Skip to content
2000
image of Homometallic Polynuclear Rhodium Complexes in Anticancer Drug Development

Abstract

After cisplatin discovery in anticancer treatment, many metals have been studied as potential antitumor agents, especially group IXB elements, such as rhodium, iridium, palladium, and their complexes. The design of polymetallic complexes containing different metal centers with diverse pharmacological characteristics has raised considerable interest in the field of drug development research. This approach aims to exploit the synergistic effect of distinct metal cations, which could contribute to enhancing biological activity. The basic rationale is that the combination of two or more metal ions with the same or different cytotoxic profiles and modes of action may significantly modify the anticancer potential of the resulting complexes, thus enlarging the biological targets and improving the biodistribution properties compared to mononuclear fragments. Among the reported multinuclear anticancer complexes, rhodium-based compounds have attracted considerable attention despite their relatively limited history. The current article presents the results obtained in the field of rhodium complexes, highlighting the recent advances of polynuclear homometallic rhodium compounds as promising antineoplastic candidates. While widespread studies have focused on mononuclear rhodium complexes, the potential of polynuclear Rh-based compounds with structural and functional diversity remains rather understudied. This low interest is most likely due to the typical kinetic inertness and chemical stability of most rhodium complex compounds. These complexes have garnered considerable attention due to their enhanced cytotoxic effects, intracellular distribution, and selectivity, thereby holding promising prospects for the further development of multifunctional drug candidates with desired activity. Recent developments of polynuclear rhodium-based antitumor agents have been summarized in the current review.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575416558250822093008
2025-09-11
2025-09-21
Loading full text...

Full text loading...

References

  1. Li Y. Huang F. Stang P.J. Yin S. Supramolecular coordination complexes for synergistic cancer therapy. Acc. Chem. Res. 2024 57 8 1174 1187 10.1021/acs.accounts.4c00031 38557015
    [Google Scholar]
  2. Wang W. Xu Y. Tang Y. Li Q. Self‐assembled metal complexes in biomedical research. Adv. Mater. 2025 37 9 2416122 10.1002/adma.202416122 39713915
    [Google Scholar]
  3. Bai Y. Aodeng G. Ga L. Hai W. Ai J. Research progress of metal anticancer drugs. Pharmaceutics 2023 15 12 2750 10.3390/pharmaceutics15122750 38140091
    [Google Scholar]
  4. Notaro A. Gasser G. Monomeric and dimeric coordinatively saturated and substitutionally inert Ru(ii) polypyridyl complexes as anticancer drug candidates. Chem. Soc. Rev. 2017 46 23 7317 7337 10.1039/C7CS00356K 29027562
    [Google Scholar]
  5. Liu P. Jia J. Zhao Y. Wang K.Z. Recent advances on dark and light-activated cytotoxicity of imidazole-containing ruthenium complexes. Mini Rev. Med. Chem. 2016 16 4 272 289 10.2174/1389557516666151120120524 26586123
    [Google Scholar]
  6. Ma L. Li L. Zhu G. Platinum-containing heterometallic complexes in cancer therapy: Advances and perspectives. Inorg. Chem. Front. 2022 9 11 2424 2453 10.1039/D2QI00205A
    [Google Scholar]
  7. Li X. Zhao X. Wang W. Shi Z. Zhang Y. Tian Q. Yao Y. He C. Duan C. Biomedical applications of multinuclear Pt(II)/Ru(II)/Ir(III) metallo-supramolecular assemblies for intensive cancer therapy. Coord. Chem. Rev. 2023 495 215366 10.1016/j.ccr.2023.215366
    [Google Scholar]
  8. Czarnomysy R. Radomska D. Szewczyk O.K. Roszczenko P. Bielawski K. Platinum and palladium complexes as promising sources for antitumor treatments. Int. J. Mol. Sci. 2021 22 15 8271 10.3390/ijms22158271 34361037
    [Google Scholar]
  9. Salishcheva O. Prosekov A. Antimicrobial activity of mono- and polynuclear platinum and palladium complexes. Foods and Raw Materials 2020 8 2 298 311 10.21603/2308‑4057‑2020‑2‑298‑311
    [Google Scholar]
  10. Satapathi S. Polynuclear gold(III) compounds as anticancer agents. Int. J. Adv. Sci. Res. 2021 12 4 40 46 10.55218/JASR.202112405
    [Google Scholar]
  11. Kostova I. Cytotoxic Organometallic Iridium(III) Complexes. Molecules 2025 30 4 801 10.3390/molecules30040801 40005112
    [Google Scholar]
  12. Kostova I. Homo- and hetero-multinuclear iridium(III) complexes with cytotoxic activity. Inorganics 2025 13 5 156 10.3390/inorganics13050156
    [Google Scholar]
  13. DuChane C.M. Merola J.S. Hexafluoroacetylacetonate (hfac) as ligand for pentamethylcyclopentadienyl (Cp*) rhodium and iridium complexes: Some surprising results, including an Ir3Na1O4 cubane structure. J. Organomet. Chem. 2020 929 121552 10.1016/j.jorganchem.2020.121552
    [Google Scholar]
  14. Albalad J. Carné-Sánchez A. Grancha T. Hernández-López L. Maspoch D. Protection strategies for directionally-controlled synthesis of previously inaccessible metal–organic polyhedra (MOPs): The cases of carboxylate- and amino-functionalised Rh(ii)-MOPs. Chem. Commun. (Camb.) 2019 55 85 12785 12788 10.1039/C9CC07083D 31591620
    [Google Scholar]
  15. Furukawa S. Horike N. Kondo M. Hijikata Y. Carné-Sánchez A. Larpent P. Louvain N. Diring S. Sato H. Matsuda R. Kawano R. Kitagawa S. Rhodium–organic cuboctahedra as porous solids with strong binding sites. Inorg. Chem. 2016 55 21 10843 10846 10.1021/acs.inorgchem.6b02091 27748586
    [Google Scholar]
  16. Fan R. Bian M. Hu L. Liu W. A new rhodium(I) NHC complex inhibits TrxR: In vitro cytotoxicity and in vivo hepatocellular carcinoma suppression. Eur. J. Med. Chem. 2019 183 111721 10.1016/j.ejmech.2019.111721 31577978
    [Google Scholar]
  17. Hussain A. Alajmi M.F. Lone M.A. Wani W.A. Chemistry of rhodium. Therapeutic Rhodium Complexes. Cham Springer 2023 11 12 10.1007/978‑3‑031‑35631‑5_2
    [Google Scholar]
  18. Ma D.L. Wang M. Mao Z. Yang C. Ng C.T. Leung C.H. Rhodium complexes as therapeutic agents. Dalton Trans. 2016 45 7 2762 2771 10.1039/C5DT04338G 26743935
    [Google Scholar]
  19. Samanta S.K. Metal Organic Polygons and Polyhedra: Instabilities and Remedies. Inorganics 2023 11 1 36 10.3390/inorganics11010036
    [Google Scholar]
  20. Hussain A. Alajmi M.F. Lone M.A. Wani W.A. Therapeutic potential of rhodium complexes. Therapeutic Rhodium Complexes. Cham Springer 2023 13 53 10.1007/978‑3‑031‑35631‑5_3
    [Google Scholar]
  21. Hussain A. Alajmi M.F. Lone M.A. Wani W.A. Mechanism of therapeutic action of rhodium complexes. Therapeutic Rhodium Complexes. Cham Springer 2023 55 64 10.1007/978‑3‑031‑35631‑5_4
    [Google Scholar]
  22. Sohrabi M. Saeedi M. Larijani B. Mahdavi M. Recent advances in biological activities of rhodium complexes: Their applications in drug discovery research. Eur. J. Med. Chem. 2021 216 113308 10.1016/j.ejmech.2021.113308 33713976
    [Google Scholar]
  23. Medici S. Peana M. Nurchi V.M. Lachowicz J.I. Crisponi G. Zoroddu M.A. Noble metals in medicine: Latest advances. Coord. Chem. Rev. 2015 284 329 350 10.1016/j.ccr.2014.08.002
    [Google Scholar]
  24. Peng Y.B. Tao C. Tan C.P. Zhao P. Mitochondrial targeted rhodium(III) complexes: Synthesis, characterized and antitumor mechanism investigation. J. Inorg. Biochem. 2021 218 111400 10.1016/j.jinorgbio.2021.111400 33684684
    [Google Scholar]
  25. Wang J. Nie J.J. Guo P. Yan Z. Yu B. Bu W. Rhodium (I) complex-based polymeric nanomicelles in water exhibiting coexistent near-infrared phosphorescence imaging and anticancer activity in vivo. J. Am. Chem. Soc. 2020 142 6 2709 2714 10.1021/jacs.9b11013 31999447
    [Google Scholar]
  26. Zhang J.J. Muenzner J.K. Abu el Maaty M.A. Karge B. Schobert R. Wölfl S. Ott I. A multi-target caffeine derived rhodium(i) N-heterocyclic carbene complex: evaluation of the mechanism of action. Dalton Trans. 2016 45 33 13161 13168 10.1039/C6DT02025A 27334935
    [Google Scholar]
  27. Nasiri Sovari S. Zobi F. Recent studies on the antimicrobial activity of transition metal complexes of groups 6-12. Chemistry 2020 2 2 418 452 10.3390/chemistry2020026
    [Google Scholar]
  28. Ma D.L. He H.Z. Leung K.H. Chan D.S.H. Leung C.H. Bioactive luminescent transition-metal complexes for biomedical applications. Angew. Chem. Int. Ed. 2013 52 30 7666 7682 10.1002/anie.201208414 23765907
    [Google Scholar]
  29. Ohata J. Ball Z.T. Rhodium at the chemistry–biology interface. Dalton Trans. 2018 47 42 14855 14860 10.1039/C8DT03032D 30234200
    [Google Scholar]
  30. Katsaros N. Anagnostopoulou A. Rhodium and its compounds as potential agents in cancer treatment. Crit. Rev. Oncol. Hematol. 2002 42 3 297 308 10.1016/S1040‑8428(01)00222‑0 12050021
    [Google Scholar]
  31. Zhang W.Y. Bridgewater H.E. Banerjee S. Soldevila-Barreda J.J. Clarkson G.J. Shi H. Imberti C. Sadler P.J. Ligand-controlled reactivity and cytotoxicity of cyclometalated rhodium(III) complexes. Eur. J. Inorg. Chem. 2020 2020 11-12 1052 1060 10.1002/ejic.201901055 33776557
    [Google Scholar]
  32. Prathima T.S. Choudhury B. Ahmad M.G. Chanda K. Balamurali M.M. Recent developments on other platinum metal complexes as target-specific anticancer therapeutics. Coord. Chem. Rev. 2023 490 215231 10.1016/j.ccr.2023.215231
    [Google Scholar]
  33. Mandal A. Alternative of cisplatin - Introduction of rhodium analogues. J. Indian Chem. Soc. 2024 101 11 101389 10.1016/j.jics.2024.101389
    [Google Scholar]
  34. Štarha P. Dvořák Z. Trávníček Z. Half-sandwich Ir(III) and Rh(III) 2,2′-dipyridylamine complexes: Synthesis, characterization and in vitro cytotoxicity against the ovarian carcinoma cells. J. Organomet. Chem. 2018 872 114 122 10.1016/j.jorganchem.2018.07.035
    [Google Scholar]
  35. Dorcier A. Ang W.H. Bolaño S. Gonsalvi L. Juillerat-Jeannerat L. Laurenczy G. Peruzzini M. Phillips A.D. Zanobini F. Dyson P.J. In vitro evaluation of rhodium and osmium RAPTA analogues: The case for organometallic anticancer drugs not based on ruthenium. Organometallics 2006 25 17 4090 4096 10.1021/om060394o
    [Google Scholar]
  36. Scharwitz M.A. Ott I. Geldmacher Y. Gust R. Sheldrick W.S. Cytotoxic half-sandwich rhodium(III) complexes: Polypyridyl ligand influence on their DNA binding properties and cellular uptake. J. Organomet. Chem. 2008 693 13 2299 2309 10.1016/j.jorganchem.2008.04.002
    [Google Scholar]
  37. Gul N.S. Khan T-M. Liu Y-C. Choudhary M.I. Chen Z-F. Liang H. Pd(II) and Rh(III) complexes with isoquinoline derivatives induced mitochondriamediated apoptotic and autophagic cell death in HepG2 cells. CCS Chem. 2021 3 6 1626 1641 10.31635/ccschem.020.202000363
    [Google Scholar]
  38. Peng Y.B. He W. Niu Q. Tao C. Zhong X.L. Tan C.P. Zhao P. Mitochondria-targeted cyclometalated rhodium(iii) complexes: synthesis, characterization and anticancer research. Dalton Trans. 2021 50 26 9068 9075 10.1039/D1DT01053K 34113944
    [Google Scholar]
  39. Ali R. Aouida M. Alhaj Sulaiman A. Madhusudan S. Ramotar D. Can Cisplatin therapy be improved? Pathways that can be targeted. Int. J. Mol. Sci. 2022 23 13 7241 10.3390/ijms23137241 35806243
    [Google Scholar]
  40. Geldmacher Y. Oleszak M. Sheldrick W.S. Rhodium(III) and iridium(III) complexes as anticancer agents. Inorg. Chim. Acta 2012 393 84 102 10.1016/j.ica.2012.06.046
    [Google Scholar]
  41. Komor A.C. Schneider C.J. Weidmann A.G. Barton J.K. Cell-selective biological activity of rhodium metalloinsertors correlates with subcellular localization. J. Am. Chem. Soc. 2012 134 46 19223 19233 10.1021/ja3090687 23137296
    [Google Scholar]
  42. Ernst R.J. Komor A.C. Barton J.K. Selective cytotoxicity of rhodium metalloinsertors in mismatch repair-deficient cells. Biochemistry 2011 50 50 10919 10928 10.1021/bi2015822 22103240
    [Google Scholar]
  43. Hackenberg F. Oehninger L. Alborzinia H. Can S. Kitanovic I. Geldmacher Y. Kokoschka M. Wölfl S. Ott I. Sheldrick W.S. Highly cytotoxic substitutionally inert rhodium(III) tris(chelate) complexes: DNA binding modes and biological impact on human cancer cells. J. Inorg. Biochem. 2011 105 7 991 999 10.1016/j.jinorgbio.2011.04.006 21569751
    [Google Scholar]
  44. López-Hernández J.E. Contel M. Promising heterometallic compounds as anticancer agents: Recent studies in vivo. Curr. Opin. Chem. Biol. 2023 72 102250 10.1016/j.cbpa.2022.102250 36566618
    [Google Scholar]
  45. Kostova I. Recent developments in antitumor activity of organometallic rhodium complex compounds with macrocyclic ligands. Anticancer Potential of Macrocyclic Metal Complexes. ACS Publications 2025 197 233 10.1021/bk‑2025‑1492.ch009
    [Google Scholar]
  46. Máliková K. Masaryk L. Štarha P. Anticancer half-sandwich rhodium (III) complexes. Inorganics 2021 9 4 26 10.3390/inorganics9040026
    [Google Scholar]
  47. Gupta G. Mahesh Kumar J. Garci A. Rangaraj N. Nagesh N. Therrien B. Anticancer activity of half‐sandwich Rh III and Ir III metalla‐prisms containing lipophilic side chains. ChemPlusChem 2014 79 4 610 618 10.1002/cplu.201300425 31986703
    [Google Scholar]
  48. Parveen S. Hanif M. Leung E. Tong K.K.H. Yang A. Astin J. De Zoysa G.H. Steel T.R. Goodman D. Movassaghi S. Söhnel T. Sarojini V. Jamieson S.M.F. Hartinger C.G. Anticancer organorhodium and -iridium complexes with low toxicity in vivo but high potency in vitro: DNA damage, reactive oxygen species formation, and haemolytic activity. Chem. Commun. (Camb.) 2019 55 80 12016 12019 10.1039/C9CC03822A 31498360
    [Google Scholar]
  49. Gupta G. Kumar J. Garci A. Nagesh N. Therrien B. Exploiting natural products to build metalla-assemblies: The anticancer activity of embelin-derived Rh(III) and Ir(III) metalla-rectangles. Molecules 2014 19 5 6031 6046 10.3390/molecules19056031 24824137
    [Google Scholar]
  50. Gupta G. Oggu G.S. Nagesh N. Bokara K.K. Therrien B. Anticancer activity of large metalla-assemblies built from half-sandwich complexes. CrystEngComm 2016 18 26 4952 4957 10.1039/C6CE00139D
    [Google Scholar]
  51. Furrer J. Süss-Fink G. Thiolato-bridged dinuclear arene ruthenium complexes and their potential as anticancer drugs. Coord. Chem. Rev. 2016 309 36 50 10.1016/j.ccr.2015.10.007
    [Google Scholar]
  52. Gupta G. Garci A. Murray B.S. Dyson P.J. Fabre G. Trouillas P. Giannini F. Furrer J. Süss-Fink G. Therrien B. Synthesis, molecular structure, computational study and in vitro anticancer activity of dinuclear thiolato-bridged pentamethylcyclopentadienyl Rh(iii) and Ir(iii) complexes. Dalton Trans. 2013 42 43 15457 15463 10.1039/c3dt51991k 24022745
    [Google Scholar]
  53. Johnpeter J.P. Gupta G. Kumar J.M. Srinivas G. Nagesh N. Therrien B. Biological studies of chalcogenolato-bridged dinuclear half-sandwich complexes. Inorg. Chem. 2013 52 23 13663 13673 10.1021/ic4022307 24245963
    [Google Scholar]
  54. Gupta G. Murray B.S. Dyson P.J. Therrien B. Highly cytotoxic trithiolato-bridged dinuclear Rh(III) and Ir(III) complexes. J. Organomet. Chem. 2014 767 78 82 10.1016/j.jorganchem.2014.05.021
    [Google Scholar]
  55. Kataoka Y. Yano N. Mikuriya M. Handa M. Coordination polymers and metal–organic frameworks based on paddlewheel-type dirhodium(II) tetracarboxylates. Coord. Chem. Rev. 2022 472 214796 10.1016/j.ccr.2022.214796
    [Google Scholar]
  56. Espósito B.P. Oliveira E. Zyngier S.B. Najjar R. Effects of human serun albumin in some biological properties of rhodium(II) complexes. J. Braz. Chem. Soc. 2000 11 5 447 452 10.1590/S0103‑50532000000500003
    [Google Scholar]
  57. Reibscheid E.M. Zyngier S. Maria D.A. Mistrone R.J. Sinisterra R.D. Couto L.G. Najjar R. Antitumor effects of rhodium (II) complexes on mice bearing Ehrlich tumors. Braz. J. Med. Biol. Res. 1994 27 1 91 94 8173534
    [Google Scholar]
  58. Howard R.A. Kimball A.P. Bear J.L. Mechanism of action of tetra-mu-carboxylatodirhodium(II) in L1210 tumor suspension culture. Cancer Res. 1979 39 7 Pt 1 2568 2573 445459
    [Google Scholar]
  59. Loreto D. Ferraro G. Merlino A. Unusual structural features in the adduct of dirhodium tetraacetate with lysozyme. Int. J. Mol. Sci. 2021 22 3 1496 10.3390/ijms22031496 33540880
    [Google Scholar]
  60. Enriquez Garcia A. Jalilehvand F. Niksirat P. Reactions of Rh 2 (CH3 COO)4 with thiols and thiolates: A structural study. J. Synchrotron Radiat. 2019 26 2 450 461 10.1107/S160057751900033X 30855255
    [Google Scholar]
  61. Enriquez Garcia A. Jalilehvand F. Niksirat P. Gelfand B.S. Methionine binding to dirhodium (II) tetraacetate. Inorg. Chem. 2018 57 20 12787 12799 10.1021/acs.inorgchem.8b01979 30247895
    [Google Scholar]
  62. Popp B.V. Chen Z. Ball Z.T. Sequence-specific inhibition of a designed metallopeptide catalyst. Chem. Commun. (Camb.) 2012 48 60 7492 7494 10.1039/c2cc33808d 22728748
    [Google Scholar]
  63. Wong D.L. Stillman M.J. Metallothionein: An aggressive scavenger- The metabolism of rhodium(II) tetraacetate (Rh2(CH3CO2)4). ACS Omega 2018 3 11 16314 16327 10.1021/acsomega.8b02161 31458267
    [Google Scholar]
  64. Vohidov F. Coughlin J.M. Ball Z.T. Rhodium(II) metallopeptide catalyst design enables fine control in selective functionalization of natural SH3 domains. Angew. Chem. Int. Ed. 2015 54 15 4587 4591 10.1002/anie.201411745 25688989
    [Google Scholar]
  65. Minus M.B. Kang M.K. Knudsen S.E. Liu W. Krueger M.J. Smith M.L. Redell M.S. Ball Z.T. Assessing the intracellular fate of rhodium(ii) complexes. Chem. Commun. (Camb.) 2016 52 78 11685 11688 10.1039/C6CC05192H 27709185
    [Google Scholar]
  66. Chevalley A. Cherrier M.V. Fontecilla-Camps J.C. Ghasemi M. Salmain M. Artificial metalloenzymes derived from bovine β-lactoglobulin for the asymmetric transfer hydrogenation of an aryl ketone – Synthesis, characterization and catalytic activity. Dalton Trans. 2014 43 14 5482 5489 10.1039/C3DT53253D 24531201
    [Google Scholar]
  67. Loreto D. Merlino A. The interaction of rhodium compounds with proteins: A structural overview. Coord. Chem. Rev. 2021 442 213999 10.1016/j.ccr.2021.213999
    [Google Scholar]
  68. Tolbatov I. Marrone A. Reaction of dirhodium and diruthenium paddlewheel tetraacetate complexes with nucleophilic protein sites: A computational study. Inorg. Chim. Acta 2022 530 120684 10.1016/j.ica.2021.120684
    [Google Scholar]
  69. Gupta R.K. Pandey R. Sharma G. Prasad R. Koch B. Srikrishna S. Li P.Z. Xu Q. Pandey D.S. DNA binding and anti-cancer activity of redox-active heteroleptic piano-stool Ru(II), Rh(III), and Ir(III) complexes containing 4-(2-methoxypyridyl)phenyldipyrromethene. Inorg. Chem. 2013 52 7 3687 3698 10.1021/ic302196v 23477351
    [Google Scholar]
  70. Aguirre J.D. Angeles-Boza A.M. Chouai A. Turro C. Pellois J.P. Dunbar K.R. Anticancer activity of heteroleptic diimine complexes of dirhodium: A study of intercalating properties, hydrophobicity and in cellulo activity. Dalton Trans. 2009 48 48 10806 10812 10.1039/b915357h 20023910
    [Google Scholar]
  71. Joyce L.E. Aguirre J.D. Angeles-Boza A.M. Chouai A. Fu P.K.L. Dunbar K.R. Turro C. Photophysical properties, DNA photocleavage, and photocytotoxicity of a series of dppn dirhodium(II,II) complexes. Inorg. Chem. 2010 49 12 5371 5376 10.1021/ic100588d 20496907
    [Google Scholar]
  72. Ali Nazif M. Bangert J.A. Ott I. Gust R. Stoll R. Sheldrick W.S. Dinuclear organoiridium(III) mono- and bis-intercalators with rigid bridging ligands: Synthesis, cytotoxicity and DNA binding. J. Inorg. Biochem. 2009 103 10 1405 1414 10.1016/j.jinorgbio.2009.08.003 19744736
    [Google Scholar]
  73. Hrdina R. Dirhodium (II, II) paddlewheel complexes. Eur. J. Inorg. Chem. 2021 2021 6 501 528 10.1002/ejic.202000955
    [Google Scholar]
  74. Ernst R.J. Song H. Barton J.K. DNA mismatch binding and antiproliferative activity of rhodium metalloinsertors. J. Am. Chem. Soc. 2009 131 6 2359 2366 10.1021/ja8081044 19175313
    [Google Scholar]
  75. Chifotides H.T. Dunbar K.R. Rhodium compounds. Multiple Bonds Between Metal Atoms. Cotton F.A. Murillo C. Walton R.A. New York Springer-Science and Business Media Inc. 2005 465 589 10.1007/0‑387‑25829‑9_12
    [Google Scholar]
  76. Zyngier S. Kimura E. Najjar R. Antitumor effects of rhodium (II) citrate in mice bearing Ehrlich tumors. Braz. J. Med. Biol. Res. 1989 22 3 397 401 2804473
    [Google Scholar]
  77. Milutinović M.M. Bogojeski J.V. Klisurić O. Scheurer A. Elmroth S.K.C. Bugarčić Ž.D. Synthesis and structures of a pincer-type rhodium(iii) complex: Reactivity toward biomolecules. Dalton Trans. 2016 45 39 15481 15491 10.1039/C6DT02772E 27722449
    [Google Scholar]
  78. Chifotides H.T. Fu P.K.L. Dunbar K.R. Turro C. Effect of equatorial ligands of dirhodium(II,II) complexes on the efficiency and mechanism of transcription inhibition in vitro. Inorg. Chem. 2004 43 3 1175 1183 10.1021/ic034438m 14753842
    [Google Scholar]
  79. Bień M. Pruchnik F.P. Seniuk A. Lachowicz T.M. Jakimowicz P. Studies of antibacterial activity of binuclear rhodium (II) complexes with heterocyclic nitrogen ligands. J. Inorg. Biochem. 1999 73 1-2 49 55 10.1016/S0162‑0134(98)10090‑9 10212994
    [Google Scholar]
  80. Aguirre J.D. Angeles-Boza A.M. Chouai A. Pellois J.P. Turro C. Dunbar K.R. Live cell cytotoxicity studies: documentation of the interactions of antitumor active dirhodium compounds with nuclear DNA. J. Am. Chem. Soc. 2009 131 32 11353 11360 10.1021/ja9021717 19624128
    [Google Scholar]
  81. Sorasaenee K. Fu P.K.L. Angeles-Boza A.M. Dunbar K.R. Turro C. Inhibition of transcription in vitro by anticancer active dirhodium(II) complexes. Inorg. Chem. 2003 42 4 1267 1271 10.1021/ic020591p 12588165
    [Google Scholar]
  82. Siu F.M. Lin I.W.S. Yan K. Lok C.N. Low K.H. Leung T.Y.C. Lam T-L. Che C-M. Anticancer dirhodium(ii,ii) carboxylates as potent inhibitors of ubiquitin-proteasome system. Chem. Sci. (Camb.) 2012 3 6 1785 10.1039/c2sc00620k
    [Google Scholar]
  83. Ferraro G. Pratesi A. Messori L. Merlino A. Protein interactions of dirhodium tetraacetate: a structural study. Dalton Trans. 2020 49 8 2412 2416 10.1039/C9DT04819G 32022076
    [Google Scholar]
  84. Loreto D. Fasulo F. Muñoz-García A.B. Pavone M. Merlino A. Unexpected imidazole coordination to the dirhodium center in a protein environment: Insights from X-ray crystallography and quantum chemistry. Inorg. Chem. 2022 61 22 8402 8405 10.1021/acs.inorgchem.2c01370 35609175
    [Google Scholar]
  85. Loreto D. Esposito A. Demitri N. Guaragna A. Merlino A. Reactivity of a fluorine-containing dirhodium tetracarboxylate compound with proteins. Dalton Trans. 2022 51 9 3695 3705 10.1039/D2DT00082B 35166290
    [Google Scholar]
  86. Jalilehvand F. Enriquez Garcia A. Niksirat P. Finfrock Y.Z. Gelfand B.S. Binding of histidine and human serum albumin to dirhodium(II) tetraacetate. J. Inorg. Biochem. 2021 224 111556 10.1016/j.jinorgbio.2021.111556 34425475
    [Google Scholar]
  87. Tolbatov I. Umari P. Marrone A. The binding of diruthenium (II,III) and dirhodium (II,II) paddlewheel complexes at DNA/RNA nucleobases: Computational evidences of an appreciable selectivity toward the AU base pairs. J. Mol. Graph. Model. 2024 131 108806 10.1016/j.jmgm.2024.108806 38824876
    [Google Scholar]
  88. Loreto D. Esposito A. Demitri N. Guaragna A. Merlino A. Digging into protein metalation differences triggered by fluorine containing-dirhodium tetracarboxylate analogues. Dalton Trans. 2022 51 18 7294 7304 10.1039/D2DT00873D 35482032
    [Google Scholar]
  89. Amo-Ochoa P. Castillo O. Harrington R.W. Zamora F. Houlton A. Substituent and noncovalent interaction effects in the reactivity of purine derivatives with tetracarboxylato-dirhodium(II) units. Rationalization of a rare binding mode via N3. Inorg. Chem. 2013 52 4 2174 2181 10.1021/ic302602c 23373427
    [Google Scholar]
  90. Rubin J.R. Haromy T.P. Sundaralingam M. Structure of the anti-cancer drug complex tetrakis(μ-acetato)-bis(1-methylade-nosine)dirhodium(II) monohydrate. Acta Crystallogr. C 1991 47 8 1712 1714 10.1107/S010827019100032X 1781962
    [Google Scholar]
  91. Chifotides H.T. Dunbar K.R. Unprecedented head-to-head right-handed cross-links between the antitumor bis(μ-N,N′-di-p-tolylformamidinate) dirhodium(II,II) core and the dinucleotide d(ApA) with the adenine bases in the rare imino form. J. Am. Chem. Soc. 2007 129 41 12480 12490 10.1021/ja073422i 17883272
    [Google Scholar]
  92. Palmer A.M. Knoll J.D. Turro C. Photoinduced interactions of two dirhodium complexes with d(GTCGAC)2 probed by 2D NOESY. Dalton Trans. 2015 44 8 3640 3646 10.1039/C4DT03119A 25557067
    [Google Scholar]
  93. Chifotides H.T. Koomen J.M. Kang M. Tichy S.E. Dunbar K.R. Russell D.H. Binding of DNA purine sites to dirhodium compounds probed by mass spectrometry. Inorg. Chem. 2004 43 20 6177 6187 10.1021/ic040040u 15446862
    [Google Scholar]
  94. Tito G. Troisi R. Ferraro G. Geri A. Massai L. Messori L. Sica F. Merlino A. Dirhodium tetraacetate binding to a B-DNA double helical dodecamer probed by X-ray crystallography and mass spectrometry. Dalton Trans. 2023 52 21 6992 6996 10.1039/D3DT00320E 37199244
    [Google Scholar]
  95. Tolbatov I. Marrone A. Kinetics of reactions of dirhodium and diruthenium paddlewheel tetraacetate complexes with nucleophilic protein sites: Computational Insights. Inorg. Chem. 2022 61 41 16421 16429 10.1021/acs.inorgchem.2c02516 36194651
    [Google Scholar]
  96. Fandzloch M. Augustyniak A.W. Dobrzańska L. Jędrzejewski T. Sitkowski J. Wypij M. Golińska P. First dinuclear rhodium(II) complexes with triazolopyrimidines and the prospect of their potential biological use. J. Inorg. Biochem. 2020 210 111072 10.1016/j.jinorgbio.2020.111072 32563102
    [Google Scholar]
  97. Pyatakov D.A. Sokolov A.N. Astakhov A.V. Chernenko A.Y. Fakhrutdinov A.N. Rybakov V.B. Chernyshev V.V. Chernyshev V.M. Diversity oriented synthesis of polycyclic heterocycles through the condensation of 2-amino[1,2,4] triazolo[1,5- a]pyrimidines with 1,3-diketones. J. Org. Chem. 2015 80 21 10694 10709 10.1021/acs.joc.5b01908 26426734
    [Google Scholar]
  98. Gamal-Eldeen A.M. Hamdy N.A. Abdel-Aziz H.A. El-Hussieny E.A. Fakhr I.M.I. Induction of intrinsic apoptosis pathway in colon cancer HCT-116 cells by novel 2-substituted-5,6,7,8-tetrahydronaphthalene derivatives. Eur. J. Med. Chem. 2014 77 323 333 10.1016/j.ejmech.2014.03.021 24657569
    [Google Scholar]
  99. Gomha S.M. Eldebss T.M.A. Abdulla M.M. Mayhoub A.S. Diphenylpyrroles: Novel p53 activators. Eur. J. Med. Chem. 2014 82 472 479 10.1016/j.ejmech.2014.05.082 24934571
    [Google Scholar]
  100. Fandzloch M. Dobrzańska L. Jędrzejewski T. Jezierska J. Wiśniewska J. Łakomska I. Synthesis, structure and biological evaluation of ruthenium(III) complexes of triazolopyrimidines with anticancer properties. J. Biol. Inorg. Chem. 2020 25 1 109 124 10.1007/s00775‑019‑01743‑5 31741123
    [Google Scholar]
  101. Fandzloch M. Jaromin A. Zaremba-Czogalla M. Wojtczak A. Lewińska A. Sitkowski J. Wiśniewska J. Łakomska I. Gubernator J. Nanoencapsulation of a ruthenium(ii) complex with triazolopyrimidine in liposomes as a tool for improving its anticancer activity against melanoma cell lines. Dalton Trans. 2020 49 4 1207 1219 10.1039/C9DT03464A 31903475
    [Google Scholar]
  102. A, B.P.R.; A, U.; T, C.; Bethu, M.S.; J, V.R.; Deb, D.K.; Sarkar, B.; Kaminsky, W.; Kollipara, M.R. The in vitro antitumor activity of oligonuclear polypyridyl rhodium and iridium complexes against cancer cells and human pathogens. J. Organomet. Chem. 2016 824 131 139 10.1016/j.jorganchem.2016.10.018
    [Google Scholar]
  103. Sudding L.C. Payne R. Govender P. Edafe F. Clavel C.M. Dyson P.J. Therrien B. Smith G.S. Evaluation of the in vitro anticancer activity of cyclometalated half-sandwich rhodium and iridium complexes coordinated to naphthaldimine-based poly(propyleneimine) dendritic scaffolds. J. Organomet. Chem. 2014 774 79 85 10.1016/j.jorganchem.2014.10.003
    [Google Scholar]
  104. Burgoyne A.R. Kaschula C.H. Parker M.I. Smith G.S. In vitro Cytotoxicity of Half‐Sandwich Platinum Group Metal Complexes of a Cationic Alkylated Phosphaadamantane Ligand. Eur. J. Inorg. Chem. 2016 2016 8 1267 1273 10.1002/ejic.201501458
    [Google Scholar]
  105. Chellan P. Land K.M. Shokar A. Au A. An S.H. Taylor D. Smith P.J. Riedel T. Dyson P.J. Chibale K. Smith G.S. Synthesis and evaluation of new polynuclear organometallic Ru(ii), Rh(ii) and Ir(iii) pyridyl ester complexes as in vitro antiparasitic and antitumor agents. Dalton Trans. 2014 43 2 513 526 10.1039/C3DT52090K 24121555
    [Google Scholar]
  106. Burgoyne A.R. Makhubela B.C.E. Meyer M. Smith G.S. Trinuclear Half‐Sandwich RuII, RhIII and IrIII Polyester Organometallic Complexes: Synthesis and in vitro Evaluation as Antitumor Agents. Eur. J. Inorg. Chem. 2015 2015 8 1433 1444 10.1002/ejic.201403192
    [Google Scholar]
  107. Steel T.R. Tong K.K.H. Söhnel T. Jamieson S.M.F. Wright L.J. Crowley J.D. Hanif M. Hartinger C.G. Homodinuclear organometallics of ditopic N,N-chelates: Synthesis, reactivity and in vitro anticancer activity. Inorg. Chim. Acta 2021 518 120220 10.1016/j.ica.2020.120220
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575416558250822093008
Loading
/content/journals/mrmc/10.2174/0113895575416558250822093008
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: drug development ; polynuclear ; complexes ; Rhodium ; anticancer ; homometallic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test