foot ulcer and mortality. Diabetol. Metab. Syndr. 2022 14 1 133 10.1186/s13098‑022‑00901‑1 36123752
    [Google Scholar]
  17. Zilliox L.A. Chadrasekaran K. Kwan J.Y. Russell J.W. Diabetes and Cognitive Impairment. Curr. Diab. Rep. 2016 16 9 87 10.1007/s11892‑016‑0775‑x 27491830
    [Google Scholar]
  18. Craft S. Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr. Alzheimer Res. 2007 4 2 147 152 10.2174/156720507780362137 17430239
    [Google Scholar]
  19. Leszek J. Trypka E. Tarasov V. Ashraf G. Aliev G. Type 3 diabetes mellitus: A novel implication of alzheimers disease. Curr. Top. Med. Chem. 2017 17 12 1331 1335 10.2174/1568026617666170103163403 28049395
    [Google Scholar]
  20. Kandimalla R. Thirumala V. Reddy P.H. Is Alzheimer’s disease a type 3 diabetes? A critical appraisal. Biochim. Biophys. Acta Mol. Basis Dis. 2017 1863 5 1078 1089 10.1016/j.bbadis.2016.08.018 27567931
    [Google Scholar]
  21. Fauzi A. Thoe E.S. Quan T.Y. Yin A.C.Y. Insights from insulin resistance pathways: Therapeutic approaches against Alzheimer associated diabetes mellitus. J. Diabetes Complications 2023 37 11 108629 10.1016/j.jdiacomp.2023.108629 37866274
    [Google Scholar]
  22. Rojas M. Chávez-Castillo M. Pirela D. Parra H. Nava M. Chacín M. Angarita L. Añez R. Salazar J. Ortiz R. Durán Agüero S. Gravini-Donado M. Bermúdez V. Díaz-Camargo E. Metabolic syndrome: Is it time to add the central nervous system? Nutrients 2021 13 7 2254 10.3390/nu13072254 34208833
    [Google Scholar]
  23. Rivera E.J. Goldin A. Fulmer N. Tavares R. Wands J.R. de la Monte S.M. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: Link to brain reductions in acetylcholine. J. Alzheimers Dis. 2005 8 3 247 268 10.3233/JAD‑2005‑8304 16340083
    [Google Scholar]
  24. Nguyen T.T. Ta Q.T.H. Nguyen T.T.D. Le T.T. Vo V.G. Role of Insulin resistance in the alzheimer’s disease progression. Neurochem. Res. 2020 45 7 1481 1491 10.1007/s11064‑020‑03031‑0 32314178
    [Google Scholar]
  25. Spinelli M. Fusco S. Mainardi M. Scala F. Natale F. Lapenta R. Mattera A. Rinaudo M. Li Puma D.D.; Ripoli, C.; Grassi, A.; D’Ascenzo, M.; Grassi, C. Brain insulin resistance impairs hippocampal synaptic plasticity and memory by increasing GluA1 palmitoylation through FoxO3a. Nat. Commun. 2017 8 1 2009 10.1038/s41467‑017‑02221‑9 29222408
    [Google Scholar]
  26. Kellar D. Craft S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 2020 19 9 758 766 10.1016/S1474‑4422(20)30231‑3 32730766
    [Google Scholar]
  27. Arnold S.E. Arvanitakis Z. Macauley-Rambach S.L. Koenig A.M. Wang H.Y. Ahima R.S. Craft S. Gandy S. Buettner C. Stoeckel L.E. Holtzman D.M. Nathan D.M. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol. 2018 14 3 168 181 10.1038/nrneurol.2017.185 29377010
    [Google Scholar]
  28. Nguyen T.T. Ta Q.T.H. Nguyen T.K.O. Nguyen T.T.D. Van Giau V. Type 3 diabetes and its role implications in alzheimer’s disease. Int. J. Mol. Sci. 2020 21 9 3165 10.3390/ijms21093165 32365816
    [Google Scholar]
  29. Janssen J.A.M.J.L. New insights into the role of insulin and hypothalamic-pituitary-adrenal (HPA) axis in the metabolic syndrome. Int. J. Mol. Sci. 2022 23 15 8178 10.3390/ijms23158178 35897752
    [Google Scholar]
  30. Sędzikowska A. Szablewski L. Insulin and in insulin resistance Alzheimer’s disease. Int. J. Mol. Sci. 2021 22 18 9987 10.3390/ijms22189987 34576151
    [Google Scholar]
  31. Jangra V. Tople J. Can Alzheimer’s disease be secondary to type-2 Diabetes Mellitus? Cureus 2022 14 11 e31273 10.7759/cureus.31273 36505102
    [Google Scholar]
  32. Lee H.J. Seo H.I. Cha H.Y. Yang Y.J. Kwon S.H. Yang S.J. Diabetes and Alzheimer’s disease: Mechanisms and nutritional aspects. Clin. Nutr. Res. 2018 7 4 229 240 10.7762/cnr.2018.7.4.229 30406052
    [Google Scholar]
  33. Macauley S.L. Stanley M. Caesar E.E. Yamada S.A. Raichle M.E. Perez R. Mahan T.E. Sutphen C.L. Holtzman D.M. Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. J. Clin. Invest. 2015 125 6 2463 2467 10.1172/JCI79742 25938784
    [Google Scholar]
  34. Ott C. Jacobs K. Haucke E. Navarrete Santos A. Grune T. Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014 2 411 429 10.1016/j.redox.2013.12.016 24624331
    [Google Scholar]
  35. Lukic I.K. Humpert P.M. Nawroth P.P. Bierhaus A. The RAGE pathway. Annal New York Academ Sci. 2008 1126 76 10.1196/annals.1433.059
    [Google Scholar]
  36. Li X.H. Lv B.L. Xie J.Z. Liu J. Zhou X.W. Wang J.Z. AGEs induce Alzheimer-like tau pathology and memory deficit via RAGE-mediated GSK-3 activation. Neurobiol. Aging 2012 33 7 1400 1410 10.1016/j.neurobiolaging.2011.02.003 21450369
    [Google Scholar]
  37. Sharma G. Parihar A. Talaiya T. Dubey K. Porwal B. Parihar M.S. Cognitive impairments in type 2 diabetes, risk factors and preventive strategies. J. Basic Clin. Physiol. Pharmacol. 2020 31 2 20190105 10.1515/jbcpp‑2019‑0105 31967962
    [Google Scholar]
  38. De Felice F.G. Ferreira S.T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 2014 63 7 2262 2272 10.2337/db13‑1954 24931033
    [Google Scholar]
  39. Dionisio-Santos D.A. Olschowka J.A. O’Banion M.K. Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer’s disease. J. Neuroinflammation 2019 16 1 74 10.1186/s12974‑019‑1453‑0 30953557
    [Google Scholar]
  40. Johnston H. Boutin H. Allan S.M. Assessing the contribution of inflammation in models of Alzheimer’s disease. Biochem. Soc. Trans. 2011 39 4 886 890 10.1042/BST0390886 21787318
    [Google Scholar]
  41. Suleiman Khoury Z. Sohail F. Wang J. Mendoza M. Raake M. Tahoor Silat M. Reddy Bathinapatta M. Sadeghzadegan A. Meghana P. Paul, J. Neuroinflammation: A Critical Factor in Neurodegenerative Disorders. Cureus 2024 16 6 e62310 10.7759/cureus.62310 39006715
    [Google Scholar]
  42. Zhang C. Wang Y. Wang D. Zhang J. Zhang F. NSAID exposure and risk of alzheimer’s disease: An updated meta-analysis from cohort studies. Front. Aging Neurosci. 2018 10 83 10.3389/fnagi.2018.00083 29643804
    [Google Scholar]
  43. Cho C.H. Kim E.A. Kim J. Choi S.Y. Yang S.J. Cho S.W.N. -Adamantyl-4-methylthiazol-2-amine suppresses amyloid β-induced neuronal oxidative damage in cortical neurons. Free Radic. Res. 2016 50 6 678 690 10.3109/10715762.2016.1167277 27002191
    [Google Scholar]
  44. Dewanjee S. Das S. Das A.K. Bhattacharjee N. Dihingia A. Dua T.K. Kalita J. Manna P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur. J. Pharmacol. 2018 833 472 523 10.1016/j.ejphar.2018.06.034 29966615
    [Google Scholar]
  45. Li L. Huang P. Progress in Structural and Functional Research of the Human Nuclear Pore Complex. J. Army Med. Univ 2024 46 18 2036 2045 10.16016/j.2097‑0927.202404098
    [Google Scholar]
  46. Scheff S.W. Ansari M.A. Mufson E.J. Oxidative stress and hippocampal synaptic protein levels in elderly cognitively intact individuals with Alzheimer’s disease pathology. Neurobiol. Aging 2016 42 1 12 10.1016/j.neurobiolaging.2016.02.030 27143416
    [Google Scholar]
  47. Hamzé R. Delangre E. Tolu S. Moreau M. Janel N. Bailbé D. Movassat J. Type 2 diabetes mellitus and alzheimer’s disease: Shared molecular mechanisms and potential common therapeutic targets. Int. J. Mol. Sci. 2022 23 23 15287 10.3390/ijms232315287 36499613
    [Google Scholar]
  48. Grabska-Kobyłecka I. Szpakowski P. Król A. Książek-Winiarek D. Kobyłecki A. Głąbiński A. Nowak D. Polyphenols and their impact on the prevention of neurodegenerative diseases and development. Nutrients 2023 15 15 3454 10.3390/nu15153454 37571391
    [Google Scholar]
  49. Wooding S. P. Ramirez V. A. Behrens M. Bitter Taste Receptors: Evolution, Genetics, and Health. Evol. Med. Public Health 2021 9 1 431 447 10.1093/emph/eoab033
    [Google Scholar]
  50. Edo G.I. Samuel P.O. Jikah A.N. Onoharigho F.O. Idu L.I. Obasohan P. Opiti A.R. Electric J. Ikpekoro V.O. Otunuya C.F. Ugbuwe E. Ongulu J. Ijide M. Nwaose I.D. Ajakaye S.R. Owigho J.E. Biological and bioactive components of bitter leaf (Vernonia amygdalina leaf): Insight on health and nutritional benefits. A review. Food. Chem. Adv. 2023 3 100488 10.1016/j.focha.2023.100488
    [Google Scholar]
  51. Drewnowski A. Gomez-Carneros C. Bitter taste, phytonutrients, and the consumer: A review. Am. J. Clin. Nutr. 2000 72 6 1424 1435 10.1093/ajcn/72.6.1424 11101467
    [Google Scholar]
  52. Wang X. Zhang Z. He X. Mao W. Zhou L. Li P. Taurochenodeoxycholic acid induces NR8383 cells apoptosis via PKC/JNK-dependent pathway. Eur. J. Pharmacol. 2016 786 109 115 10.1016/j.ejphar.2016.06.007 27268718
    [Google Scholar]
  53. Hamad G.M. Amer A. El-Nogoumy B. Ibrahim M. Hassan S. Siddiqui S.A. EL-Gazzar, A.M.; Khalifa, E.; Omar, S.A.; Abd-Elmohsen Abou-Alella, S.; Ibrahim, S.A.; Esatbeyoglu, T.; Mehany, T. Evaluation of the effectiveness of charcoal, Lactobacillus rhamnosus, and Saccharomyces cerevisiae as aflatoxin adsorbents in chocolate. Toxins 2022 15 1 21 10.3390/toxins15010021 36668841
    [Google Scholar]
  54. Zhang G. Zhang N. Yang A. Huang J. Ren X. Xian M. Zou H. Hop bitter acids: Resources, biosynthesis, and applications. Appl. Microbiol. Biotechnol. 2021 105 11 4343 4356 10.1007/s00253‑021‑11329‑4 34021813
    [Google Scholar]
  55. Civantos A.M. Maina I.W. Arnold M. Lin C. Stevens E.M. Tan L.H. Gleeson P.K. Colquitt L.R. Cowart B.J. Bosso J.V. Palmer J.N. Adappa N.D. Kohanski M.A. Reed D.R. Cohen N.A. Denatonium benzoate bitter taste perception in chronic rhinosinusitis subgroups. Int. Forum Allergy Rhinol. 2021 11 6 967 975 10.1002/alr.22687 32885614
    [Google Scholar]
  56. Behrens M. Redel U. Blank K. Meyerhof W. The human bitter taste receptor TAS2R7 facilitates the detection of bitter salts. Biochem. Biophys. Res. Commun. 2019 512 4 877 881 10.1016/j.bbrc.2019.03.139 30928101
    [Google Scholar]
  57. Calvo S.S.C. Egan J.M. The endocrinology of taste receptors. Nat. Rev. Endocrinol. 2015 11 4 213 227 10.1038/nrendo.2015.7 25707779
    [Google Scholar]
  58. Topin J. Bouysset C. Pacalon J. Kim Y. Rhyu M.R. Fiorucci S. Golebiowski J. Functional molecular switches of mammalian G protein-coupled bitter-taste receptors. Cell. Mol. Life Sci. 2021 78 23 7605 7615 10.1007/s00018‑021‑03968‑7 34687318
    [Google Scholar]
  59. Xu W. Wu L. Liu S. Liu X. Cao X. Zhou C. Zhang J. Fu Y. Guo Y. Wu Y. Tan Q. Wang L. Liu J. Jiang L. Fan Z. Pei Y. Yu J. Cheng J. Zhao S. Hao X. Liu Z.J. Hua T. Structural basis for strychnine activation of human bitter taste receptor TAS2R46. Science 2022 377 6612 1298 1304 10.1126/science.abo1633 36108005
    [Google Scholar]
  60. Ziaikin E. David M. Uspenskaya S. Niv M.Y. Bitter D.B. update on bitter ligands and taste receptors. Nucleic Acids Res. 2024 10.1093/nar/gkae1044 39535052
    [Google Scholar]
  61. Behrens M. Foerster S. Staehler F. Raguse J.D. Meyerhof W. Gustatory expression pattern of the human TAS2R bitter receptor gene family reveals a heterogenous population of bitter responsive taste receptor cells. J. Neurosci. 2007 27 46 12630 12640 10.1523/JNEUROSCI.1168‑07.2007 18003842
    [Google Scholar]
  62. Voigt A. Hübner S. Lossow K. Hermans-Borgmeyer I. Boehm U. Meyerhof W. Genetic labeling of Tas1r1 and Tas2r131 taste receptor cells in mice. Chem. Senses 2012 37 9 897 911 10.1093/chemse/bjs082 23010799
    [Google Scholar]
  63. Kinnamon S.C. Taste receptor signalling – from tongues to lungs. Acta Physiol. (Oxf.) 2012 204 2 158 168 10.1111/j.1748‑1716.2011.02308.x 21481196
    [Google Scholar]
  64. Avau B. Depoortere I. The bitter truth about bitter taste receptors: Beyond sensing bitter in the oral cavity. Acta Physiol. (Oxf.) 2016 216 4 407 420 10.1111/apha.12621 26493384
    [Google Scholar]
  65. Wiener A. Shudler M. Levit A. Niv M.Y. Bitter D.B. A database of bitter compounds. Nucleic Acids Res. 2012 40 D1 D413 D419 10.1093/nar/gkr755 21940398
    [Google Scholar]
  66. Huang W. Shen Q. Su X. Ji M. Liu X. Chen Y. Lu S. Zhuang H. Zhang J. Bitter X. A tool for understanding bitter taste in humans. Sci. Rep. 2016 6 1 23450 10.1038/srep23450 27040075
    [Google Scholar]
  67. Minkiewicz P. Iwaniak A. Darewicz M. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 2019 20 23 5978 10.3390/ijms20235978 31783634
    [Google Scholar]
  68. Dagan-Wiener A. Di Pizio A. Nissim I. Bahia M.S. Dubovski N. Margulis E. Niv M.Y. Bitter D.B. Taste ligands and receptors database in 2019. Nucleic Acids Res. 2019 47 D1 D1179 D1185 10.1093/nar/gky974 30357384
    [Google Scholar]
  69. Charoenkwan P. Yana J. Schaduangrat N. Nantasenamat C. Hasan M.M. Shoombuatong W. iBitter-SCM: Identification and characterization of bitter peptides using a scoring card method with propensity scores of dipeptides. Genomics 2020 112 4 2813 2822 10.1016/j.ygeno.2020.03.019 32234434
    [Google Scholar]
  70. Charoenkwan P. Nantasenamat C. Hasan M.M. Moni M.A. Lio’ P. Shoombuatong W. iBitter-Fuse: A novel sequence-based bitter peptide predictor by fusing multi-view features. Int. J. Mol. Sci. 2021 22 16 8958 10.3390/ijms22168958 34445663
    [Google Scholar]
  71. Dagan-Wiener A. Nissim I. Ben Abu N. Borgonovo G. Bassoli A. Niv M.Y. Bitter or not? BitterPredict, a tool for predicting taste from chemical structure. Sci. Rep. 2017 7 1 12074 10.1038/s41598‑017‑12359‑7 28935887
    [Google Scholar]
  72. Xia B. Zhou Q. Zheng Z. Ye L. Hu M. Liu Z. A novel local recycling mechanism that enhances enteric bioavailability of flavonoids and prolongs their residence time in the gut. Mol. Pharm. 2012 9 11 3246 3258 10.1021/mp300315d 23033922
    [Google Scholar]
  73. Liu Y. Lu Y. Li X. Zhang Z. Sun L. Wang Y. He Z. Liu Z. Zhu L. Fu L. Kaempferol suppression of acute colitis is regulated by the efflux transporters BCRP and MRP2. Europ J. Pharm. Sci. 2022 179 106303 10.1016/j.ejps.2022.106303
    [Google Scholar]
  74. Yu K. Chen F. Li C. Absorption, disposition, and pharmacokinetics of saponins from Chinese medicinal herbs: what do we know and what do we need to know more? Curr. Drug Metab. 2012 13 5 577 598 10.2174/1389200211209050577 22292787
    [Google Scholar]
  75. Zhang S. Kan Q.C. Xu Y. Zhang G.X. Zhu L. Inhibitory effect of matrine on blood-brain barrier disruption for the treatment of experimental autoimmune encephalomyelitis. Mediators Inflamm. 2013 2013 1 10 10.1155/2013/736085 24194630
    [Google Scholar]
  76. Li L. Lu F. Ding S. Wang X. Wang W. Zhang W. Xu W. Zhuang C. Miao Z. Ma X. Pharmacokinetic, tissue distribution, metabolite, and toxicity evaluation of the matrine derivative, (6aS, 10S, 11aR, 11bR, 11cS)-10-Methylaminododecahydro-3a, 7a-Diaza-benzo (de) Anthracene-8-thione. Molecules 2024 29 2 297 10.3390/molecules29020297 38257210
    [Google Scholar]
  77. Nissim I. Dagan-Wiener A. Niv M.Y. The taste of toxicity: A quantitative analysis of bitter and toxic molecules. IUBMB Life 2017 69 12 938 946 10.1002/iub.1694 29130618
    [Google Scholar]
  78. Trius-Soler M. Moreno J.J. Bitter taste receptors: Key target to understand the effects of polyphenols on glucose and body weight homeostasis. Pathophysiological and pharmacological implications. Biochem. Pharmacol. 2024 228 116192 10.1016/j.bcp.2024.116192 38583811
    [Google Scholar]
  79. Herrera Moro Chao D. Argmann C. Van Eijk M. Boot R.G. Ottenhoff R. Van Roomen C. Foppen E. Siljee J.E. Unmehopa U.A. Kalsbeek A. Aerts J.M.F.G. Impact of obesity on taste receptor expression in extra-oral tissues: emphasis on hypothalamus and brainstem. Sci. Rep. 2016 6 1 29094 10.1038/srep29094 27388805
    [Google Scholar]
  80. Prandi S. Voigt A. Meyerhof W. Behrens M. Expression profiling of Tas2r genes reveals a complex pattern along the mouse GI tract and the presence of Tas2r131 in a subset of intestinal Paneth cells. Cell. Mol. Life Sci. 2018 75 1 49 65 10.1007/s00018‑017‑2621‑y 28801754
    [Google Scholar]
  81. Grassin-Delyle S. Abrial C. Fayad-Kobeissi S. Brollo M. Faisy C. Alvarez J.C. Naline E. Devillier P. The expression and relaxant effect of bitter taste receptors in human bronchi. Respir. Res. 2013 14 1 134 10.1186/1465‑9921‑14‑134 24266887
    [Google Scholar]
  82. Talmon M. Massara E. Quaregna M. De Battisti M. Boccafoschi F. Lecchi G. Puppo F. Bettega Cajandab M.A. Salamone S. Bovio E. Boldorini R. Riva B. Pollastro F. Fresu L.G. Bitter taste receptor (TAS2R) 46 in human skeletal muscle: expression and activity. Front. Pharmacol. 2023 14 1205651 10.3389/fphar.2023.1205651 37771728
    [Google Scholar]
  83. Bloxham C.J. Hulme K.D. Fierro F. Fercher C. Pegg C.L. O’Brien S.L. Foster S.R. Short K.R. Furness S.G.B. Reichelt M.E. Niv M.Y. Thomas W.G. Cardiac human bitter taste receptors contain naturally occurring variants that alter function. Biochem. Pharmacol. 2024 219 115932 10.1016/j.bcp.2023.115932 37989413
    [Google Scholar]
  84. Soultanova A. Voigt A. Chubanov V. Gudermann T. Meyerhof W. Boehm U. Kummer W. Cholinergic chemosensory cells of the thymic medulla express the bitter receptor Tas2r131. Int. Immunopharmacol. 2015 29 1 143 147 10.1016/j.intimp.2015.06.005 26102274
    [Google Scholar]
  85. Gaida M.M. Mayer C. Dapunt U. Stegmaier S. Schirmacher P. Wabnitz G.H. Hänsch G.M. Expression of the bitter receptor T2R38 in pancreatic cancer: localization in lipid droplets and activation by a bacteria-derived quorum-sensing molecule. Oncotarget 2016 7 11 12623 12632 10.18632/oncotarget.7206 26862855
    [Google Scholar]
  86. Xu J. Cao J. Iguchi N. Riethmacher D. Huang L. Functional characterization of bitter-taste receptors expressed in mammalian testis. Mol. Hum. Reprod. 2013 19 1 17 28 10.1093/molehr/gas040 22983952
    [Google Scholar]
  87. Dupré D.J. Martin L.F. Nachtigal M.W.J.T.F.J. Expression and functionality of bitter taste receptors in ovarian and prostate cancer. The FASEB J 2017 31 992.2 10.1096/fasebj.31.1_supplement.992.2
    [Google Scholar]
  88. Hewedy W.A. Darwish I.E. Activation of bitter taste receptors (TAS2R) protects against rotenone-induced neurotoxicity: Could ghrelin have a role? Eur. J. Pharmacol. 2024 978 176802 10.1016/j.ejphar.2024.176802 38945288
    [Google Scholar]
  89. Zhang C. Jiang Y. Liu J. Jin M. Qin N. Chen Y. Niu W. Duan H. AMPK/AS160 mediates tiliroside derivatives-stimulated GLUT4 translocation in muscle cells. Drug Des. Devel. Ther. 2018 12 1581 1587 10.2147/DDDT.S164441 29910604
    [Google Scholar]
  90. Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nat. Rev. Mol. Cell Biol. 2024 25 1 13 33 10.1038/s41580‑023‑00645‑4 37714962
    [Google Scholar]
  91. Hongjiao L. Study of Kusuanzhitian’preservition of B-cell function of type 2 diabetesand the pathogenesis. Thesis Beijing University of Chinese Medicine 2007
    [Google Scholar]
  92. Lu F.J. Ding L.Q. Cao S.J. Zhang D.Q. Zhang B.L. Qiu F. Chemistry and biology research on bitter-taste Chinese materia medica with function of regulating glycolipid metabolism. Zhongguo Zhongyao Zazhi 2018 43 19 3834 3840 10.19540/j.cnki.cjcmm.20180709.006 30453706
    [Google Scholar]
  93. Jin H. Fishman Z.H. Ye M. Wang L. Zuker C.S. Top-down control of sweet and bitter taste in the mammalian brain. Cell 2021 184 1 257 271.e16 10.1016/j.cell.2020.12.014 33417862
    [Google Scholar]
  94. Huang D.D. Shi G. Jiang Y. Yao C. Zhu C. A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed. Pharmacotherap 2020 125 109767 10.1016/j.biopha.2019.109767
    [Google Scholar]
  95. Chuengsamarn S. Rattanamongkolgul S. Luechapudiporn R. Phisalaphong C. Jirawatnotai S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care 2012 35 11 2121 2127 10.2337/dc12‑0116 22773702
    [Google Scholar]
  96. Sekiya K. Ohtani A. Kusano S. Enhancement of insulin sensitivity in adipocytes by ginger. Biofactors 2004 22 1-4 153 156 10.1002/biof.5520220130 15630272
    [Google Scholar]
  97. Barbalho S.M. Direito R. Laurindo L.F. Marton L.T. Guiguer E.L. Goulart R.A. Tofano R.J. Carvalho A.C.A. Flato U.A.P. Capelluppi Tofano V.A. Detregiachi C.R.P. Bueno P.C.S. Girio R.S.J. Araújo A.C. Ginkgo biloba in the aging process: A narrative review. Antioxidants 2022 11 3 525 10.3390/antiox11030525 35326176
    [Google Scholar]
  98. Zhao X. Cheng T. Xia H. Yang Y. Wang S. Effects of garlic on glucose parameters and lipid profile: A systematic review and meta-analysis on randomized controlled trials. Nutrients 2024 16 11 1692 10.3390/nu16111692 38892625
    [Google Scholar]
  99. Amssayef A. Eddouks M. Antihyperglycemic effect of the moroccan collard green (Brassica oleracea var. viridis) in streptozotocin-induced diabetic rats. Endocr. Metab. Immune Disord. Drug Targets 2021 21 6 1043 1052 10.2174/1871530320666200929141140 32990547
    [Google Scholar]
  100. Song Q. Liu J. Dong L. Wang X. Zhang X. Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomed. Pharmacother. 2021 140 111750 10.1016/j.biopha.2021.111750
    [Google Scholar]
  101. Xie W. Su F. Wang G. Peng Z. Xu Y. Zhang Y. Xu N. Hou K. Hu Z. Chen Y. Chen R. Glucose-lowering effect of berberine on type 2 diabetes: A systematic review and meta-analysis. Front. Pharmacol. 2022 13 1015045 10.3389/fphar.2022.1015045 36467075
    [Google Scholar]
  102. Anwar L. Ali S.A. Khan S. Uzairullah M.M. Mustafa N. Ali U.A. Siddiqui F. Bhatti H.A. Rehmani S.J. Abbas G. Fenugreek seed ethanolic extract inhibited formation of advanced glycation end products via scavenging reactive carbonyl intermediates. Heliyon 2023 9 6 e16866 10.1016/j.heliyon.2023.e16866 37484294
    [Google Scholar]
  103. Li X. Zheng T. Sang S. Lv L. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. J. Agric. Food Chem. 2014 62 50 12152 12158 10.1021/jf504132x 25412188
    [Google Scholar]
  104. Liu Y. Xu T.H. Zhang M.Q. Li X. Xu Y.J. Jiang H.Y. Liu T.H. Xu D.M. Chemical constituents from the stems of Gymnema sylvestre. Chin. J. Nat. Med. 2014 12 4 300 304 10.1016/S1875‑5364(14)60059‑5 24863357
    [Google Scholar]
  105. Kok B.P. Galmozzi A. Littlejohn N.K. Albert V. Godio C. Kim W. Kim S.M. Bland J.S. Grayson N. Fang M. Meyerhof W. Siuzdak G. Srinivasan S. Behrens M. Saez E. Intestinal bitter taste receptor activation alters hormone secretion and imparts metabolic benefits. Mol. Metab. 2018 16 76 87 10.1016/j.molmet.2018.07.013 30120064
    [Google Scholar]
  106. Yang S.J. Choi J.M. Park S.E. Rhee E.J. Lee W.Y. Oh K.W. Park S.W. Park C.Y. Preventive effects of bitter melon (Momordica charantia) against insulin resistance and diabetes are associated with the inhibition of NF-κB and JNK pathways in high-fat-fed OLETF rats. J. Nutr. Biochem. 2015 26 3 234 240 10.1016/j.jnutbio.2014.10.010 25488547
    [Google Scholar]
  107. Cui X. Qian D.W. Jiang S. Shang E.X. Zhu Z.H. Duan J.A. Scutellariae radix and coptidis rhizoma improve glucose and lipid metabolism in T2DM rats via regulation of the metabolic profiling and MAPK/PI3K/Akt signaling pathway. Int. J. Mol. Sci. 2018 19 11 3634 10.3390/ijms19113634 30453687
    [Google Scholar]
  108. Li X. Leng S. Song D. Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clin. Interv. Aging 2015 10 549 560 10.2147/CIA.S74042 25792818
    [Google Scholar]
  109. Thorup A.C. Kristensen H.L. Kidmose U. Lambert M.N.T. Christensen L.P. Fretté X. Clausen M.R. Hansen S.M. Jeppesen P.B. Strong and bitter vegetables from traditional cultivars and cropping methods improve the health status of type 2 diabetics: A randomized control trial. Nutrients 2021 13 6 1813 10.3390/nu13061813 34073610
    [Google Scholar]
  110. Kim S.K. Jung J. Jung J.H. Yoon N. Kang S.S. Roh G.S. Hahm J.R. Hypoglycemic efficacy and safety of Momordica charantia (bitter melon) in patients with type 2 diabetes mellitus. Complement. Ther. Med. 2020 52 102524 10.1016/j.ctim.2020.102524 32951763
    [Google Scholar]
  111. Guo H.L. Xie L. Xu Y.P. Research Progress on Bitter Taste Receptor Agonists in Depression. J. Army Med. Univ. 2024 46 18 2046 2052
    [Google Scholar]
  112. Clark A.A. Dotson C.D. Elson A.E.T. Voigt A. Boehm U. Meyerhof W. Steinle N.I. Munger S.D. TAS2R bitter taste receptors regulate thyroid function. FASEB J. 2015 29 1 164 172 10.1096/fj.14‑262246 25342133
    [Google Scholar]
  113. Chen Z. Balachandran Y.L. Chong W.P. Chan K.W.Y. Roles of cytokines in alzheimer’s disease. Int. J. Mol. Sci. 2024 25 11 5803 10.3390/ijms25115803 38891990
    [Google Scholar]
  114. Zeng Y.Q. Wang Y.J. Zhou X.F. Effects of (â^’)Epicatechin on the pathology of APP/PS1 transgenic mice. Front. Neurol. 2014 5 69 10.3389/fneur.2014.00069 24847308
    [Google Scholar]
  115. Nerurkar P.V. Johns L.M. Buesa L.M. Kipyakwai G. Volper E. Sato R. Shah P. Feher D. Williams P.G. Nerurkar V.R. Momordica charantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation. J. Neuroinflammation 2011 8 1 64 10.1186/1742‑2094‑8‑64 21639917
    [Google Scholar]
  116. Kumar S.A. Cheng W. A hypothesis: Bitter taste receptors as a therapeutic target for the clinical symptoms of SARS-CoV-2. Pharmazie 2021 76 2 43 54 10.1691/ph.2021.0840 33714279
    [Google Scholar]
  117. Niethammer A.G. Zheng Z. Timmer A. Lee T.L. First‐in‐human evaluation of oral denatonium acetate (ARD‐101), a potential bitter taste receptor agonist: A randomized, double‐blind, placebo‐controlled phase 1 trial in healthy adults. Clin. Pharmacol. Drug Dev. 2022 11 8 997 1006 10.1002/cpdd.1100 35509219
    [Google Scholar]
  118. Liu X.J. Bao H.R. Zeng X.L. Wei J.M. Effects of resveratrol and genistein on nuclear factor-κB, tumor necrosis factor-α and matrix metalloproteinase-9 in patients with chronic obstructive pulmonary disease. Mol. Med. Rep. 2016 13 5 4266 4272 10.3892/mmr.2016.5057 27035424
    [Google Scholar]
  119. Tiroch J. Sterneder S. Di Pizio A. Lieder B. Hoelz K. Holik A.K. Pignitter M. Behrens M. Somoza M. Ley J.P. Somoza V. Bitter Sensing TAS2R50 mediates the trans -resveratrol-induced anti-inflammatory effect on interleukin 6 release in HGF-1 cells in culture. J. Agric. Food Chem. 2021 69 45 13339 13349 10.1021/acs.jafc.0c07058 33461297
    [Google Scholar]
  120. Talmon M. Camillo L. Vietti I. Pollastro F. Fresu L.G. Bitter taste receptor 46 (hTAS2R46) protects monocytes/macrophages from oxidative stress. Int. J. Mol. Sci. 2024 25 13 7325 10.3390/ijms25137325 39000432
    [Google Scholar]
  121. Li T. Liu J-W. Zhang X-D. Guo M-C. Ji G. The neuroprotective effect of picroside II from hu-huang-lian against oxidative stress. Am. J. Chin. Med. 2007 35 4 681 691 10.1142/S0192415X0700517X
    [Google Scholar]
  122. Wang K. Chen Z. Huang L. Meng B. Zhou X. Wen X. Ren D. Naringenin reduces oxidative stress and improves mitochondrial dysfunction via activation of the Nrf2/ARE signaling pathway in neurons. Int. J. Mol. Med. 2017 40 5 1582 1590 10.3892/ijmm.2017.3134 28949376
    [Google Scholar]
  123. Chen C. Wang G. Li D. Zhang F. Microbiota–gut–brain axis in neurodegenerative diseases: molecular mechanisms and therapeutic targets. Mol. Biomed. 2025 6 1 64 10.1186/s43556‑025‑00307‑1 40952592
    [Google Scholar]
  124. Cryan J.F. Dinan T.G. Microbiota and neuroimmune signalling—Metchnikoff to microglia. Nat. Rev. Gastroenterol. Hepatol. 2015 12 9 494 496 10.1038/nrgastro.2015.127 26215386
    [Google Scholar]
  125. Wu H. He L. Dai L. Breaking the vicious cycle: bitter compounds targeting metabolic defects and inflammation in Alzheimer’s disease. Am. J. Physiol. Endocrinol. Metab. 2025 329 2 E266 E275 10.1152/ajpendo.00166.2025 40622910
    [Google Scholar]
  126. Bastiaanssen T.F.S. Cowan C.S.M. Claesson M.J. Dinan T.G. Cryan J.F. Making Sense of … the microbiome in psychiatry. Int. J. Neuropsychopharmacol. 2019 22 1 37 52 10.1093/ijnp/pyy067 30099552
    [Google Scholar]
  127. Martín-Peláez S. Fito M. Castaner O. Mediterranean diet effects on type 2 diabetes prevention, disease progression, and related mechanisms. A review. Nutrients 2020 12 8 2236 10.3390/nu12082236 32726990
    [Google Scholar]
  128. Rooks M.G. Garrett W.S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 2016 16 6 341 352 10.1038/nri.2016.42 27231050
    [Google Scholar]
  129. Zhang Y. Gu Y. Ren H. Wang S. Zhong H. Zhao X. Ma J. Gu X. Xue Y. Huang S. Yang J. Chen L. Chen G. Qu S. Liang J. Qin L. Huang Q. Peng Y. Li Q. Wang X. Kong P. Hou G. Gao M. Shi Z. Li X. Qiu Y. Zou Y. Yang H. Wang J. Xu G. Lai S. Li J. Ning G. Wang W. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nat. Commun. 2020 11 1 5015 10.1038/s41467‑020‑18414‑8 33024120
    [Google Scholar]
  130. Gauthier S. Aisen P.S. Cummings J. Detke M.J. Longo F.M. Raman R. Sabbagh M. Schneider L. Tanzi R. Tariot P. Weiner M. Touchon J. Vellas B. Force E.U.C.T. Non-Amyloid approaches to disease modification for alzheimer’s disease: An EU/US CTAD task force report. J. Prev. Alzheimers Dis. 2020 7 3 152 157 10.14283/jpad.2020.18 32420298
    [Google Scholar]
  131. Wang X. Sun G. Feng T. Zhang J. Huang X. Wang T. Xie Z. Chu X. Yang J. Wang H. Chang S. Gong Y. Ruan L. Zhang G. Yan S. Lian W. Du C. Yang D. Zhang Q. Lin F. Liu J. Zhang H. Ge C. Xiao S. Ding J. Geng M. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019 29 10 787 803 10.1038/s41422‑019‑0216‑x 31488882
    [Google Scholar]
  132. Yeo-Teh N.S.L. Tang B.L. A review of scientific ethics issues associated with the recently approved drugs for alzheimer’s disease. Sci. Eng. Ethics 2023 29 1 2 10.1007/s11948‑022‑00422‑0 36625928
    [Google Scholar]
  133. Clarke G. Stilling R.M. Kennedy P.J. Stanton C. Cryan J.F. Dinan T.G. Minireview: Gut microbiota: the neglected endocrine organ. Mol. Endocrinol. 2014 28 8 1221 1238 10.1210/me.2014‑1108 24892638
    [Google Scholar]
  134. Nøhr M.K. Pedersen M.H. Gille A. Egerod K.L. Engelstoft M.S. Husted A.S. Sichlau R.M. Grunddal K.V. Seier Poulsen S. Han S. Jones R.M. Offermanns S. Schwartz T.W. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 2013 154 10 3552 3564 10.1210/en.2013‑1142 23885020
    [Google Scholar]
  135. Li Z. Yi C.X. Katiraei S. Kooijman S. Zhou E. Chung C.K. Gao Y. van den Heuvel J.K. Meijer O.C. Berbée J.F.P. Heijink M. Giera M. Willems van Dijk K. Groen A.K. Rensen P.C.N. Wang Y. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 2018 67 7 1269 1279 10.1136/gutjnl‑2017‑314050 29101261
    [Google Scholar]
  136. Staley C. Weingarden A.R. Khoruts A. Sadowsky M.J. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl. Microbiol. Biotechnol. 2017 101 1 47 64 10.1007/s00253‑016‑8006‑6 27888332
    [Google Scholar]
  137. Wong C.K. Yusta B. Koehler J.A. Baggio L.L. McLean B.A. Matthews D. Seeley R.J. Drucker D.J. Divergent roles for the gut intraepithelial lymphocyte GLP-1R in control of metabolism, microbiota, and T cell-induced inflammation. Cell Metab. 2022 34 1514 1531 10.1016/j.cmet.2022.08.003
    [Google Scholar]
  138. Xie C. Wang X. Young R.L. Horowitz M. Rayner C.K. Wu T. Role of intestinal bitter sensing in enteroendocrine hormone secretion and metabolic control. Front. Endocrinol. (Lausanne) 2018 9 576 10.3389/fendo.2018.00576 30319553
    [Google Scholar]
  139. Yu Y. Hao G. Zhang Q. Hua W. Wang M. Zhou W. Zong S. Huang M. Wen X. Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways. Biochem. Pharmacol. 2015 97 2 173 177 10.1016/j.bcp.2015.07.012 26206195
    [Google Scholar]
  140. Troke R.C. Tan T.M. Bloom S.R. The future role of gut hormones in the treatment of obesity. Ther. Adv. Chronic Dis. 2014 5 1 4 14 10.1177/2040622313506730 24381724
    [Google Scholar]
  141. Kim K.S. Egan J.M. Jang H.J. Denatonium induces secretion of glucagon-like peptide-1 through activation of bitter taste receptor pathways. Diabetologia 2014 57 10 2117 2125 10.1007/s00125‑014‑3326‑5 25016595
    [Google Scholar]
  142. Baggio L.L. Drucker D.J. Glucagon-like peptide-1 receptors in the brain: controlling food intake and body weight. J. Clin. Invest. 2014 124 10 4223 4226 10.1172/JCI78371 25202976
    [Google Scholar]
  143. Kastin A.J. Akerstrom V. Pan W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J. Mol. Neurosci. 2002 18 1 7 10.1385/JMN:18:1‑2:07
    [Google Scholar]
  144. Reich N. Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer’s and Parkinson’s disease: An in-depth review. Front. Neurosci. 2022 16 970925 10.3389/fnins.2022.970925 36117625
    [Google Scholar]
  145. Sakata I. Yamazaki M. Inoue K. Hayashi Y. Kangawa K. Sakai T. Growth hormone secretagogue receptor expression in the cells of the stomach-projected afferent nerve in the rat nodose ganglion. Neurosci. Lett. 2003 342 3 183 186 10.1016/S0304‑3940(03)00294‑5 12757895
    [Google Scholar]
  146. Tian J. Guo L. Sui S. Driskill C. Phensy A. Wang Q. Gauba E. Zigman J.M. Swerdlow R.H. Kroener S. Du H. Disrupted hippocampal growth hormone secretagogue receptor 1α interaction with dopamine receptor D1 plays a role in Alzheimer′s disease. Sci. Transl. Med. 2019 11 505 eaav6278 10.1126/scitranslmed.aav6278 31413143
    [Google Scholar]
  147. Jiao Q. Du X. Li Y. Gong B. Shi L. Tang T. Jiang H. The neurological effects of ghrelin in brain diseases: Beyond metabolic functions. Neurosci. Biobehav. Rev. 2017 73 98 111 10.1016/j.neubiorev.2016.12.010 27993602
    [Google Scholar]
  148. Sato R. Nomilin as an anti-obesity and anti-hyperglycemic agent. Vitamins & Hormones. Litwack G. Academic Press 2013 425 439 10.1016/B978‑0‑12‑407766‑9.00018‑3
    [Google Scholar]
  149. Töle J.C. Behrens M. Meyerhof W. Taste receptor function. Handb. Clin. Neurol. 2019 164 173 185 10.1016/B978‑0‑444‑63855‑7.00011‑3 31604546
    [Google Scholar]
  150. Hu X. Ao W. Gao M. Wu L. Pei Y. Liu S. Wu Y. Zhao F. Sun Q. Liu J. Jiang L. Wang X. Li Y. Tan Q. Cheng J. Yang F. Yang C. Sun J. Hua T. Liu Z.J. Bitter taste TAS2R14 activation by intracellular tastants and cholesterol. Nature 2024 631 8020 459 466 10.1038/s41586‑024‑07569‑9 38776963
    [Google Scholar]
  151. Jeruzal-Świątecka J. Fendler W. Pietruszewska W. Clinical Role of Extraoral Bitter Taste Receptors. Int. J. Mol. Sci. 2020 21 14 5156 10.3390/ijms21145156 32708215
    [Google Scholar]
  152. Jaggupilli A. Howard R. Upadhyaya J.D. Bhullar R.P. Chelikani P. Bitter taste receptors: Novel insights into the biochemistry and pharmacology. Int. J. Biochem. Cell Biol. 2016 77 184 10.1016/j.biocel.2016.03.005
    [Google Scholar]
  153. Clark A.A. Liggett S.B. Munger S.D. Extraoral bitter taste receptors as mediators of off‐target drug effects. FASEB J. 2012 26 12 4827 4831 10.1096/fj.12‑215087 22964302
    [Google Scholar]
  154. Lossow K. Hübner S. Roudnitzky N. Slack J.P. Pollastro F. Behrens M. Meyerhof W. Comprehensive analysis of mouse bitter taste receptors reveals different molecular receptive ranges for orthologous receptors in mice and humans. J. Biol. Chem. 2016 291 29 15358 15377 10.1074/jbc.M116.718544 27226572
    [Google Scholar]
  155. Higgins K.W. Itoigawa A. Toda Y. Bellott D.W. Anderson R. Márquez R. Weng J.K. Rapid expansion and specialization of the TAS2R bitter taste receptor family in amphibians. PLoS Genet. 2025 21 1 e1011533 10.1371/journal.pgen.1011533 39888968
    [Google Scholar]
  156. Fan K.Q. Zhang L. Song F. Zhang Y.H. Chen T. Cheng X. Su N. Zou Y. Yu T. Tan F. Xu W. Yan Z. Pharmacological properties and therapeutic potential of berberine: a comprehensive review. Front. Pharmacol. 2025 16 1604071 10.3389/fphar.2025.1604071 40894216
    [Google Scholar]
  157. Tong X.L. Wu S.T. Lian F.M. Zhao M. Zhou S.P. Chen X.Y. Yu B. Zhen Z. Qi L.W. Li P. Wang C.Z. Sun H. Yuan C.S. The safety and effectiveness of TM81, a Chinese herbal medicine, in the treatment of type 2 diabetes: a randomized double‐blind placebo‐controlled trial. Diabetes Obes. Metab. 2013 15 5 448 454 10.1111/dom.12051 23231379
    [Google Scholar]
  158. Mes J.J. van den Belt M. van der Haar S. Oosterink E. Luijendijk T. Manusama K. van Dam L. de Bie T. Witkamp R. Esser D. Bitter gourd (Momordica charantia L.) supplementation for twelve weeks improves biomarkers of glucose homeostasis in a prediabetic population. J. Ethnopharmacol. 2025 347 119756 10.1016/j.jep.2025.119756 40199408
    [Google Scholar]
  159. West R.K. Ravona-Springer R. Livny A. Heymann A. Shahar D. Leroith D. Preiss R. Zukran R. Silverman J.M. Schnaider-Beeri M. Age modulates the Association of Caffeine intake with cognition and with gray matter in elderly diabetics. J. Gerontol. A Biol. Sci. Med. Sci. 2019 74 5 683 688 10.1093/gerona/gly090 29982422
    [Google Scholar]
  160. Vesa C.M. Tit D.M. Babes E.E. Bungau G. Radu A.F. Moleriu R.D. Use of botanical supplements among romanian individuals with diabetes: Results from an online study on prevalence, practices, and glycemic control. Nutrients 2025 17 15 2440 10.3390/nu17152440 40806023
    [Google Scholar]
  161. Kang X. Jin D. Ji H. An X. Zhang Y. Duan L. Yang C. Zhou R. Duan Y. Zhang Y. Sun Y. Jiang L. Lian F. Tong X. The Clinical Efficacy of Gegen Qinlian Decoction in Treating Type 2 Diabetes is Positively Correlated with the Dose of Coptidis rhizoma: Three Randomized, Doubleblind, Dose-Parallel Controlled Clinical Trials. Drug Des. Devel. Ther. 2024 18 5573 5582 10.2147/DDDT.S487315 39650851
    [Google Scholar]
  162. Aggarwal B.B. Harikumar K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009 41 1 40 59 10.1016/j.biocel.2008.06.010 18662800
    [Google Scholar]
  163. Höfer D. Püschel B. Drenckhahn D. Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proc. Natl. Acad. Sci. USA 1996 93 13 6631 6634 10.1073/pnas.93.13.6631 8692869
    [Google Scholar]
  164. Bezençon C. le Coutre J. Damak S. Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem. Senses 2007 32 1 41 49 10.1093/chemse/bjl034 17030556
    [Google Scholar]
  165. Lei W. Ren W. Ohmoto M. Urban J.F. Matsumoto I. Margolskee R.F. Jiang P. Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. Proc. Natl. Acad. Sci. USA 2018 115 21 5552 5557 10.1073/pnas.1720758115 29735652
    [Google Scholar]
  166. Luo X.C. Chen Z.H. Xue J.B. Zhao D.X. Lu C. Li Y.H. Li S.M. Du Y.W. Liu Q. Wang P. Liu M. Huang L. Infection by the parasitic helminth Trichinella spiralis activates a Tas2r-mediated signaling pathway in intestinal tuft cells. Proc. Natl. Acad. Sci. USA 2019 116 12 5564 5569 10.1073/pnas.1812901116 30819885
    [Google Scholar]
  167. Sun S. Yang Y. Xiong R. Ni Y. Ma X. Hou M. Chen L. Xu Z. Chen L. Ji M. Oral berberine ameliorates high-fat diet-induced obesity by activating TAS2Rs in tuft and endocrine cells in the gut. Life Sci. 2022 331 121141 10.1016/j.lfs.2022.121141
    [Google Scholar]
  168. Mittal K. Mani R.J. Katare D.P. Type 3 Diabetes: Cross talk between differentially regulated proteins of type 2 diabetes mellitus and Alzheimer’s disease. Sci. Rep. 2016 6 1 25589 10.1038/srep25589 27151376
    [Google Scholar]
  169. Sun P. Wang Z. Ma Y. Liu Y. Xue Y. Li Y. Gao X. Wang Y. Chu M. Advance in identified targets of berberine. Front. Pharmacol. 2025 16 1500511 10.3389/fphar.2025.1500511 39944624
    [Google Scholar]
  170. Hersh A.M. Alomari S. Tyler B.M. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int. J. Mol. Sci. 2022 23 8 4153 10.3390/ijms23084153 35456971
    [Google Scholar]
  171. Mittal P. Hazari P.P. 14 - Nanotubes-based brain targeted drug delivery system: a step toward improving bioavailability and drug enhancement at the target site. Fiber and Textile Engineering in Drug Delivery Systems. Sharma N. Butola B.S. Woodhead Publishing 2023 417 441 10.1016/B978‑0‑323‑96117‑2.00009‑1
    [Google Scholar]
  172. Li H. Cao X. Liu Y. Liu T. Wang M. Ren X. Dou Z. Establishment of modified biopharmaceutics classification system absorption model for oral Traditional Chinese Medicine (Sanye Tablet). J. Ethnopharmacol. 2019 244 112148 10.1016/j.jep.2019.112148 31400507
    [Google Scholar]
  173. Bohley M. Haunberger A. Goepferich A.M. Intracellular availability of poorly soluble drugs from lipid nanocapsules. Eur. J. Pharm. Biopharm. 2019 139 23 32 10.1016/j.ejpb.2019.03.007 30851353
    [Google Scholar]
  174. Cunha S. Amaral M.H. Lobo J.M.S. Silva A.C. Lipid Nanoparticles for nasal/intranasal drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 2017 34 3 257 282 10.1615/CritRevTherDrugCarrierSyst.2017018693 28845761
    [Google Scholar]
  175. Wu C. Li B. Zhang Y. Chen T. Chen C. Jiang W. Wang Q. Chen T. Intranasal delivery of paeoniflorin nanocrystals for brain targeting. Asian J. Pharm. Sci 2020 15 3 326 335 10.1016/j.ajps.2019.11.002 32636950
    [Google Scholar]
  176. Du X. Guo Z. Fan W. Hai T. Gao F. Li P. Qin Y. Chen C. Han Z. Ren J. Jiao P. Liu W. Bi Y. Yu D. Wu S. Establishment of a humanized swine model for COVID-19. Cell Discov. 2021 7 1 70 10.1038/s41421‑021‑00313‑x 34404772
    [Google Scholar]
  177. Mao Z. Cheng W. Li Z. Yao M. Sun K. Clinical associations of bitter taste perception and bitter taste receptor variants and the potential for personalized healthcare. Pharm. Genomics Pers. Med. 2023 16 121 132 10.2147/PGPM.S390201 36819962
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575414424251128113543
Loading
/content/journals/mrmc/10.2174/0113895575414424251128113543
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test