Skip to content
2000
image of Optical Biosensors: A Comprehensive Review of Their Applications in Photoplethysmography, Environmental Monitoring, and Medical Diagnostics

Abstract

Medical diagnostics, environmental monitoring, and food safety are key domains being transformed by the ongoing revolution in optical biosensors. These light sensors are highly sensitive and specific for detecting specific biological interactions, allowing for real-time, label-free detection. Biorecognition elements (such as enzymes, antibodies, or nucleic acids), following interaction with the target analyte, generate optical signals based on the same key principles as optical biosensors. Surface plasmon resonance (SPR), fluorescence-based sensors, and fiber optic sensors offer a wide range of biosensors capable of detecting a broad spectrum of biological and chemical agents at trace concentrations. Diagnostic capability has become efficient and rapid with advances in nanotechnology and microelectronics, particularly in nanopores. Monitoring of cardiovascular health using wearable optical biosensors, such as photoplethysmography (PPG), is a non-invasive method. It has also been recently improved to better track heart rate and blood pressure, as well as evaluate mental and vascular health. Wearable optical biosensors support technologies, such as continuous monitoring and early detection of anomalies, which help in personalized healthcare. Optical biosensors are particularly suitable for detecting pathogens, biomarkers, and pollutants in clinical settings, as well as for environmental monitoring and food safety assessments. These applications range from biopharmaceuticals to biotechnology and personalized care, which are used to monitor diseases, discover drugs, and detect pathogens. Despite progress, matrix interference with the sample matrix, sensor stability, and miniaturization remain challenges to be overcome. However, with future progress in materials science, nanotechnology, and increased integration with the Internet of Things (IoT), the potential for optical biosensors will continue to rise as portable, cost-effective, real-time data-analyzing diagnostic tools that expand accessibility to those in underserved regions. Developed using optical and electrochemical approaches, the biosensors reviewed in this article are discussed in terms of their principles, types, applications, and prospects, including their roles in healthcare and environmental sectors.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575403525250822093011
2025-09-11
2025-09-14
Loading full text...

Full text loading...

References

  1. Clark L.C.J. Lions C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1968 102 29 45 10.1111/j.1749‑6632.1962.tb13623.x
    [Google Scholar]
  2. de Silva A.P. Gunaratne H.Q. Gunnlaugsson T. Huxley A.J. McCoy C.P. Rademacher J.T. Rice T.E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 1997 97 1515 1566 10.1021/cr960386p
    [Google Scholar]
  3. Johnson I. Fluorescent probes for living cells. Histochem. J. 1998 30 123 140 10.1023/a:1003287101868
    [Google Scholar]
  4. Terai T. Nagano T. Fluorescent probes for bioimaging applications. Curr. Opin. Chem. Biol. 2008 12 515 521 10.1016/j.cbpa.2008.08.007
    [Google Scholar]
  5. Dey D. Goswami T. Optical biosensors: A revolution towards quantum nanoscale electronics device fabrication. J. Biomed. Biotechnol. 2011 2011 348218 10.1155/2011/348218
    [Google Scholar]
  6. Zanchetta G. Lanfranco R. Giavazzi F. Bellini T. Buscaglia M. Emerging applications of label-free optical biosensors. Nanophotonics 2017 6 4 627 645
    [Google Scholar]
  7. Dhar Malhotra B. Ali M.A. Nanomaterials in biosensors: Fundamentals and applications. In: Nanomaterials Biosens 2018 pp. 1 74
    [Google Scholar]
  8. Velasco-Garcia M.N. Optical biosensors for probing at the cellular level: A review of recent progress and future prospects. Semin. Cell Dev. Biol. 2009 20 27 33 10.1016/j.semcdb.2009.01.013
    [Google Scholar]
  9. Xiong Y. Huang Q. Canady T.D. Barya P. Liu S. Arogundade O.H. Race C.M. Che C. Wang X. Zhou L. Photonic crystal enhanced fluorescence emission and blinking suppression for single quantum dot digital resolution biosensing. Nat. Commun. 2022 13 4647 10.1038/s41467‑022‑32387‑w
    [Google Scholar]
  10. Sansone L. Macchia E. Taddei C. Torsi L. Giordano M. Label-free optical biosensing at femtomolar detection limit. Sens. Actuators B Chem. 2018 255 1097 1104 10.1016/j.snb.2017.08.059
    [Google Scholar]
  11. Sarkar A. Sarkar K.D. Amrutha V. Dutta K. An overview of enzyme-based biosensors for environmental monitoring. Tools, techniques and protocols for monitoring environmental contaminants. 1st ed Amsterdam, The Netherlands Elsevier 2019 307 329
    [Google Scholar]
  12. Zhu Y.C. Mei L.P. Ruan Y.F. Zhang N. Zhao W.W. Xu J.J. Chen H.Y. Enzyme-based biosensors and their applications. 1st ed Amsterdam, The Netherlands Elsevier 2019
    [Google Scholar]
  13. Zhang Z. Zeng K. Liu J. Immunochemical detection of emerging organic contaminants in environmental waters. TrAC. Trends Analyt. Chem. 2017 87 49 57 10.1016/j.trac.2016.12.002
    [Google Scholar]
  14. Singh K.V. Kaur J. Varshney G.C. Raje M. Suri C.R. Synthesis and characterization of hapten-protein conjugates for antibody production against small molecules. Bioconjugate. Chem. 2004 15 168 173 10.1021/bc034158v
    [Google Scholar]
  15. Pohanka M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials 2018 11 448 10.3390/ma11030448
    [Google Scholar]
  16. Gautam A.P. Review on recent advances in biosensors for detection of water. Int. J. Environ. Sci. 2012 2 1565 1574 10.6088/ijes.002020300041
    [Google Scholar]
  17. Paltusheva Z.U. Ashikbayeva Z. Tosi D. Gritsenko L.V. Highly sensitive zinc oxide fiber-optic biosensor for the detection of CD44 protein. Biosensors 2022 12 11 1015 10.3390/bios12111015
    [Google Scholar]
  18. Piliarik M. Vaisocherová H. Homola J. Surface plasmon resonance biosensing. Meth Mol. Biol. 2009 503 65 88 10.1007/978‑1‑60327‑567‑5_5
    [Google Scholar]
  19. Nejati-Koshki K. Fathi F. Arabzadeh A. Mohammadzadeh A. Biomarkers and optical based biosensors in cardiac disease detection: Early and accurate diagnosis. Analyt. Meth Adv. Meth Appl. 2023 15 41 5441 5458 10.1039/d3ay01414b
    [Google Scholar]
  20. Kumar V. Bhatt D. Saruchi; Pandey, S. Luminescence nanomaterials for biosensing applications. J. Biol. Chem. 2023 38 7 1011 1025 10.1002/bio.4373
    [Google Scholar]
  21. Adiguzel Y. Biosensor with UV spectrophotometric detection. Proceedings 2018 2 3 113 10.3390/ecsa‑4‑04928
    [Google Scholar]
  22. Hirsch M. Majchrowicz D. Wierzba P. Weber M. Bechelany M. Jędrzejewska-Szczerska M. Low-coherence interferometric fiber-optic sensors with potential applications as biosensors. Sensors 2017 17 2 261
    [Google Scholar]
  23. Fathi F. Rashidi M.R. Pakchin P.S. Ahmadi-Kandjani S. Nikniazi A. Photonic crystal based biosensors: Emerging inverse opals for biomarker detection. Talanta 2021 221 121615 10.1016/j.talanta.2020.121615
    [Google Scholar]
  24. Udhani R. Kothari C. Kumar S. Biosensors and lateral flow immunoassays: Current state and future prospects. Clin. Chim. Acta 2025 574 120272 10.1016/j.cca.2025.120272
    [Google Scholar]
  25. Rho D. Breaux C. Kim S. Label-free optical resonator-based biosensors. Sensors 2020 20 20 5901 10.3390/s20205901
    [Google Scholar]
  26. Roda A. Mirasoli M. Michelini E. Di Fusco M. Zangheri M. Cevenini L. Roda B. Simoni P. Progress in chemical luminescence-based biosensors: A critical review. Biosens. Bioelect. 2016 76 164 179 10.1016/j.bios.2015.06.017
    [Google Scholar]
  27. Riedel T. Diagnosis of EpsteineBarr virus infection in clinical serum samples by an SPR biosensor assay. Biosens. Bioelectron. 2014 55 278 284 10.1016/j.bios.2013.12.011
    [Google Scholar]
  28. Endo T. Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal. Chem. 2006 78 6465 6475 10.1021/ac0608321
    [Google Scholar]
  29. Oliveira Brett A.M. Chapter 4 DNA-based biosensors. In:Compr. Anal. Chem. 2005 44 179 208
    [Google Scholar]
  30. Pimková K. Surface plasmon resonance biosensor for the detection of VEGFR-1-a protein marker of myelodysplastic syndromes. Anal. Bioanal. Chem. 2012 402 381 387 10.1007/s00216‑011‑5395‑3
    [Google Scholar]
  31. Piliarik M. High-resolution biosensor based on localized surface plasmons. Opt. Express 2012 20 672 680
    [Google Scholar]
  32. Yuan J. Detection of serum human epididymis secretory protein 4 in patients with ovarian cancer using a label-free biosensor based on localized surface plasmon resonance. Int. J. Nanomed 2012 7 2921 2928 10.2147/IJN.S32641
    [Google Scholar]
  33. Lee J.H. Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1. Nanomedicine 2013 9 1018 1026 10.1016/j.nano.2013.03.005
    [Google Scholar]
  34. Hammond J. Localized surface plasmon resonance as a biosensing platform for developing countries. Biosensors 2014 4 172 10.3390/bios4020172
    [Google Scholar]
  35. Tomassetti M. Conta G. Campanella L. Favero G. Sanzo G. Mazzei F. Antiochia R. A flow SPR immunosensor based on a sandwich direct method. Biosensors 2016 6 22 10.3390/bios6020022
    [Google Scholar]
  36. Gong J. Peng W. Han Y. Liu W. Han S. Guo T. He Y. A surface plasmon resonance sensor for antibiotics detection based on photo-initiated polymerization molecularly imprinted array. Talanta 2016 161 797 803 10.1016/j.talanta.2016.09.049
    [Google Scholar]
  37. Lamarca R.S. Franco D.F. Nalin M. de Lima Gomes P.C.F. Messaddeq Y. Label-free ultrasensitive and environment-friendly immunosensor based on a silica optical fiber for the determination of ciprofloxacin in wastewater samples. Anal. Chem. 2020 92 14415 14422 10.1021/acs.analchem.0c02355
    [Google Scholar]
  38. Cennamo N. Zeni L. Ricca E. Isticato R. Marzullo V.M. Capo A. Staiano M. D’Auria S. Varriale A. Detection of naphthalene in sea-water by a label-free plasmonic optical fiber biosensor. Talanta 2019 194 289 97 10.1016/j.talanta.2018.10.051
    [Google Scholar]
  39. Zhang H. Yang L. Zhou B. Liu W. Ge J. Wu J. Wang Y. Wang P. Ultrasensitive and selective gold film-based detection of mercury (II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time. Biosens. Bioelectron. 2013 47 391 5 10.1016/j.bios.2013.03.067
    [Google Scholar]
  40. Chang C.C. Lin S. Wei S.C. Chen C.Y. Lin C.W. An amplified surface plasmon resonance “turn-on” sensor for mercury ion using gold nanoparticles. Biosens. Bioelectron. 2011 30 235 240 10.1016/j.bios.2011.09.018
    [Google Scholar]
  41. Hegnerová K. Homola J. Surface plasmon resonance sensor for detection of bisphenol A in drinking water. Sens. Actuators B Chem. 2010 151 177 9 10.1016/j.snb.2010.09.025
    [Google Scholar]
  42. Jia K. A lower limit of detection for atrazine was obtained using bioluminescent reporter bacteria via a lower incubation temperature. Ecotoxicol. Environ. Saf. 2012 84 221 6
    [Google Scholar]
  43. Biran I. Optical imaging fiber-based live bacterial cell array biosensor. Anal. Biochem. 2003 315 106 13 10.1016/S0003‑2697(02)00700‑5
    [Google Scholar]
  44. Golden J.P. Fluorometer and tapered fiber optic probes for sensing in the evanescent wave. Opt. Eng. 1992 31 1458 62
    [Google Scholar]
  45. Zhou C. A compact fiber-optic immunosensor based on evanescent wave excitation using a semiconductor laser. Sens. Actuators B Chem. 1997 42 169 75
    [Google Scholar]
  46. Shahar H. Tan L.L. Ta G.C. Heng L.Y. Optical enzymatic biosensor membrane for rapid in situ detection of organohalide in water samples. Microchem. J. 2019 146 41 8
    [Google Scholar]
  47. Han S. Zhou X. Tang Y. He M. Zhang X. Shi H. Xiang Y. Practical, highly sensitive, and regenerable evanescent- wave biosensor for detection of Hg2+ and Pb2+ in water. Biosens. Bioelectron. 2016 80 265 72 10.1016/j.bios.2016.01.070
    [Google Scholar]
  48. Yildirim N. Long F. He M. Gao C. Shi H.C. Gu A.Z. A portable DNAzyme-based optical biosensor for highly sensitive and selective detection of lead (II) in water sample. Talanta 2014 129 617 22 10.1016/j.talanta.2014.03.062
    [Google Scholar]
  49. Arjmand M. Saghafifar H. Alijanianzadeh M. Soltanolkotabi M. A sensitive tapered-fiber optic biosensor for the label-free detection of organophosphate pesticides. Sens. Actuators B Chem. 2017 249 523 32 10.1016/j.snb.2017.04.121
    [Google Scholar]
  50. Taitt C.R. Evanescent wave fluorescence biosensors: Advances of the last decade. Biosens. Bioelectron. 2015 76 103 11
    [Google Scholar]
  51. Lochhead M.J. Rapid multiplexed immunoassay for simultaneous serodiagnosis of HIV-1 and coinfections. J. Clin. Microbiol. 2011 49 3584 3590 10.1016/j.bios.2015.07.040
    [Google Scholar]
  52. Yildirim N. Aptamer-based optical biosensor for rapid and sensitive detection of 17beta-estradiol in water samples. Environ. Sci. Technol. 2012 46 3288 3294 10.1021/es203624w
    [Google Scholar]
  53. Liu L. Zhou X. Lu M. Zhang M. Yang C. Ma R. Memon A.G. Shi H. Qian Y. An array fluorescent biosensor based on planar waveguide for multianalyte determination in water samples. Sens. Actuators B Chem. 2017 240 107 113 10.1016/j.snb.2016.08.118
    [Google Scholar]
  54. Xiao-Hong Z. Bao-Dong S. Han-Chang S. Lan-Hua L. Hong-Li G. Miao H. An evanescent wave multichannel immunosensor system for the highly sensitive detection of small analytes in water samples. Sens. Actuators B Chem. 2014 198 150 6 10.1016/j.snb.2014.02.106
    [Google Scholar]
  55. Liu R. Guan G. Wang S. Zhang Z. Core-Shell nano- structured molecular imprinting fluorescent chemosensor for selective detection of atrazine herbicide. Analyst 2011 136 184 190
    [Google Scholar]
  56. Liu L. Zhou X. Lu Y. Shi H. Ma M. Yu T. Triple functional small-molecule-protein conjugate mediated optical biosensor for quantification of estrogenic activities in water samples. Environ. Int. 2019 132 105091 10.1016/j.envint.2019.105091
    [Google Scholar]
  57. Herranz S. Marazuela M.D. Moreno-Bondi M.C. Automated portable array biosensor for multisample microcystin analysis in freshwater samples. Biosens. Bioelectron. 2012 33 50 55 10.1016/j.bios.2011.12.016
    [Google Scholar]
  58. Gupta S. Sarkar S. Katranidis A. Bhattacharya J. Development of a cell-free optical biosensor for detection of a broad range of mercury contaminants in water: A plasmid DNA-based approach. ACS Omega 2019 4 9480 9487 10.1021/acsomega.9b00205
    [Google Scholar]
  59. Nocerino V. Miranda B. Tramontano C. Chianese G. Dardano P. Rea I. De Stefano L. Plasmonic nanosensors: Design, fabrication, and applications in biomedicine. Chemosensors 2022 10 5 150 10.3390/chemosensors10050150
    [Google Scholar]
  60. Seitz W.R. Transducer mechanisms for optical biosensors. Part 1: The chemistry of transduction. Comput. Methods Programs Biomed. 1989 30 1 9 19 10.1016/0169‑2607(89)90118‑1
    [Google Scholar]
  61. Kumar S. Iadicicco A. Kim S. Tosi D. Marques C. Introduction to the feature issue: Advances in optical biosensors for biomedical applications. Biomed. Optics. Express 2024 15 5 3183 3190 10.1364/BOE.527613
    [Google Scholar]
  62. Liu J. Jalali M. Mahshid S. Wachsmann-Hogiu S. Are plasmonic optical biosensors ready for use in point-of-need applications? The Analyst 2020 145 2 364 384 10.1039/c9an02149c
    [Google Scholar]
  63. Chen C. Wang, J. Optical biosensors: An exhaustive and comprehensive review. Analyst 2020 145 5 1605 1628
    [Google Scholar]
  64. Kalakonda S.N. Bammidi R. Edubilli H. Medapati S. Boyina S.L.D. Prasad V.V.S. Biosensors – An insight into the electrochemical and optical biosensors. Int. J. Pharm. Investig. 2023 13 3 402 412 10.5530/ijpi.13.3.051
    [Google Scholar]
  65. Herrera-Domínguez M. Morales-Luna G. Mahlknecht J. Cheng Q. Aguilar-Hernández I. Ornelas-Soto N. Optical biosensors and their applications for the detection of water pollutants. Biosensors 2023 13 3 370 10.3390/bios13030370
    [Google Scholar]
  66. Naresh V. Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021 21 4 1109 10.3390/s21041109
    [Google Scholar]
  67. Mostufa H. Oh S.H. Maier S.A. Homola J. Advances and applications of nanophotonic biosensors. Nat. Nanotech. 2022 17 1 5 16 10.1038/s41565‑021‑01045‑5
    [Google Scholar]
  68. Dinish U.S. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens. Bioelectron. 2012 33 293 98 10.1016/j.bios.2011.12.056
    [Google Scholar]
  69. Srivastava S.K. SERS biosensor using metallic nanosculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin. Small 2014 10 3579 87 10.1002/smll.201303218
    [Google Scholar]
  70. Feng C. Optical aptasensors for quantitative detection of small biomolecules: A review. Biosens. Bioelectron. 2014 59 64 74 10.1016/j.bios.2014.03.014
    [Google Scholar]
  71. Pollet J. Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions. Biosens. Bioelectron. 2009 25 864 9 10.1016/j.bios.2009.08.045
    [Google Scholar]
  72. Wang W. Aptamer-based PDMS-gold nanoparticle composite as a platform for visual detection of biomolecules with silver enhancement. Biosens. Bioelectron. 2011 26 3110 4 10.1016/j.bios.2010.10.034
    [Google Scholar]
  73. Mostufa S. Rezaei B. Ciannella S. Yari P. Gómez-Pastora J. He R. Wu K. Advancements and perspectives in optical biosensors. ACS Omega 2024 9 23 24181 24202 10.1021/acsomega.4c01872
    [Google Scholar]
  74. Damborský P. Švitel J. Katrlík, J. Optical biosensors. Essays Biochem. 2016 60 1 91 100 10.1042/EBC20150010
    [Google Scholar]
  75. Gangwar R.K. Pathak A.K. Kumar S. Recent progress in photonic crystal devices and their applications: A review. Photonics 2023 10 11 1199 10.3390/photonics10111199
    [Google Scholar]
  76. Knight S. Lipoth J. Namvari M. Gu C. Hedayati M. Syed-Abdul S. Spiteri R.J. The accuracy of wearable photoplethysmography sensors for telehealth monitoring: A scoping review. Telemed. J. E Health 2023 29 6 813 828 10.1089/tmj.2022.0182
    [Google Scholar]
  77. Kim K.B. Baek H.J. Photoplethysmography in wearable devices: A comprehensive review of technological advances, current challenges, and future directions. Electronics 2023 12 13 2923 10.3390/electronics12132923
    [Google Scholar]
  78. Charlton P.H. Allen J. Bailón R. Baker S. Behar J.A. Chen F. Clifford G.D. Clifton D.A. Davies H.J. Ding C. Ding X. Dunn J. Elgendi M. Ferdoushi M. Franklin D. Gil E. Hassan M.F. Hernesniemi J. Hu X. Ji N. Zhu T. The 2023 wearable photoplethysmography roadmap. Physiol. Meas. 2023 44 11 111001 10.1088/1361‑6579/acead2
    [Google Scholar]
  79. Charlton P.H. Kyriaco P.A. Mant J. Marozas V. Chowienczyk P. Alastruey J. Wearable photoplethysmography for cardiovascular monitoring. Instit. Elect. Elect. Eng. 2022 110 3 355 381 10.1109/JPROC.2022.3149785
    [Google Scholar]
  80. Allen J. Kyriacou P.A. Editorial: Advances in basic and applied research in photoplethysmography. Front. Physiol. 2024 15 1415049 10.3389/fphys.2024.1415049
    [Google Scholar]
  81. Khonina S.N. Kazanskiy N.L. Butt M.A. Optical fibre-based sensors—an assessment of current innovations. Biosensors 2023 13 9 835 10.3390/bios13090835
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575403525250822093011
Loading
/content/journals/mrmc/10.2174/0113895575403525250822093011
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test