Full text loading...
There is an urgent need to develop effective antiviral treatments against SARS-CoV-2. Despite the availability of vaccines, drug discovery remains critical for combating emerging variants. Molecular docking studies have become a vital computational tool for identifying antiviral drugs capable of inhibiting different SARS-CoV-2 proteins. This review explores the role of metal complexes as promising viral inhibitors through in silico molecular docking approaches. The binding abilities of several coordination complexes derived from iron, copper, palladium, and zinc ions have been evaluated against major viral proteins such as the spike glycoprotein, RNA-dependent RNA polymerase (RdRp), and the main protease (Mpro), which are responsible for viral infection. Comparative docking studies of specific metal-based compounds with conventional antiviral drugs highlight their superior binding affinities and inhibitory potential. Furthermore, ADME (Absorption, Distribution, Metabolism, and Excretion) analyses, molecular dynamics simulations, and drug-delivery strategies are discussed to assess pharmacokinetics and therapeutic viability. Overall, this review emphasizes the importance of molecular docking in the rational design of metal complexes as antiviral agents and its relevance for developing effective therapeutic strategies to combat COVID-19.
Article metrics loading...
Full text loading...
References
Data & Media loading...