Skip to content
2000
image of Nanotechnology Meets Phytotherapy: A Comprehensive Review of Berberine in Cancer

Abstract

Cancer continues to pose a worldwide health concern, requiring breakthrough therapeutic approaches that are both efficacious and minimally intrusive. Berberine, a natural isoquinoline alkaloid, has attracted considerable interest due to its various pharmacological features, particularly its strong anticancer effects. Nonetheless, its clinical application has been impeded by inadequate bioavailability, rapid metabolism, and systemic elimination. Recent breakthroughs in nanotechnology have mitigated these issues by creating BBR nanoparticles (BBR NPs), which provide increased solubility, precise delivery, and higher therapeutic efficacy. This paper extensively examines BBR and its nanoparticle forms for cancer treatment. The mechanisms of action, including apoptosis induction, tumour angiogenesis inhibition, antimetastatic effects, and oxidative stress modulation, are thoroughly examined. Essential synthesis approaches for BBR nanoparticles, including chemical reduction, green synthesis, and encapsulation in nanocarriers, are discussed together with their characterization methodologies. The report emphasizes comparative studies that illustrate the enhanced antitumor efficacy of BBR nanoparticles compared to free BBR in preclinical settings. Notwithstanding encouraging results, nanoparticle stability, scalability, and regulatory obstacles must be resolved for effective clinical translation. Future directions are examined, encompassing advancements in nanoparticle design and their prospective incorporation into personalized oncology. This review highlights the transforming potential of BBR and its nanoformulations as a novel therapeutic approach in cancer treatment.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575418771251029064238
2026-01-22
2026-01-29
Loading full text...

Full text loading...

References

  1. Saraswat I. Goel A. Gupta J. An in-depth review on Argemone mexicana in the management of liver health and liver cancer. Anticancer. Agents Med. Chem. 2025 25 1 24 34 10.2174/0118715206307964240821051756 39225208
    [Google Scholar]
  2. Saraswat I. Goel A. Herbal remedies for hepatic inflammation: Unravelling pathways and mechanisms for therapeutic intervention. Curr. Pharm. Des. 2025 31 2 128 139 10.2174/0113816128348771240925100639 39350422
    [Google Scholar]
  3. Saraswat I. Goel A. Cervical cancer therapeutics: An in-depth significance of herbal and chemical approaches of nanoparticles. Anticancer. Agents Med. Chem. 2024 24 8 627 636 10.2174/0118715206289468240130051102 38299417
    [Google Scholar]
  4. Song J.M. Implementing shared medical appointments for cancer patients to cancer survivors: An evidence-based project for breast cancer survivorship 2024
    [Google Scholar]
  5. Alharthi A.S. Advancing oncological practice with innovative cancer data analytics: A new exponential-generated class of distributions. Alex. Eng. J. 2024 107 819 837 10.1016/j.aej.2024.08.093
    [Google Scholar]
  6. Anilkumar S. Wright-Jin E. NF-κB as an inducible regulator of inflammation in the central nervous system. Cells 2024 13 6 485 10.3390/cells13060485 38534329
    [Google Scholar]
  7. Saraswat I. Goel A. Therapeutic modulation of the microbiome in oncology: Current trends and future directions. Curr. Pharm. Biotechnol. 2025 26 5 680 699 10.2174/0113892010353600241109132441 39543873
    [Google Scholar]
  8. Goel A. Current understanding and future prospects on Berberine for anticancer therapy. Chem. Biol. Drug Des. 2023 102 1 177 200 10.1111/cbdd.14231 36905314
    [Google Scholar]
  9. Saraswat I. Saha S. Mishra A. A review of metallic nanostructures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Toxicol. Environ. Health. Sci. 2023 15 4 315 324 10.1007/s13530‑023‑00182‑9
    [Google Scholar]
  10. Och A. Podgórski R. Nowak R. Biological activity of berberine—a summary update. Toxins 2020 12 11 713 10.3390/toxins12110713 33198257
    [Google Scholar]
  11. Neag M.A. Mocan A. Echeverría J. Pop R.M. Bocsan C.I. Crişan G. Buzoianu A.D. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol. 2018 9 557 10.3389/fphar.2018.00557 30186157
    [Google Scholar]
  12. Babu N.H.R. Thriveni H.N. Vasudeva R. Influence of drying methods and extraction procedures on the recovery of BBR content in Coscinium fenestratum. J. Nat. Prod. Plant. Resour. 2012 2 540 544
    [Google Scholar]
  13. Le N.T. Chau N.H.T. Nguyen P.Q.D. Tran L.T.T. Phung H.T. Nguyen H.T. Green extraction of bbr from Coscinium fenestratum using ultrasound-assisted aqueous solutions of organic acids, polyalcohols, and deep eutectic solvents. Separ. Purif. Tech. 2024 330 125541 10.1016/j.seppur.2023.125541
    [Google Scholar]
  14. Mungwari C.P. King’ondu C.K. Sigauke P. Obadele B.A. Conventional and modern techniques for bioactive compounds recovery from plants. Sci. Afr. 2024 19 02509
    [Google Scholar]
  15. López-Hortas L. Rodríguez P. Díaz-Reinoso B. Gaspar M.C. de Sousa H.C. Braga M.E.M. Domínguez H. Supercritical fluid extraction as a suitable technology to recover bioactive compounds from flowers. J. Supercrit. Fluids 2022 188 105652 10.1016/j.supflu.2022.105652
    [Google Scholar]
  16. López-Salazar H. Camacho-Díaz B.H. Ocampo M.L.A. Jiménez-Aparicio A.R. Microwave-assisted extraction of functional compounds from plants: A Review. BioResources 2023 18 3 6614 10.15376/biores.18.3.Lopez‑Salazar
    [Google Scholar]
  17. Almatroodi S.A. Alsahli M.A. Rahmani A.H. Berberine: An important emphasis on its anticancer effects through modulation of various cell signaling pathways. Molecules 2022 27 18 5889 10.3390/molecules27185889 36144625
    [Google Scholar]
  18. Behl T. Singh S. Sharma N. Zahoor I. Albarrati A. Albratty M. Meraya A.M. Najmi A. Bungau S. Expatiating the pharmacological and nanotechnological aspects of the alkaloidal drug berberine: Current and future trends. Molecules 2022 27 12 3705 10.3390/molecules27123705 35744831
    [Google Scholar]
  19. Bagherniya M. Khedmatgozar H. Fakheran O. Xu S. Johnston T.P. Sahebkar A. Medicinal plants and bioactive natural products as inhibitors of NLRP3 inflammasome. Phytother. Res. 2021 35 9 4804 4833 10.1002/ptr.7118 33856730
    [Google Scholar]
  20. Song D. Hao J. Fan D. Biological properties and clinical applications of berberine. Front. Med. 2020 14 5 564 582 10.1007/s11684‑019‑0724‑6 32335802
    [Google Scholar]
  21. Xiong R.G. Huang S.Y. Wu S.X. Zhou D.D. Yang Z.J. Saimaiti A. Zhao C.N. Shang A. Zhang Y.J. Gan R.Y. Li H.B. Anticancer effects and mechanisms of berberine from medicinal herbs: An update review. Molecules 2022 27 14 4523 10.3390/molecules27144523 35889396
    [Google Scholar]
  22. Alzohairy M.A. Khan A.A. Alsahli M.A. Almatroodi S.A. Rahmani A.H. Protective effects of thymoquinone, an active compound of Nigella sativa, on rats with Benzo(a)pyrene-induced lung injury through regulation of oxidative stress and inflammation. Molecules 2021 26 11 3218 10.3390/molecules26113218 34072086
    [Google Scholar]
  23. Zhao L. Zhang C. Berberine inhibits MDA-MB-231 cells by attenuating their inflammatory responses. BioMed Res. Int. 2020 2020 1 3617514 10.1155/2020/3617514 32258115
    [Google Scholar]
  24. Yao M. Fan X. Yuan B. Takagi N. Liu S. Han X. Ren J. Liu J. Berberine inhibits NLRP3 Inflammasome pathway in human triple-negative breast cancer MDA-MB-231 cell. BMC Complement Altern Med. 2019 19 1 216 10.1186/s12906‑019‑2615‑4 31412862
    [Google Scholar]
  25. Wang N. Feng Y. Zhu M. Tsang C.M. Man K. Tong Y. Tsao S.W. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: The cellular mechanism. J. Cell. Biochem. 2010 111 6 1426 1436 10.1002/jcb.22869 20830746
    [Google Scholar]
  26. Zhao Y. Jing Z. Li Y. Mao W. Berberine in combination with cisplatin suppresses breast cancer cell growth through induction of DNA breaks and caspase-3-dependent apoptosis. Oncol. Rep. 2016 36 1 567 572 10.3892/or.2016.4785 27177238
    [Google Scholar]
  27. Yip N.K. Ho W.S. Berberine induces apoptosis via the mitochondrial pathway in liver cancer cells. Oncol. Rep. 2013 30 3 1107 1112 10.3892/or.2013.2543 23784371
    [Google Scholar]
  28. Wang Y. Liu Y. Du X. Ma H. Yao J. Berberine reverses doxorubicin resistance by inhibiting autophagy through the pten/akt/mtor signaling pathway in breast cancer. OncoTargets Ther. 2020 13 1909 1919 10.2147/OTT.S241632 32184626
    [Google Scholar]
  29. Liu Z. Liu Q. Xu B. Wu J. Guo C. Zhu F. Yang Q. Gao G. Gong Y. Shao C. Berberine induces p53-dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage. Mutat. Res. 2009 662 1-2 75 83 10.1016/j.mrfmmm.2008.12.009 19159633
    [Google Scholar]
  30. Cai Y. Xia Q. Luo R. Huang P. Sun Y. Shi Y. Jiang W. Berberine inhibits the growth of human colorectal adenocarcinoma in vitro and in vivo. J. Nat. Med. 2014 68 1 53 62 10.1007/s11418‑013‑0766‑z 23604974
    [Google Scholar]
  31. Zhang Y. Liu X. Yu M. Xu M. Xiao Y. Ma W. Huang L. Li X. Ye X. Berberine inhibits proliferation and induces G0/G1 phase arrest in colorectal cancer cells by downregulating IGF2BP3. Life Sci. 2020 260 118413 10.1016/j.lfs.2020.118413 32926933
    [Google Scholar]
  32. Jie S. Li H. Tian Y. Guo D. Zhu J. Gao S. Jiang L. Berberine inhibits angiogenic potential of Hep G2 cell line through VEGF down‐regulation in vitro. J. Gastroenterol. Hepatol. 2011 26 1 179 185 10.1111/j.1440‑1746.2010.06389.x 21175812
    [Google Scholar]
  33. Li G. Zhang C. Liang W. Zhang Y. Shen Y. Tian X. Berberine regulates the Notch1/PTEN/PI3K/AKT/mTOR pathway and acts synergistically with 17-AAG and SAHA in SW480 colon cancer cells. Pharm. Biol. 2021 59 1 21 30 10.1080/13880209.2020.1865407 33417512
    [Google Scholar]
  34. Kou Y. Tong B. Wu W. Liao X. Zhao M. Berberine improves chemo-sensitivity to cisplatin by enhancing cell apoptosis and repressing PI3K/AKT/MTOR signaling pathway in gastric cancer. Front. Pharmacol. 2020 11 616251 10.3389/fphar.2020.616251 33362566
    [Google Scholar]
  35. Samad M.A. Saiman M.Z. Abdul Majid N. Karsani S.A. Yaacob J.S. Berberine inhibits telomerase activity and induces cell cycle arrest and telomere erosion in colorectal cancer cell line, HCT 116. Molecules 2021 26 2 376 10.3390/molecules26020376 33450878
    [Google Scholar]
  36. Fu L. Chen W. Guo W. Wang J. Tian Y. Shi D. Zhang X. Qiu H. Xiao X. Kang T. Huang W. Wang S. Deng W. Berberine targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and cytochrome-c/caspase signaling to suppress human cancer cell growth. PLoS One 2013 8 7 69240 10.1371/journal.pone.0069240 23869238
    [Google Scholar]
  37. Albring K.F. Weidemüller J. Mittag S. Weiske J. Friedrich K. Geroni M.C. Lombardi P. Huber O. Berberine acts as a natural inhibitor of Wnt/β-catenin signaling—Identification of more active 13-arylalkyl derivatives. Biofactors 2013 39 6 652 662 10.1002/biof.1133 23982892
    [Google Scholar]
  38. Huang Z.H. Zheng H.F. Wang W.L. Wang Y. Zhong L.F. Wu J.L. Li Q.X. Berberine targets epidermal growth factor receptor signaling to suppress prostate cancer proliferation in vitro. Mol. Med. Rep. 2015 11 3 2125 2128 10.3892/mmr.2014.2929 25394789
    [Google Scholar]
  39. Luo Y. Hao Y. Shi T. Deng W. Li N. Berberine inhibits cyclin D1 expression via suppressed binding of AP-1 transcription factors to CCND1 AP-1 motif. Acta. Pharmacol Sin. 2008 29 5 628 633 10.1111/j.1745‑7254.2008.00786.x 18430372
    [Google Scholar]
  40. Yu M. Tong X. Qi B. Qu H. Dong S. Yu B. Zhang N. Tang N. Wang L. Zhang C. Berberine enhances chemosensit-ivity to irinotecan in colon cancer via inhibition of NF-κB. Mol. Med. Rep. 2014 9 1 249 254 10.3892/mmr.2013.1762 24173769
    [Google Scholar]
  41. Lin Y. Cao X. Lin Y. Berberine enhances the radiosensitivity of hepatoma cells by Nrf2 pathway. Front. Biosci. 2019 24 7 1190 1202 10.2741/4775 31136975
    [Google Scholar]
  42. Tsang C.M. Cheung Y.C. Lui V.W.Y. Yip Y.L. Zhang G. Lin V.W. Cheung K.C.P. Feng Y. Tsao S.W. Berberine suppresses tumorigenicity and growth of nasopharyngeal carcinoma cells by inhibiting STAT3 activation induced by tumor associated fibroblasts. BMC Cancer 2013 13 1 619 10.1186/1471‑2407‑13‑619 24380387
    [Google Scholar]
  43. Kim H.S. Kim M.J. Kim E.J. Yang Y. Lee M.S. Lim J.S. Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression. Biochem. Pharmacol. 2012 83 3 385 394 10.1016/j.bcp.2011.11.008 22120676
    [Google Scholar]
  44. Zhang Q. Wang X. Cao S. Sun Y. He X. Jiang B. Yu Y. Duan J. Qiu F. Kang N. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed. Pharmacother. 2020 128 110245 10.1016/j.biopha.2020.110245 32454290
    [Google Scholar]
  45. Sun Q. Tao Q. Ming T. Tang S. Zhao H. Liu M. Yang H. Ren S. Lei J. Liang Y. Peng Y. Wang M. Xu H. Berberine is a suppressor of Hedgehog signaling cascade in colorectal cancer. Phytomedicine 2023 114 154792 10.1016/j.phymed.2023.154792 37028248
    [Google Scholar]
  46. Tak J. Sabarwal A. Shyanti R.K. Singh R.P. Berberine enhances posttranslational protein stability of p21/cip1 in breast cancer cells via down-regulation of Akt. Mol. Cell. Biochem. 2019 458 1-2 49 59 10.1007/s11010‑019‑03529‑4 30911957
    [Google Scholar]
  47. Jeong Y. You D. Kang H.G. Yu J. Kim S.W. Nam S.J. Lee J.E. Kim S. Berberine suppresses fibronectin expression through inhibition of c-jun phosphorylation in breast cancer cells. J. Breast Cancer 2018 21 1 21 27 10.4048/jbc.2018.21.1.21 29628980
    [Google Scholar]
  48. Zhang C. Sheng J. Li G. Zhao L. Wang Y. Yang W. Yao X. Sun L. Zhang Z. Cui R. Effects of berberine and its derivatives on cancer: A systems pharmacology review. Front. Pharmacol. 2020 10 1461 10.3389/fphar.2019.01461 32009943
    [Google Scholar]
  49. Tan Y. Fang J. Zou T. Yu K. Sheng J.Q. Jin P. Zhang M.J. Zou X.P. Dou X.T. Liu S.D. Huang S.H. Ren J-L. Yang X-N. Liu Z-J. Sun X-M. Wang B-M. Cao H-L. Gao Q-Y. Chen H-M. Cui Y. Chen Y-X. Long-term effect of berberine in preventing recurrence of colorectal adenomas and neoplasms after endoscopic resection: 6-year-follow-up in a randomized, placebo-controlled, multicenter clinical study. Lancet Reg. Health West. Pac. 2025 55 101408 10.1016/j.lanwpc.2024.101408
    [Google Scholar]
  50. Gefitinib and berberine in the first-line treatment of lung adenocarcinoma with EGFR mutation (Geber); NCT03486496. 2018 Available from:https://www.clinicaltrials.gov/study/NCT03486496?term=BERBERINE%20SULFATE&rank=1
  51. A research of berberine hydrochloride to prevent colorectal adenomas in patients with previous colorectal cancer; NCT03281096. 2022 Available from:https://www.clinicaltrials.gov/study/NCT03281096?term=BERBERINE%20CHLORIDE&rank=7
  52. Yan Z. Gao W.C. Wang X.X. Xu H.Q. Li Q. Chen J.X. Pang D.X. Xie T. Fei Jin Sheng formula and its effectiveness in treating advanced non-small cell lung cancer: An observational study. Heliyon 2024 10 18 37292 10.1016/j.heliyon.2024.e37292 39309855
    [Google Scholar]
  53. Su X. Zhang X. Liu W. Yang X. An N. Yang F. Sun J. Xing Y. Shang H. Advances in the application of nanotechnology in reducing cardiotoxicity induced by cancer chemotherapy. Semin. Cancer Biol. 2022 86 Pt 2 929 942 10.1016/j.semcancer.2021.08.003 34375726
    [Google Scholar]
  54. Mir S.A. Hamid L. Bader G.N. Shoaib A. Rahamathulla M. Alshahrani M.Y. Alam P. Shakeel F. Role of nanotechnology in overcoming the multidrug resistance in cancer therapy: A review. Molecules 2022 27 19 6608 10.3390/molecules27196608 36235145
    [Google Scholar]
  55. Avula L.R. Grodzinski P. Nanotechnology-aided advancement in the combating of cancer metastasis. Cancer Metastasis Rev. 2022 41 2 383 404 10.1007/s10555‑022‑10025‑7 35366154
    [Google Scholar]
  56. Khan N.H. Mir M. Qian L. Baloch M. Ali Khan M.F. Rehman A. Ngowi E.E. Wu D.D. Ji X.Y. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J. Adv. Res. 2022 36 223 247 10.1016/j.jare.2021.06.014 35127174
    [Google Scholar]
  57. Haleem A. Javaid M. Singh R.P. Rab S. Suman R. Applications of nanotechnology in medical field: A brief review. Glob. Health. J. 2023 7 2 70 77 10.1016/j.glohj.2023.02.008
    [Google Scholar]
  58. Gavas S. Quazi S. Karpiński T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett. 2021 16 1 173 10.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  59. Liu H. Zheng T. Zhou Z. Hu A. Li M. Zhang Z. Yu G. Feng H. An Y. Peng J. Chen Y. Berberine nanoparticles for promising sonodynamic therapy of a HeLa xenograft tumour. RSC Advances 2019 9 19 10528 10535 10.1039/C8RA09172B 35515276
    [Google Scholar]
  60. Ding Q. Shang J. Yang L. Deng L. Wu S. Chen J. Yang J. Wang K. Li C. Chen J. Zhou M. Enhanced anti-tumor efficacy of berberine-loaded mesoporous polydopamine nanoparticles for synergistic chemotherapy and photothermal therapy. Int. J. Pharm. 2025 670 125151 10.1016/j.ijpharm.2024.125151 39743162
    [Google Scholar]
  61. Dmitrieva O.S. Shilovskiy I.P. Khaitov M.R. Grivennikov S.I. Interleukins 1 and 6 as main mediators of inflammation and cancer. Biochemistry 2016 81 2 80 90 10.1134/S0006297916020024 27260388
    [Google Scholar]
  62. Esnaashari F. Zamani H. Zahmatkesh H. Soleimani M. Dashtaki G.A. Rasti B. Berberine decorated zinc oxide loaded chitosan nanoparticles a potent anti cancer agent against breast cancer. Sci. Rep. 2025 15 1 3185 10.1038/s41598‑025‑87445‑2 39863648
    [Google Scholar]
  63. Li F. Dong X. Lin P. Jiang J. Regulation of Akt/FoxO3a/Skp2 axis is critically involved in berberine-induced cell cycle arrest in hepatocellular carcinoma cells. Int. J. Mol. Sci. 2018 19 2 327 10.3390/ijms19020327 29360760
    [Google Scholar]
  64. Wang Y. Wen B. Yu H. Ding D. Zhang J. Zhang Y. Zhao L. Zhang W. Berberine hydrochloride-loaded chitosan nanoparticles effectively targets and suppresses human nasopharyngeal carcinoma. J. Biomed. Nanotechnol. 2018 14 8 1486 1495 10.1166/jbn.2018.2596 29903063
    [Google Scholar]
  65. Blanco-Fernández G. Blanco-Fernandez B. Fernández-Ferreiro A. Otero-Espinar F.J. Lipidic lyotropic liquid crystals: Insights on biomedical applications. Adv. Colloid Interface Sci. 2023 313 102867 10.1016/j.cis.2023.102867 36889183
    [Google Scholar]
  66. Loo Y.S. Madheswaran T. Rajendran R. Bose R.J.C. Encapsulation of berberine into liquid crystalline nanoparticles to enhance its solubility and anticancer activity in MCF7 human breast cancer cells. J. Drug Deliv Sci. Technol 2020 57 101756 10.1016/j.jddst.2020.101756
    [Google Scholar]
  67. Meng X.P. Wang X. Wang H.L. Chen T.S. Wang Y.F. Wang Z.P. In vitro antitumor efficacy of BBR: Solid lipid nanoparticles against human HepG2, Huh7 and EC9706 cancer cell lines. Colloidal Nanoparticles for Biomedical Applications XI. Washington, USA International Society for Optics and Photonics 2016
    [Google Scholar]
  68. Bhanumathi R. Manivannan M. Thangaraj R. Kannan S. Drug-carrying capacity and anticancer effect of the folic acid and BBR-loaded silver nanomaterial to regulate the AKT-ERK pathway in breast cancer. ACS Omega 2018 3 7 8317 8328 10.1021/acsomega.7b01347 30087941
    [Google Scholar]
  69. Guo H.H. Feng C.L. Zhang W.X. Luo Z.G. Zhang H.J. Zhang T.T. Ma C. Zhan Y. Li R. Wu S. Abliz Z. Li C. Li X.L. Ma X.L. Wang L.L. Zheng W.S. Han Y.X. Jiang J.D. Liver-target nanotechnology facilitates berberine to ameliorate cardio-metabolic diseases. Nat. Commun. 2019 10 1 1981 10.1038/s41467‑019‑09852‑0 31040273
    [Google Scholar]
  70. Parhi P. Suklabaidya S. Kumar Sahoo S. Enhanced anti-metastatic and anti-tumorigenic efficacy of Berbamine loaded lipid nanoparticles in vivo. Sci. Rep. 2017 7 1 5806 10.1038/s41598‑017‑05296‑y 28724926
    [Google Scholar]
  71. Yang Y. Guo Q. Peng J. Su J. Lu X. Zhao Y. Qian Z. Doxorubicin-conjugated heparin-coated superparamagnetic iron oxide nanoparticles for combined anticancer drug delivery and magnetic resonance imaging. J. Biomed. Nanotechnol. 2016 12 11 1963 1974 10.1166/jbn.2016.2298 29363935
    [Google Scholar]
  72. Sreeja S. Krishnan Nair C.K. Tumor control by hypoxia-specific chemotargeting of iron-oxide nanoparticle – Berberine complexes in a mouse model. Life Sci. 2018 195 71 80 10.1016/j.lfs.2017.12.036 29289560
    [Google Scholar]
  73. Goel A Bhatia AK Biogenic nanoparticles for effective cancer treatment: A review. Nanosci. Nanotech. Asia 2018 8 4 10.2174/2210681208666180724100646
    [Google Scholar]
  74. Li X.D. Wang Z. Wang X.R. Shao D. Zhang X. Li L. Ge M.F. Chang Z.M. Dong W.F. Berberine-loaded Janus gold mesoporous silica nanocarriers for chemo/radio/photothermal therapy of liver cancer and radiation-induced injury inhibition. Int. J. Nanomedicine 2019 14 3967 3982 10.2147/IJN.S206044 31239666
    [Google Scholar]
  75. Mirhadi E. Rezaee M. Malaekeh-Nikouei B. Nano strategies for berberine delivery, a natural alkaloid of Berberis. Biomed. Pharmacother. 2018 104 465 473 10.1016/j.biopha.2018.05.067 29793179
    [Google Scholar]
  76. Bhanumathi R. Manivannan M. ThangSaraj R, Kannan S. Drug-carrying capacity and anticancer effect of the folic acid and BBR-loaded silver nanomaterial to regulate the AKT-ERK pathway in breast cancer. ACS Omega 2018 3 6 8317 8328 10.1021/acsomega.7b01347 30087941
    [Google Scholar]
  77. Javed Iqbal M. Quispe C. Javed Z. Sadia H. Qadri Q.R. Raza S. Salehi B. Cruz-Martins N. Abdulwanis Mohamed Z. Sani Jaafaru M. Abdull Razis A.F. Sharifi-Rad J. Nanotechnology-based strategies for BBR delivery system in cancer treatment: Pulling strings to keep BBR in power. Front. Mol. Biosci. 2021 7 624494 10.3389/fmolb.2020.624494 33521059
    [Google Scholar]
  78. Fu S. Xie Y. Tuo J. Wang Y. Zhu W. Wu S. Yan G. Hu H. Discovery of mitochondria-targeting berberine derivatives as the inhibitors of proliferation, invasion and migration against rat C6 and human U87 glioma cells. MedChemComm 2015 6 1 164 173 10.1039/C4MD00264D 26811742
    [Google Scholar]
  79. Tuo J. Xie Y. Song J. Chen Y. Guo Q. Liu X. Ni X. Xu D. Huang H. Yin S. Zhu W. Wu J. Hu H. Development of a novel berberine-mediated mitochondria-targeting nano-platform for drug-resistant cancer therapy. J. Mater. Chem. B Mater. Biol. Med. 2016 4 42 6856 6864 10.1039/C6TB01730D 32263579
    [Google Scholar]
  80. Kim D.Y. Kim S.H. Cheong H.T. Ra C.S. Rhee K.J. Jung B.D. BBR induces p53-dependent apoptosis through inhibition of DNA methyltransferase3b in Hep3B cells. Korean J. Clin. Lab. Sci. 2020 52 1 69 77 10.15324/kjcls.2020.52.1.69
    [Google Scholar]
  81. Hafeez A. Khan M.J. Siddiqui M.A. Nanocarrier based delivery of berberine: A critical review on pharmaceutical and preclinical characteristics of the bioactive. Curr. Pharm. Biotechnol. 2023 24 11 1449 1464 10.2174/1389201024666230112141330 36635907
    [Google Scholar]
  82. Ren R. Lim C. Li S. Wang Y. Song J. Lin T.W. Muir B.W. Hsu H.Y. Shen H.H. Recent advances in the development of lipid-, metal-, carbon-, and polymer-based nanomaterials for antibacterial applications. Nanomaterials 2022 12 21 3855 10.3390/nano12213855 36364631
    [Google Scholar]
  83. Wang M. Yu F. Zhang Y. Present and future of cancer nano-immunotherapy: Opportunities, obstacles and challenges. Mol. Cancer 2025 24 1 26 10.1186/s12943‑024‑02214‑5 39827147
    [Google Scholar]
  84. Taebpour M. Arasteh F. Akhlaghi M. Haghirosadat B.F. Oroojalian F. Tofighi D. Fabrication and characterization of PLGA polymeric nanoparticles containing Berberine and its cytotoxicity on breast cancer cell (MCF-7). Nanomed Res. J. 2021 6 4 396 408
    [Google Scholar]
  85. Baidoo I. Sarbadhikary P. Abrahamse H. George B.P. Metal-based nanoplatforms for enhancing the biomedical applications of berberine: Current progress and future directions. Nanomedicine 2025 20 8 851 868 10.1080/17435889.2025.2480051 40110809
    [Google Scholar]
  86. Nguyen V.H. Manh Le K.N. Nguyen M.C.N. Spray-dried solid lipid nanoparticles for enhancing berberine bioavailability via oral administration. Curr. Pharm. Des. 2023 29 38 3050 3059 10.2174/0113816128263982231102062745 37961862
    [Google Scholar]
  87. Chauhan A Gaur R Kanta C Nano formulation of berberine (Brb): Transforming a natural alkaloid into advanced therapeutics. J. Appl. Pharm. Sci. 2024 14 12 035 041
    [Google Scholar]
  88. Chavda V.P. Patel A.B. Mistry K.J. Suthar S.F. Wu Z.X. Chen Z.S. Hou K. Nano-drug delivery systems entrapping natural bioactive compounds for cancer: Recent progress and future challenges. Front. Oncol. 2022 12 867655 10.3389/fonc.2022.867655 35425710
    [Google Scholar]
  89. Bravo-Vázquez L.A. Méndez-García A. Rodríguez A.L. Sahare P. Pathak S. Banerjee A. Duttaroy A.K. Paul S. Applications of nanotechnologies for miRNA-based cancer therapeutics: Current advances and future perspectives. Front. Bioeng. Biotechnol. 2023 11 1208547 10.3389/fbioe.2023.1208547 37576994
    [Google Scholar]
  90. Canaparo R. Foglietta F. Limongi T. Serpe L. Biomedical applications of reactive oxygen species generation by metal nanoparticles. Materials 2020 14 1 53 10.3390/ma14010053 33374476
    [Google Scholar]
  91. Khalid M. Hassani S. Abdollahi M. Metal-induced oxidative stress: An evidence-based update of advantages and disadvantages. Curr. Opin. Toxicol. 2020 20-21 55 68 10.1016/j.cotox.2020.05.006
    [Google Scholar]
  92. Gird C.E. Ligiaelena D.U. Costea T. Nencu I. Popescu M. Balaci T. Olaru O. Research regarding obtaining herbal extracts with antitumour activity. note ii. Phytochemical analysis, antioxidant activity and cytotoxic effects of Chelidonium majus L. Medicago sativa L. and Berberis vulgaris L. dry extracts. Farmacia 2017 65 703 708
    [Google Scholar]
  93. Sobhani Z. Akaberi M. Amiri MS Ramezani M. Emami SA Sahebkar A Medicinal species of the genus Berberis: A review of their traditional and ethnomedicinal uses, phytochemistry and pharmacology. Adv. Exp. Med. Biol. 2021 1308 547 577 10.1007/978‑3‑030‑64872‑5_27
    [Google Scholar]
  94. Bhanumathi R. Vimala K. Shanthi K. Thangaraj R. Kannan S. Bioformulation of silver nanoparticles as berberine carrier cum anticancer agent against breast cancer. New J. Chem. 2017 41 23 14466 14477 10.1039/C7NJ02531A
    [Google Scholar]
  95. Chiu C.F. Fu R.H. Hsu S. Yu Y.H.A. Yang S.F. Tsao T.C.Y. Chang K.B. Yeh C.A. Tang C.M. Huang S.C. Hung H.S. Delivery capacity and anticancer ability of the berberine-loaded gold nanoparticles to promote the apoptosis effect in breast cancer. Cancers 2021 13 21 5317 10.3390/cancers13215317 34771481
    [Google Scholar]
  96. Loh J.S. Tan L.K.S. Lee W.L. Ming L.C. How C.W. Foo J.B. Kifli N. Goh B.H. Ong Y.S. Do lipid-based nanoparticles hold promise for advancing the clinical translation of anticancer alkaloids? Cancers 2021 13 21 5346 10.3390/cancers13215346 34771511
    [Google Scholar]
  97. Andreani T. Cheng R. Elbadri K. Ferro C. Menezes T. dos Santos M.R. Pereira C.M. Santos H.A. Natural compounds-based nanomedicines for cancer treatment: Future directions and challenges. Drug Deliv. Transl. Res. 2024 14 10 2845 2916 10.1007/s13346‑024‑01649‑z 39003425
    [Google Scholar]
  98. Singhal S. Gupta M. Alam M.S. Javed M.N. Ansari J.R. Carbon allotropes based nanodevices: Graphene in biomedical applications. Nanotechnology. Boca Raton, Florida CRC Press 2022 241 269
    [Google Scholar]
  99. Desai S.A. Manjappa A. Khulbe P. Drug delivery nanocarriers and recent advances ventured to improve therapeutic efficacy against osteosarcoma: An overview. J. Egypt. Natl. Canc. Inst. 2021 33 1 4 10.1186/s43046‑021‑00059‑3 33555490
    [Google Scholar]
  100. Omidian H. Mfoafo K. Exploring the potential of nanotechnology in pediatric healthcare: Advances, challenges, and future directions. Pharmaceutics 2023 15 6 1583 10.3390/pharmaceutics15061583 37376032
    [Google Scholar]
  101. Nireesh M. Regulatory frameworks for nanotechnology in foods and medical products: Summary results of a survey activity. OECD Sci. Technol. Ind. Policy. Pap. Paris, France OECD Publishing 2013 4 10.1787/5k47w4vsb4s4‑en
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575418771251029064238
Loading
/content/journals/mrmc/10.2174/0113895575418771251029064238
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test