Skip to content
2000
image of The Therapeutic Promise of Kojic Acid: A Comprehensive Review

Abstract

The method of discovering new drugs is costly, time-consuming, laborious, and associated with a high failure rate. Various techniques have been applied in modern drug discovery to resolve these issues and discover novel pharmacologically active agents. Natural products are one of the sources of drugs that have long been used to treat various illnesses. Kojic acid (KA) is a naturally produced bioactive chemical with a skeleton made by numerous aerobic microbes, such as and . KA is a potent tyrosinase inhibitor used in cosmetics to lighten skin by reducing hyperpigmentation. In this review, beyond its cosmetic applications, it exhibits versatile biological activities, including anticancer, antibacterial, antifungal, antioxidant, antiviral, anti-inflammatory, anticonvulsant, anti-Alzheimer's disease, antidiabetic, and metal-chelating properties. KA and its analogs have been reported as promising radioprotective agents capable of mitigating the harmful effects of ionizing radiation. By integrating KA with pharmacologically active scaffolds, researchers have developed potent hybrids, such as amino-chloroquinoline-KA derivatives, which demonstrate vigorous β-hematin inhibitory activity and significant efficacy against both delicate and resilient strains of to chloroquine. The approach taken to prepare this review article involved collecting, assessing, and synthesizing relevant literature from different databases. This review systematically explores the comprehensive therapeutic potential of KA and its derivatives, including Mannich base, thiazoles, and 1,2,3-triazoles, for various activities, with Michael Adducts and dinuclear ruthenium complexes which exhibits promising antitumor activity. Combining current knowledge will provide a comprehensive foundation for the rational design and development of clinically relevant agents based on KA pharmacophores.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575405163251027232908
2026-01-22
2026-01-29
Loading full text...

Full text loading...

References

  1. Allkin B. Useful plants – medicines: At least 28,187 plant species are currently recorded as being of medicinal use. In: State of the world's plants 2017; Willis, KJ, Ed.; Royal Botanic Gardens, Kew: London, UK 2017
    [Google Scholar]
  2. Salam A.M. Quave C.L. Medicinal Plants as a Reservoir of New Structures for Anti-infective Compounds. In: Antibacterial Drug Discovery to Combat MDR: Natural Compounds, Nanotechnology and Novel Synthetic Sources. Ahmad I. Ahmad S. Rumbaugh K.P. Singapore Springer 2019 277 298 10.1007/978‑981‑13‑9871‑1_13
    [Google Scholar]
  3. Patridge E. Gareiss P. Kinch M.S. Hoyer D. An analysis of FDA-approved drugs: Natural products and their derivatives. Drug Discov. Today 2016 21 2 204 207 10.1016/j.drudis.2015.01.009 25617672
    [Google Scholar]
  4. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  5. Cragg G.M. Newman D.J. Snader K.M. Natural products in drug discovery and development. J. Nat. Prod. 1997 60 1 52 60 10.1021/np9604893 9014353
    [Google Scholar]
  6. Newman D.J. Cragg G.M. Snader K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod. 2003 66 7 1022 1037 10.1021/np030096l 12880330
    [Google Scholar]
  7. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007 70 3 461 477 10.1021/np068054v 17309302
    [Google Scholar]
  8. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012 75 3 311 335 10.1021/np200906s 22316239
    [Google Scholar]
  9. Newman D.J. Cragg G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016 79 3 629 661 10.1021/acs.jnatprod.5b01055 26852623
    [Google Scholar]
  10. Harvey A.L. Edrada-Ebel R. Quinn R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015 14 2 111 129 10.1038/nrd4510 25614221
    [Google Scholar]
  11. Koehn F.E. Biosynthetic medicinal chemistry of natural product drugs. MedChemComm 2012 3 8 854 865 10.1039/c2md00316c
    [Google Scholar]
  12. Brtko J. Biological functions of kojic acid and its derivatives in medicine, cosmetics, and food industry: Insights into health aspects. Arch. Pharm. 2022 355 10 2200215 10.1002/ardp.202200215 35760760
    [Google Scholar]
  13. Brtko J. Rondahl L. Ficková M. Hudecová D. Eybl V. Uher M. Kojic acid and its derivatives: History and present state of art. Cent. Eur. J. Public Health 2004 12 Suppl. S16 S18 15141965
    [Google Scholar]
  14. Elinson M.N. Ryzhkova Y.E. Ryzhkov F.V. Fakhrutdinov A.N. Kojic acid aldol adduct with isatin as inhibitors of pyruvate dehydrogenase kinase. J. Heterocycl. Chem. 2022 59 4 760 770 10.1002/jhet.4419
    [Google Scholar]
  15. Azeem M. Hanif M. Mahmood K. Ameer N. Chughtai F.R.S. Abid U. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: A review. Polym. Bull. 2023 80 1 241 262 10.1007/s00289‑022‑04091‑8 35125574
    [Google Scholar]
  16. Chaudhary A. Recent advances in the exploitation of kojic acid in multicomponent reactions. Curr. Org. Chem. 2020 24 14 1643 1662 10.2174/1385272824999200622113153
    [Google Scholar]
  17. Saeedi M. Eslamifar M. Khezri K. Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed. Pharmacother. 2019 110 582 593 10.1016/j.biopha.2018.12.006 30537675
    [Google Scholar]
  18. Karakaya G. Türe A. Ercan A. Öncül S. Aytemir M.D. Synthesis, computational molecular docking analysis and effectiveness on tyrosinase inhibition of kojic acid derivatives. Bioorg. Chem. 2019 88 102950 10.1016/j.bioorg.2019.102950 31075740
    [Google Scholar]
  19. Emami S. Ahmadi R. Ahadi H. Ashooriha M. Diverse therapeutic potential of 3-hydroxy-4-pyranones and related compounds as kojic acid analogs. Med. Chem. Res. 2022 31 11 1842 1861 10.1007/s00044‑022‑02954‑3
    [Google Scholar]
  20. Zilles J.C. dos Santos F.L. Kulkamp-Guerreiro I.C. Contri R.V. Biological activities and safety data of kojic acid and its derivatives: A review. Exp. Dermatol. 2022 31 10 1500 1521 10.1111/exd.14662 35960194
    [Google Scholar]
  21. Zirak M. Eftekhari-Sis B. Kojic acid in organic synthesis. Turk. J. Chem. 2015 39 439 496 10.3906/kim‑1502‑55
    [Google Scholar]
  22. das Neves P.A.P.F.G.; Lobato, C.C.; Ferreira, L.R.; Bragança, V.A.N.; Veiga, A.A.S.; Ordoñez, M.E.; Barros, V.A.; de Aguiar, C.P.O.; Borges, R.S. Molecular modification approach on kojic acid derivatives as antioxidants related to ascorbic acid. J. Mol. Model. 2020 26 11 318 10.1007/s00894‑020‑04580‑5 33099704
    [Google Scholar]
  23. Emami S. Hosseinimehr S.J. Taghdisi S.M. Akhlaghpoor S. Kojic acid and its manganese and zinc complexes as potential radioprotective agents. Bioorg. Med. Chem. Lett. 2007 17 1 45 48 10.1016/j.bmcl.2006.09.097 17049858
    [Google Scholar]
  24. Montazeri M. Emami S. Asgarian-Omran H. Azizi S. Sharif M. Sarvi S. Rezaei F. Sadeghi M. Gohardehi S. Daryani A. In vitro and in vivo evaluation of kojic acid against Toxoplasma gondii in experimental models of acute toxoplasmosis. Exp. Parasitol. 2019 200 7 12 10.1016/j.exppara.2019.03.009 30904693
    [Google Scholar]
  25. Lee H.K. Ha J.W. Hwang Y.J. Boo Y.C. Identification of L-cysteinamide as a potent inhibitor of tyrosinase-mediated dopachrome formation and eumelanin synthesis. Antioxidants 2021 10 8 1202 10.3390/antiox10081202 34439449
    [Google Scholar]
  26. Li T.X. Liang J.X. Liu L.L. Shi F.C. Jia X.W. Li M.H. Xu C.P. Novel kojic acid derivatives with anti-inflammatory effects from Aspergillus versicolor. Fitoterapia 2021 154 105027 10.1016/j.fitote.2021.105027 34492330
    [Google Scholar]
  27. Kumari S. Thng S. Verma N. Gautam H. Melanogenesis inhibitors. Acta Derm. Venereol. 2018 98 10 924 931 10.2340/00015555‑3002 29972222
    [Google Scholar]
  28. Chen Y.M. Su W.C. Li C. Shi Y. Chen Q.X. Zheng J. Tang D.L. Chen S.M. Wang Q. Anti-melanogenesis of novel kojic acid derivatives in B16F10 cells and zebrafish. Int. J. Biol. Macromol. 2019 123 723 731 10.1016/j.ijbiomac.2018.11.031 30414415
    [Google Scholar]
  29. Lajis A.F.B. Hamid M. Ariff A.B. Depigmenting effect of Kojic acid esters in hyperpigmented B16F1 melanoma cells. J. Biomed. Biotechnol. 2012 2012 1 1 9 10.1155/2012/952452 23091364
    [Google Scholar]
  30. Karakaya G. Ercan A. Oncul S. Aytemir M.D. Synthesis and cytotoxic evaluation of kojic acid derivatives with inhibitory activity on melanogenesis in human melanoma cells. Anticancer. Agents Med. Chem. 2019 18 15 2137 2148 10.2174/1871520618666180402141714 29607787
    [Google Scholar]
  31. Ercan A. Oncul S. Karakaya G. Aytemir M. An allomaltol derivative triggers distinct death pathways in luminal a and triple-negative breast cancer subtypes. Bioorg. Chem. 2020 105 104403 10.1016/j.bioorg.2020.104403 33166845
    [Google Scholar]
  32. Nazir Y. Saeed A. Rafiq M. Afzal S. Ali A. Latif M. Zuegg J. Hussein W.M. Fercher C. Barnard R.T. Cooper M.A. Blaskovich M.A.T. Ashraf Z. Ziora Z.M. Hydroxyl substituted benzoic acid/cinnamic acid derivatives: Tyrosinase inhibitory kinetics, anti-melanogenic activity and molecular docking studies. Bioorg. Med. Chem. Lett. 2020 30 1 126722 10.1016/j.bmcl.2019.126722 31732410
    [Google Scholar]
  33. Ashooriha M. Khoshneviszadeh M. Khoshneviszadeh M. Moradi S.E. Rafiei A. Kardan M. Emami S. 1,2,3-triazole-based kojic acid analogs as potent tyrosinase inhibitors: Design, synthesis and biological evaluation. Bioorg. Chem. 2019 82 414 422 10.1016/j.bioorg.2018.10.069 30428420
    [Google Scholar]
  34. Luo Y. Peng Z. Tang J. Wang D. Tao S. Liu J. Study on the synthesis and biological activity of kojic acid triazol thiosemicarbazide Schiff base derivatives. J. Enzyme Inhib. Med. Chem. 2025 40 1 2475071 10.1080/14756366.2025.2475071 40197056
    [Google Scholar]
  35. Chen Y.M. Li C. Zhang W.J. Shi Y. Wen Z.J. Chen Q.X. Wang Q. Kinetic and computational molecular docking simulation study of novel kojic acid derivatives as anti-tyrosinase and antioxidant agents. J. Enzyme Inhib. Med. Chem. 2019 34 1 990 998 10.1080/14756366.2019.1609467 31072148
    [Google Scholar]
  36. Rezapour Niri D. Sayahi M.H. Behrouz S. Moazzam A. Rasekh F. Tanideh N. Irajie C. Seif Nezhad M. Larijani B. Iraji A. Mahdavi M. Design, synthesis, in vitro, and in silico evaluations of kojic acid derivatives linked to amino pyridine moiety as potent tyrosinase inhibitors. Heliyon 2023 9 11 22009 10.1016/j.heliyon.2023.e22009 38034733
    [Google Scholar]
  37. Lee Y.S. Park J.H. Kim M.H. Seo S.H. Kim H.J. Synthesis of tyrosinase inhibitory kojic acid derivative. Arch. Pharm. 2006 339 3 111 114 10.1002/ardp.200500213 16511808
    [Google Scholar]
  38. Sepehri N. Iraji A. Yavari A. Asgari M.S. Zamani S. Hosseini S. Bahadorikhalili S. Pirhadi S. Larijani B. Khoshneviszadeh M. Hamedifar H. Mahdavi M. Khoshneviszadeh M. The natural-based optimization of kojic acid conjugated to different thio-quinazolinones as potential anti-melanogenesis agents with tyrosinase inhibitory activity. Bioorg. Med. Chem. 2021 36 116044 10.1016/j.bmc.2021.116044 33640246
    [Google Scholar]
  39. Talebi M. Majidi K. Bassam K. Abdi M. Daneshvar M. Moayedi S.S. Pourhesabi S. Attarroshan M. Boumi S. Kabiri M. Hosseini F.S. Khoshneviszadeh M. Amanlou M. Synthesis, biological evaluation, and molecular docking analysis of novel 1, 3, 4-thiadiazole -based kojic acid derivatives as tyrosinase inhibitors. J. Mol. Struct. 2022 1268 133707 10.1016/j.molstruc.2022.133707
    [Google Scholar]
  40. He M. Zhang J. Li N. Chen L. He Y. Peng Z. Wang G. Synthesis, anti-browning effect and mechanism research of kojic acid-coumarin derivatives as anti-tyrosinase inhibitors. Food Chem. X 2024 21 101128 10.1016/j.fochx.2024.101128 38292671
    [Google Scholar]
  41. Peng Z. Wang G. He Y. Wang J.J. Zhao Y. Tyrosinase inhibitory mechanism and anti-browning properties of novel kojic acid derivatives bearing aromatic aldehyde moiety. Curr. Res. Food. Sci. 2023 6 100421 10.1016/j.crfs.2022.100421 36605465
    [Google Scholar]
  42. Lee M. Park H.Y. Jung K.H. Kim D.H. Rho H.S. Choi K. Anti-melanogenic effects of kojic acid and hydroxycinnamic acid derivatives. Biotechnol. Bioprocess Eng.; BBE 2020 25 2 190 196 10.1007/s12257‑019‑0421‑y
    [Google Scholar]
  43. Xie W. Zhang H. He J. Zhang J. Yu Q. Luo C. Li S. Synthesis and biological evaluation of novel hydroxybenzaldehyde-based kojic acid analogues as inhibitors of mushroom tyrosinase. Bioorg. Med. Chem. Lett. 2017 27 3 530 532 10.1016/j.bmcl.2016.12.027 28011217
    [Google Scholar]
  44. Gaspar A. Matos M.J. Garrido J. Uriarte E. Borges F. Chromone: A valid scaffold in medicinal chemistry. Chem. Rev. 2014 114 9 4960 4992 10.1021/cr400265z 24555663
    [Google Scholar]
  45. Aytemi̇r M.D. Hider R.C. Erol D.D. Özalp M. Eki̇zoğlu M. Synthesis of new antimicrobial agents; amide derivatives of pyranones and pyridinones. Turk. J. Chem. 2003 27 4 445 452
    [Google Scholar]
  46. He M. Fan M. Peng Z. Wang G. An overview of hydroxypyranone and hydroxypyridinone as privileged scaffolds for novel drug discovery. Eur. J. Med. Chem. 2021 221 113546 10.1016/j.ejmech.2021.113546 34023737
    [Google Scholar]
  47. Molecular modeling and antimycobacterial studies of Mannich bases: 5-hydroxy-2-methyl-4H-pyran-4-ones. Turk. J. Chem. 2011 35 2 317 330
    [Google Scholar]
  48. Lamut A. Cruz C.D. Skok Ž. Barančoková M. Zidar N. Zega A. Mašič L.P. Ilaš J. Tammela P. Kikelj D. Tomašič T. Design, synthesis and biological evaluation of novel DNA gyrase inhibitors and their siderophore mimic conjugates. Bioorg. Chem. 2020 95 103550 10.1016/j.bioorg.2019.103550 31911309
    [Google Scholar]
  49. Us D. Berk B. Gürdal E.E. Ayteki̇n N. Kocagöz Z.T. Çağlayan B. Kurnaz I. Erol D.D. Mannich base derivatives of 3-hydroxy-6- methyl-4H-pyran-4-one with antimicrobial activity. Turk. J. Chem. 2010 10.3906/kim‑0908‑214
    [Google Scholar]
  50. Xu B. Kong X.L. Zhou T. Qiu D.H. Chen Y.L. Liu M.S. Yang R.H. Hider R.C. Synthesis, iron(III)-binding affinity and in vitro evaluation of 3-hydroxypyridin-4-one hexadentate ligands as potential antimicrobial agents. Bioorg. Med. Chem. Lett. 2011 21 21 6376 6380 10.1016/j.bmcl.2011.08.097 21937227
    [Google Scholar]
  51. Zhang M.X. Zhu C.F. Zhou Y.J. Kong X.L. Hider R.C. Zhou T. Design, synthesis, and antimicrobial evaluation of hexadentate hydroxypyridinones with high iron(III) affinity. Chem. Biol. Drug Des. 2014 84 6 659 668 10.1111/cbdd.12358 24890019
    [Google Scholar]
  52. Emami S. Ghafouri E. Faramarzi M.A. Samadi N. Irannejad H. Foroumadi A. Mannich bases of 7-piperazinylquinolones and kojic acid derivatives: Synthesis, in vitro antibacterial activity and in silico study. Eur. J. Med. Chem. 2013 68 185 191 10.1016/j.ejmech.2013.07.032 23974018
    [Google Scholar]
  53. Asghari S. Malekian N. Esmaeilpour R. Ahmadipour M. Mohseni M. Three-component synthesis and antibacterial evaluation of some novel 1,2-dihydroisoquinoline derivatives. Chin. Chem. Lett. 2014 25 11 1441 1444 10.1016/j.cclet.2014.05.047
    [Google Scholar]
  54. Karakaya G. Aytemir M.D. Özçelik B. Çalış Ü. Design, synthesis and in vivo/in vitro screening of novel chlorokojic acid derivatives. J. Enzyme Inhib. Med. Chem. 2013 28 3 627 638 10.3109/14756366.2012.666538 22468745
    [Google Scholar]
  55. Kou Q. Wang T. Zou F. Zhang S. Chen Q. Yang Y. Design, synthesis and biological evaluation of C(4) substituted monobactams as antibacterial agents against multidrug-resistant Gram-negative bacteria. Eur. J. Med. Chem. 2018 151 98 109 10.1016/j.ejmech.2018.03.058 29605810
    [Google Scholar]
  56. Liu X. Xia W. Jiang Q. Yu P. Yue L. Chitosan oligosaccharide-N-chlorokojic acid mannich base polymer as a potential antibacterial material. Carbohydr. Polym. 2018 182 225 234 10.1016/j.carbpol.2017.11.019 29279119
    [Google Scholar]
  57. Liu X. Xia W. Jiang Q. Xu Y. Yu P. Synthesis, characterization, and antimicrobial activity of kojic acid grafted chitosan oligosaccharide. J. Agric. Food Chem. 2014 62 1 297 303 10.1021/jf404026f 24364425
    [Google Scholar]
  58. Aytemir M.D. Özçelik B. A study of cytotoxicity of novel chlorokojic acid derivatives with their antimicrobial and antiviral activities. Eur. J. Med. Chem. 2010 45 9 4089 4095 10.1016/j.ejmech.2010.05.069 20591538
    [Google Scholar]
  59. Kırcı D. Batur Ö.Ö. Demirci B. Demirci, F Synergistic antimicrobial effects of Melaleuca alternifolia essential oil and kojic acid combinations. Curr. Microbiol. 2025 82 5 192 10.1007/s00284‑025‑04175‑4
    [Google Scholar]
  60. Aytemir M.D. Çaliş Ü. Özalp M. Synthesis and evaluation of anticonvulsant and antimicrobial activities of 3-hydroxy-6-methyl-2-substituted 4h-pyran-4-one derivatives. Arch. Pharm. 2004 337 5 281 288 10.1002/ardp.200200754 15095421
    [Google Scholar]
  61. Aytemir M.D. Özçelik B. Synthesis and biological activities of new Mannich bases of chlorokojic acid derivatives. Med. Chem. Res. 2011 20 4 443 452 10.1007/s00044‑010‑9338‑x
    [Google Scholar]
  62. Prakash O. Kumar R. Parkash V. Synthesis and antifungal activity of some new 3-hydroxy-2-(1-phenyl-3-aryl-4-pyrazolyl) chromones. Eur. J. Med. Chem. 2008 43 2 435 440 10.1016/j.ejmech.2007.04.004 17555846
    [Google Scholar]
  63. Pisoschi A.M. Pop A. Cimpeanu C. Predoi G. Antioxidant capacity determination in plants and plant‐derived products: A review. Oxid. Med. Cell. Longev. 2016 2016 1 9130976 10.1155/2016/9130976 28044094
    [Google Scholar]
  64. El-Metwally M.M. ElBealy E.R. Beltagy D.M. Shaaban M. El-kott A.F. Suppressive efficiency of Kojic acid from Aspergillus tamarii MM11 against HepG-2 cell line derived from human liver cancer. Trop. J. Pharm. Res. 2020 19 8 1661 1668 10.4314/tjpr.v19i8.14
    [Google Scholar]
  65. Ali W. Choe K. Park J.S. Ahmad R. Park H.Y. Kang M.H. Park T.J. Kim M.O. Kojic acid reverses LPS-induced neuroinflammation and cognitive impairment by regulating the TLR4/NF-κB signaling pathway. Front. Pharmacol. 2024 15 15 1443552 10.3389/fphar.2024.1443552 39185307
    [Google Scholar]
  66. Mohammadpour M. Sadeghi A. Fassihi A. Saghaei L. Movahedian A. Rostami M. Synthesis and antioxidant evaluation of some novel ortho-hydroxypyridine-4-one iron chelators. Res. Pharm. Sci. 2012 7 3 171 179 23181095
    [Google Scholar]
  67. Saraei M. Ghasemi Z. Dehghan G. Hormati M. Ojaghi K. Synthesis of some novel 1,2,3-triazole derivatives containing kojic acid moiety and evaluation for their antioxidant activity. Monatshefte Für Chem.,[Chemical Monthly]. 2017 148 5 917 923
    [Google Scholar]
  68. Baharfar R. Alinezhad H. Azimi R. Use of DABCO-functionalized mesoporous SBA-15 as catalyst for efficient synthesis of kojic acid derivatives, potential antioxidants. Res. Chem. Intermed. 2015 41 11 8637 8650 10.1007/s11164‑014‑1916‑y
    [Google Scholar]
  69. Lajis A. Hamid M. Ahmad S. Ariff A. Lipase-catalyzed synthesis of kojic acid derivative in bioreactors and the analysis of its depigmenting and antioxidant activities. Cosmetics 2017 4 3 22 10.3390/cosmetics4030022
    [Google Scholar]
  70. Dung T.T.M. Kim S.C. Yoo B.C. Sung G.H. Yang W.S. Kim H.G. Park J.G. Rhee M.H. Park K.W. Yoon K. Lee Y. Hong S. Kim J.H. Cho J.Y. (5-Hydroxy-4-oxo-4H-pyran-2-yl)methyl 6-hydroxynaphthalene-2-carboxylate, a kojic acid derivative, inhibits inflammatory mediator production via the suppression of Syk/Src and NF-κB activation. Int. Immunopharmacol. 2014 20 1 37 45 10.1016/j.intimp.2014.02.019 24583147
    [Google Scholar]
  71. Rho H.S. Ahn S.M. Yoo D.S. Kim M.K. Cho D.H. Cho J.Y. Kojyl thioether derivatives having both tyrosinase inhibitory and anti-inflammatory properties. Bioorg. Med. Chem. Lett. 2010 20 22 6569 6571 10.1016/j.bmcl.2010.09.042 20934336
    [Google Scholar]
  72. Schaich K.M. Tian X. Xie J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 2015 14 111 125 10.1016/j.jff.2015.01.043
    [Google Scholar]
  73. What is cancer? 2021 Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer
  74. Cancer 2022 Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
  75. Li X. Chen Y. Liu Z. Li S. Liu H. Wang Y. Zhang W. Yan H. Cytotoxic pyrone derivatives from the deep-sea-derived fungus Cladosporium halotolerans FS702. Nat. Prod. Res. 2024 38 4 594 600 10.1080/14786419.2023.2187794 36938638
    [Google Scholar]
  76. Chen Y.H. Lu P.J. Hulme C. Shaw A.Y. Synthesis of kojic acid-derived copper-chelating apoptosis inducing agents. Med. Chem. Res. 2013 22 2 995 1003 10.1007/s00044‑012‑0094‑y
    [Google Scholar]
  77. Zhu C.F. Battah S. Kong X. Reeder B.J. Hider R.C. Zhou T. Design, synthesis and biological evaluation of 5-aminolaevulinic acid/3-hydroxypyridinone conjugates as potential photodynamic therapeutical agents. Bioorg. Med. Chem. Lett. 2015 25 3 558 561 10.1016/j.bmcl.2014.12.018 25556100
    [Google Scholar]
  78. Saghaie L. Sadeghi-Aliabadi H. Kafiri M. Synthesis and biological evaluation of bidentate 3-hydroxypyridin-4-ones iron chelating agents. Res. Pharm. Sci. 2011 6 2 117 122 22224095
    [Google Scholar]
  79. Kosobokova O. Gavrilov D.N. Khozikov V. Stepukhovich A. Tsupryk A. Pan’kov S. Somova O. Abanshin N. Gudkov G. Tcherevishnik M. Gorfinkel V. Electrokinetic injection of DNA from gel micropads: Basis for coupling polony technology with CE separation. Electrophoresis 2007 28 21 3890 3900 10.1002/elps.200700790 17922519
    [Google Scholar]
  80. Mendoza-Ferri M.G. Hartinger C.G. Nazarov A.A. Eichinger R.E. Jakupec M.A. Severin K. Keppler B.K. Influence of the arene ligand, the number and type of metal centers, and the leaving group on the in vitro antitumor activity of polynuclear organometallic compounds. Organometallics 2009 28 21 6260 6265 10.1021/om900715j
    [Google Scholar]
  81. Kandioller W. Hartinger C.G. Nazarov A.A. Kasser J. John R. Jakupec M.A. Arion V.B. Dyson P.J. Keppler B.K. Tuning the anticancer activity of maltol-derived ruthenium complexes by derivatization of the 3-hydroxy-4-pyrone moiety. J. Organomet. Chem. 2009 694 6 922 929 10.1016/j.jorganchem.2008.10.016
    [Google Scholar]
  82. Meier S.M. Novak M.S. Kandioller W. Jakupec M.A. Roller A. Keppler B.K. Hartinger C.G. Aqueous chemistry and antiproliferative activity of a pyrone-based phosphoramidate Ru(arene) anticancer agent. Dalton Trans. 2014 43 26 9851 9855 10.1039/c4dt00569d 24872129
    [Google Scholar]
  83. Pichiri G. Piludu M. Congiu T. Grandi N. Coni P. Piras M. Jaremko M. Lachowicz J.I. Kojic acid derivative as an antimitotic agent that selectively kills tumour cells. Pharmaceuticals 2024 18 1 11 10.3390/ph18010011 39861074
    [Google Scholar]
  84. Reddy B.V.S. Reddy S.M. Swain M. Dudem S. Kalivendi S.V. Reddy C.S. Enantioselective 1,4-addition of kojic acid derivatives to β-nitroolefins catalyzed by a cinchonine derived sugar thiourea. RSC Advances 2014 4 18 9107 10.1039/c3ra47423b
    [Google Scholar]
  85. Kaushik S. Sanawar R. Lekshmi A. Chandrasekhar L. Nair M. Bhatnagar S. Santhoshkumar T.R. ER alpha selective chromone, isoxazolylchromones, induces ROS‐mediated cell death without autophagy. Chem. Biol. Drug Des. 2019 94 1 1352 1367 10.1111/cbdd.13510 31066219
    [Google Scholar]
  86. Yamaguchi T. Watanabe S. Matsumura Y. Tokuoka Y. Yokoyama A. Oxovanadium complexes with quinoline and pyridinone ligands: Syntheses of the complexes and effect of alkyl chains on their apoptosis-inducing activity in leukemia cells. Bioorg. Med. Chem. 2012 20 9 3058 3064 10.1016/j.bmc.2012.02.063 22472041
    [Google Scholar]
  87. Saghaie L. Sadeghi-Aliabadi H. Ashaehshoar M. Synthesis, analysis and cytotoxic evaluation of some hydroxypyridinone derivatives on HeLa and K562 cell lines. Res. Pharm. Sci. 2013 8 3 185 195 24019828
    [Google Scholar]
  88. Oncul S. Karakaya G. Dilsiz Aytemir M. Ercan A. A kojic acid derivative promotes intrinsic apoptotic pathway of hepatocellular carcinoma cells without incurring drug resistance. Chem. Biol. Drug Des. 2019 94 6 2084 2093 10.1111/cbdd.13615 31495064
    [Google Scholar]
  89. Yoo D.S. Lee J. Choi S.S. Rho H.S. Cho D.H. Shin W.C. Cho J.Y. A modulatory effect of novel kojic acid derivatives on cancer cell proliferation and macrophage activation. Pharmazie 2010 65 4 261 266 10.1691/ph.2010.9764 20432622
    [Google Scholar]
  90. Dehkordi L.S. Liu Z.D. Hider R.C. Basic 3-hydroxypyridin-4-ones: Potential antimalarial agents. Eur. J. Med. Chem. 2008 43 5 1035 1047 10.1016/j.ejmech.2007.07.011 17869385
    [Google Scholar]
  91. Andayi W.A. Egan T.J. Gut J. Rosenthal P.J. Chibale K. Synthesis, antiplasmodial activity, and β-hematin inhibition of hydroxypyridone–chloroquine hybrids. ACS Med. Chem. Lett. 2013 4 7 642 646 10.1021/ml4001084 24900724
    [Google Scholar]
  92. Andayi W.A. Egan T.J. Chibale K. Kojic acid derived hydroxypyridinone–chloroquine hybrids: Synthesis, crystal structure, antiplasmodial activity and β-haematin inhibition. Bioorg. Med. Chem. Lett. 2014 24 15 3263 3267 10.1016/j.bmcl.2014.06.012 24974345
    [Google Scholar]
  93. Chebaibi M. Bourhia M. Amrati F. Slighoua M. Mssillou I. Aboul-Soud M.A.M. Khalid A. Hassani R. Bousta D. Achour S. Benhida R. Daoud R. Salsoline derivatives, genistein, semisynthetic derivative of kojic acid, and naringenin as inhibitors of A42R profilin-like protein of monkeypox virus: in silico studies. Front Chem. 2024 12 1445606 10.3389/fchem.2024.1445606 39318419
    [Google Scholar]
  94. Tanaka R. Tsujii H. Yamada T. Kajimoto T. Amano F. Hasegawa J. Hamashima Y. Node M. Katoh K. Takebe Y. Novel 3α-methoxyserrat-14-en-21β-ol (PJ-1) and 3β-methoxyserrat-14-en-21β-ol (PJ-2)-curcumin, kojic acid, quercetin, and baicalein conjugates as HIV agents. Bioorg. Med. Chem. 2009 17 14 5238 5246 10.1016/j.bmc.2009.05.049 19515569
    [Google Scholar]
  95. Mohammadbeigi A. Khazaei S. Heidari H. Asgarian A. Arsangjang S. Saghafipour A. Mohammadsalehi N. Ansari H. An investigation of the effects of environmental and ecologic factors on cutaneous leishmaniasis in the old world: A systematic review study. Rev. Environ. Health 2021 36 1 117 128 10.1515/reveh‑2020‑0066 32892182
    [Google Scholar]
  96. Telleria E.L. Martins-da-Silva A. Tempone A.J. Traub-Csekö Y.M. Leishmania, microbiota and sand fly immunity. Parasitology 2018 145 10 1336 1353 10.1017/S0031182018001014 29921334
    [Google Scholar]
  97. Emami S. Tavangar P. Keighobadi M. An overview of azoles targeting sterol 14α-demethylase for antileishmanial therapy. Eur. J. Med. Chem. 2017 135 241 259 10.1016/j.ejmech.2017.04.044 28456033
    [Google Scholar]
  98. Rodrigues A.P.D. Farias L.H.S. Carvalho A.S.C. Santos A.S. do Nascimento J.L.M. Silva E.O. A novel function for kojic acid, a secondary metabolite from Aspergillus fungi, as antileishmanial agent. PLoS One 2014 9 3 91259 10.1371/journal.pone.0091259 24621481
    [Google Scholar]
  99. Fassihi A. Sheikhmoradi V. Saberi S. Saghaei L. Pestehchian N. Synthesis and antileishmanial activity of antimony (V) complexes of hydroxypyranone and hydroxypyridinone ligands. Res. Pharm. Sci. 2018 13 2 111 120 10.4103/1735‑5362.223793 29606965
    [Google Scholar]
  100. Fox C.S. Coady S. Sorlie P.D. Levy D. Meigs J.B. D’Agostino R.B. Wilson P.W. Savage P.J. Trends in cardiovascular complications of diabetes. JAMA 2004 292 20 2495 2499 10.1001/jama.292.20.2495 15562129
    [Google Scholar]
  101. Storr T. Mitchell D. Buglyó P. Thompson K.H. Yuen V.G. McNeill J.H. Orvig C. Vanadyl-thiazolidinedione combination agents for diabetes therapy. Bioconjug. Chem. 2003 14 1 212 221 10.1021/bc025606m 12526711
    [Google Scholar]
  102. Wei Y.B. Yang X.D. Synthesis, characterization and anti-diabetic therapeutic potential of a new benzyl acid-derivatized kojic acid vanadyl complex. Biometals 2012 25 6 1261 1268 10.1007/s10534‑012‑9587‑x 23015214
    [Google Scholar]
  103. Sharma D.K. Pandey J. Tamrakar A.K. Mukherjee D. Synthesis of heteroaryl/aryl kojic acid conjugates as stimulators of glucose uptake by GLUT4 translocation. Eur. J. Med. Chem. 2014 85 727 736 10.1016/j.ejmech.2014.08.041 25129867
    [Google Scholar]
  104. Aytemir M.D. Septioğlu E. Caliş U. Synthesis and anticonvulsant activity of new kojic acid derivatives. Arzneimittelforschung 2010 60 1 22 29 20184223
    [Google Scholar]
  105. Aytemir M.D. Çalış Ü. Anticonvulsant and neurotoxicity evaluation of some novel kojic acids and allomaltol derivatives. Arch. Pharm. 2010 343 3 173 181 10.1002/ardp.200900236 20108269
    [Google Scholar]
  106. Liu X. Yu C. Su B. Zha D. Synthesis and properties of the kojic acid dimer and its potential for the treatment of Alzheimer’s disease. RSC Med. Chem. 2023 14 2 268 276 10.1039/D2MD00383J 36846369
    [Google Scholar]
  107. Ciurea A.V. Mohan A.G. Covache-Busuioc R.A. Costin H.P. Glavan L.A. Corlatescu A.D. Saceleanu V.M. Unraveling molecular and genetic insights into neurodegenerative diseases: advances in understanding Alzheimer’s, Parkinson’s and Huntington’s Diseases and Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2023 24 13 10809 10.3390/ijms241310809 37445986
    [Google Scholar]
  108. Ferreira J.P.S. Albuquerque H.M.T. Cardoso S.M. Silva A.M.S. Silva V.L.M. Dual-target compounds for Alzheimer’s disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur. J. Med. Chem. 2021 221 113492 10.1016/j.ejmech.2021.113492 33984802
    [Google Scholar]
  109. Bhute S. Sarmah D. Datta A. Rane P. Shard A. Goswami A. Borah A. Kalia K. Dave K.R. Bhattacharya P. Molecular pathogenesis and interventional strategies for Alzheimer’s disease: Promises and pitfalls. ACS Pharmacol. Transl. Sci. 2020 3 3 472 488 10.1021/acsptsci.9b00104 32566913
    [Google Scholar]
  110. Malafaia D. Albuquerque H.M.T. Silva A.M.S. Amyloid-β and tau aggregation dual-inhibitors: A synthetic and structure-activity relationship focused review. Eur. J. Med. Chem. 2021 214 113209 10.1016/j.ejmech.2021.113209 33548635
    [Google Scholar]
  111. Khan A. Park T.J. Ikram M. Ahmad S. Ahmad R. Jo M.G. Kim M.O. Antioxidative and Anti-inflammatory Effects of Kojic Acid in Aβ-Induced Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2021 58 10 5127 5140 10.1007/s12035‑021‑02460‑4 34255249
    [Google Scholar]
  112. Nam G. Hong M. Lee J. Lee H.J. Ji Y. Kang J. Baik M.H. Lim M.H. Multiple reactivities of flavonoids towards pathological elements in Alzheimer’s disease: Structure–activity relationship. Chem. Sci. 2020 11 37 10243 10254 10.1039/D0SC02046J 34094290
    [Google Scholar]
  113. Pagoni A. Marinelli L. Di Stefano A. Ciulla M. Turkez H. Mardinoglu A. Vassiliou S. Cacciatore I. Novel anti-Alzheimer phenol-lipoyl hybrids: Synthesis, physico-chemical characterization, and biological evaluation. Eur. J. Med. Chem. 2020 186 111880 10.1016/j.ejmech.2019.111880 31753513
    [Google Scholar]
  114. Babaee S. Chehardoli G. Akbarzadeh T. Zolfigol M.A. Mahdavi M. Rastegari A. Homayouni Moghadam F. Najafi Z. Design, synthesis, and molecular docking of some novel tacrine based cyclopentapyranopyridine‐ and tetrahydropyranoquinoline‐kojic acid derivatives as anti‐acetylcholinesterase agents. Chem. Biodivers. 2021 18 6 2000924 10.1002/cbdv.202000924 33861892
    [Google Scholar]
  115. Sander K. Kottke T. Weizel L. Stark H. Kojic acid derivatives as histamine H(3) receptor ligands. Chem. Pharm. Bull. 2010 58 10 1353 1361 10.1248/cpb.58.1353 20930404
    [Google Scholar]
  116. Jiang L. Zhang M. Tang L. Weng Q. Shen Y. Hu Y. Sheng R. Identification of 2-subsituted benzothiazole derivatives as triple-functional agents with potential for AD therapy. RSC Advances 2016 6 21 17318 17327 10.1039/C5RA25788C
    [Google Scholar]
  117. Cheng G. Xu P. Zhang M. Chen J. Sheng R. Ma Y. Resveratrol-maltol hybrids as multi-target-directed agents for Alzheimer’s disease. Bioorg. Med. Chem. 2018 26 22 5759 5765 10.1016/j.bmc.2018.08.011 30360953
    [Google Scholar]
  118. Singh M Karthikeyan C Waiker DK Tiwari A Shrivastava SK Sousa SF Design, synthesis, and pharmacological evaluation of heteroaryl thiol-linked kojic acid derivatives as a novel class of acetylcholinesterase inhibitors for Alzheimer’s disease therapy. 3 Biotech 2025 15 134 10.1007/s13205‑025‑04295‑5
  119. Wang K. Liu C. Di C.J. Ma C. Han C.G. Yuan M.R. Li P.F. Li L. Liu Y.X. Kojic acid protects C57BL/6 mice from gamma-irradiation induced damage. Asian Pac. J. Cancer Prev. 2014 15 1 291 297 10.7314/APJCP.2014.15.1.291 24528043
    [Google Scholar]
  120. Wang K. Li P.F. Han C.G. Du L. Liu C. Hu M. Lian S.J. Liu Y.X. Protective effects of kojic acid on the periphery blood and survival of beagle dogs after exposure to a lethal dose of gamma radiation. Radiat. Res. 2014 182 6 666 673 10.1667/RR13823.1 25409121
    [Google Scholar]
  121. Raje M. Hin N. Duvall B. Ferraris D.V. Berry J.F. Thomas A.G. Alt J. Rojas C. Slusher B.S. Tsukamoto T. Synthesis of kojic acid derivatives as secondary binding site probes of d-amino acid oxidase. Bioorg. Med. Chem. Lett. 2013 23 13 3910 3913 10.1016/j.bmcl.2013.04.062 23683589
    [Google Scholar]
  122. Gillbro J.M. Olsson M.J. The melanogenesis and mechanisms of skin‐lightening agents – existing and new approaches. Int. J. Cosmet. Sci. 2011 33 3 210 221 10.1111/j.1468‑2494.2010.00616.x 21265866
    [Google Scholar]
  123. Deo K. Dash K. Sharma Y. Virmani N. Oberai C. Kojic acid vis-a-vis its combinations with hydroquinone and betamethasone valerate in melasma: A randomized, single blind, comparative study of efficacy and safety. Indian J. Dermatol. 2013 58 4 281 285 10.4103/0019‑5154.113940 23918998
    [Google Scholar]
  124. Chusiri Y. Wongpoomchai R. Kakehashi A. Wei M. Wanibuchi H. Vinitketkumnuan U. Fukushima S. Non-genotoxic mode of action and possible threshold for hepatocarcinogenicity of Kojic acid in F344 rats. Food Chem. Toxicol. 2011 49 2 471 476 10.1016/j.fct.2010.11.027 21112367
    [Google Scholar]
  125. Ogiwara Y. Sugiura M. Watanabe K. Tawara J. Endo E. Maruyama H. Tsuji S. Matsue K. Yamada H. Wako Y. Kawasako K. Evaluation of the repeated-dose liver, bone marrow and peripheral blood micronucleus and comet assays using kojic acid. Mutat. Res. Toxicol. Environ. Mutagen 2015 780-781 111 116 25892630
    [Google Scholar]
  126. Syed Azhar S.N.A. Ashari S.E. Ahmad S. Salim N. In vitro kinetic release study, antimicrobial activity and in vivo toxicity profile of a kojic acid ester-based nanoemulsion for topical application. RSC Advances 2020 10 71 43894 43903 10.1039/D0RA04807K 35519703
    [Google Scholar]
  127. Gonçalez M.L. Corrêa M.A. Chorilli M. Skin delivery of kojic acid-loaded nanotechnology-based drug delivery systems for the treatment of skin aging. BioMed Res. Int. 2013 2013 1 9 10.1155/2013/271276 24369010
    [Google Scholar]
  128. Syed Azhar S.N.A. Ashari S.E. Salim N. Development of a kojic monooleate-enriched oil-in-water nanoemulsion as a potential carrier for hyperpigmentation treatment. Int. J. Nanomedicine 2018 13 6465 6479 10.2147/IJN.S171532 30410332
    [Google Scholar]
  129. Chaudhari U. Nemade H. Sureshkumar P. Vinken M. Ates G. Rogiers V. Hescheler J. Hengstler J.G. Sachinidis A. Functional cardiotoxicity assessment of cosmetic compounds using human-induced pluripotent stem cell-derived cardiomyocytes. Arch. Toxicol. 2018 92 1 371 381 10.1007/s00204‑017‑2065‑z 28940058
    [Google Scholar]
  130. Ayuhastuti A. Syah I. Megantara S. Chaerunisaa A. Nanotechnology-enhanced cosmetic application of kojic acid dipalmitate, a kojic acid derivate with improved properties. Cosmetics 2024 11 1 21 10.3390/cosmetics11010021
    [Google Scholar]
  131. Yang C.M. Hong J.Y. Lee K.W. Lee B.G. Chang D.I. Kojic acid derivative. US Patent 5486624A 1996
    [Google Scholar]
  132. Nagai S. Izumi T. Cosmetic composition containing kojic acid ester. US Patent 4278656A 1981
    [Google Scholar]
  133. Yang C.M. Hong J.Y. Lee K.W. Lee B.G. Chang D.I. Kojic acid derivatives. US Patent 5523421A 1996
    [Google Scholar]
  134. Mishima Y. Motono M. Use of kojic acid for treating pigmentation diseases. CA Patent 2018824C 2001
    [Google Scholar]
  135. Hadas N. Skin whitening composition. US Patent 5609875A 1997
    [Google Scholar]
  136. Whittemore J. Neis R. Kojic dipalmitate skin whitening comestic composition. US Patent 5824327A 1998
    [Google Scholar]
  137. Isaacs E. Isaacs D. Composition to stabilise kojic acid. Patent 20130171079 A1 2013
    [Google Scholar]
  138. Xiaona D. Production process of kojic acid for whitening and freckle-removing cosmetics. CN Patent 105112470A 2015
    [Google Scholar]
  139. Ezzat H. Rady M. Hathout R.M. Abdel-Halim M. Mansour S. Enhanced anti-bacterial effect of kojic acid using gelatinized core liposomes: A potential approach to combat antibiotic resistance. J. Drug Deliv. Sci. Technol. 2021 64 102625 10.1016/j.jddst.2021.102625
    [Google Scholar]
  140. Wang Y.W. Jou C.H. Hung C.C. Yang M.C. Cellular fusion and whitening effect of a chitosan derivative coated liposome. Colloids Surf. B Biointerfaces 2012 90 169 176 10.1016/j.colsurfb.2011.10.024 22056083
    [Google Scholar]
  141. Khezri K. Saeedi M. Morteza-Semnani K. Akbari J. Hedayatizadeh-Omran A. A promising and effective platform for delivering hydrophilic depigmenting agents in the treatment of cutaneous hyperpigmentation: Kojic acid nanostructured lipid carrier. Artif. Cells Nanomed. Biotechnol. 2021 49 1 38 47 10.1080/21691401.2020.1865993 33438443
    [Google Scholar]
  142. Roselan M.A. Ashari S.E. Faujan N.H. Mohd Faudzi S.M. Mohamad R. An improved nanoemulsion formulation containing kojic monooleate: Optimization, characterization and in vitro studies. Molecules 2020 25 11 2616 10.3390/molecules25112616 32512808
    [Google Scholar]
  143. Contri R.V. Fiel L.A. Pohlmann A.R. Guterres S.S. Beck R.C.R. Transport of substances and nanoparticles across the skin and in vitro models to evaluate skin permeation and/or penetration. In: Nanocosmetics and Nanomedicines: New Approaches for Skin Care. Beck R. Guterres S. Pohlmann A. Berlin, Heidelberg Springer 2011 3 35 10.1007/978‑3‑642‑19792‑5_1
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575405163251027232908
Loading
/content/journals/mrmc/10.2174/0113895575405163251027232908
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test