Skip to content
2000
Volume 25, Issue 18
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

The urinary tract (UT) was once considered sterile, but now it is known to host a diverse community of microorganisms, known as the urinary microbiome. The collective microbiota is made up of bacteria, fungi, and viruses, necessary for maintaining UT health. This review aims to synthesize current knowledge on the urinary microbiome and clarify its emerging role as a key modulator in both health and a wide spectrum of UT disorders. Dysbiosis within this microbial community has been linked to conditions such as urinary tract infections (UTIs), interstitial cystitis/bladder pain syndrome (IC/BPS), urinary incontinence, urolithiasis, benign prostatic hyperplasia (BPH), and even urinary tract malignancies. Advances in methodologies, such as expanded quantitative urine culture and metagenomics, have provided valuable insights into microbial variability influenced by factors like age, sex, and disease conditions. Additionally, this review explores the therapeutic potential of probiotics and bacteriophages, as well as the association of urinary microbiota with autoimmune and inflammatory conditions. Special emphasis is placed on translational relevance, including emerging microbiome-targeted therapies and personalized interventions for UTIs. Ethical considerations allied with UT microbiome research, such as data privacy, informed consent, and equitable access to emerging therapies, are also discussed. Despite substantial progress, challenges such as methodological heterogeneity, a lack of longitudinal data, and unresolved causal relationships persist. The study concludes by identifying key knowledge gaps and proposing future directions for multidisciplinary research to advance therapeutic innovation in urological health.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575398906250825113635
2025-09-10
2026-01-03
Loading full text...

Full text loading...

References

  1. TangJ. Microbiome in the urinary system - A review.AIMS Microbiol.20173214315410.3934/microbiol.2017.2.143 31294154
    [Google Scholar]
  2. HazenJ.E. The enemy within: An investigation of the intracellular bacteria in urinary tract infections. Doctor of Philosophy.Washington University in St Louis2022
    [Google Scholar]
  3. PrattC. Modified reporting of positive urine cultures to reduce treatment of catheter-associated asymptomatic bacteriuria (CAASB) among inpatients: A randomized controlled trial.Master's Thesis, Memorial University of Newfoundland2021
    [Google Scholar]
  4. ColellaM. TopiS. PalmirottaR. D’AgostinoD. CharitosI.A. LoveroR. SantacroceL. An overview of the microbiota of the human urinary tract in health and disease: Current issues and perspectives.Life2023137148610.3390/life13071486 37511861
    [Google Scholar]
  5. SirisinhaS. The potential impact of gut on your health: Current status and future challenges.Asian Pac. J. Allergy Immunol.201634424926410.12932/AP0803 28042926
    [Google Scholar]
  6. JonesJ. MurphyC.P. SleatorR.D. CulliganE.P. The urobiome, urinary tract infections, and the need for alternative therapeutics.Microb. Pathog.2021161Part B10529510.1016/j.micpath.2021.105295
    [Google Scholar]
  7. DuerkopB.A. VaishnavaS. HooperL.V. Immune responses to the microbiota at the intestinal mucosal surface.Immunity200931336837610.1016/j.immuni.2009.08.009 19766080
    [Google Scholar]
  8. Jones-FreemanB. ChonwerawongM. MarcelinoV.R. DeshpandeA.V. ForsterS.C. StarkeyM.R. The microbiome and host mucosal interactions in urinary tract diseases.Mucosal Immunol.202114477979210.1038/s41385‑020‑00372‑5 33542492
    [Google Scholar]
  9. Rowan-NashA.D. KorryB.J. MylonakisE. BelenkyP. Cross-domain and viral interactions in the microbiome.Microbiol. Mol. Biol. Rev.20198310.1128/MMBR.00044‑18
    [Google Scholar]
  10. NeugentM.L. KumarA. HulyalkarN.V. LutzK.C. NguyenV.H. FuentesJ.L. ZhangC. NguyenA. SharonB.M. KuprasertkulA. AruteA.P. EbrahimzadehT. NatesanN. XingC. ShulaevV. LiQ. ZimmernP.E. PalmerK.L. De NiscoN.J. Recurrent urinary tract infection and estrogen shape the taxonomic ecology and function of the postmenopausal urogenital microbiome.Cell Rep. Med.202231010075310.1016/j.xcrm.2022.100753 36182683
    [Google Scholar]
  11. KimJ.M. ParkY.J. Lactobacillus and urine microbiome in association with urinary tract infections and bacterial vaginosis.Urogenit. Tract. Infect.201813171310.14777/uti.2018.13.1.7
    [Google Scholar]
  12. Javan Balegh MarandA. Van KoeveringeG.A. JanssenD. VahedN. VögeliT-A. HeesakkersJ. HajebrahimiS. Rahnama’iM.S. Urinary microbiome and its correlation with disorders of the genitourinary system.Urol. J.202118325927010.22037/uj.v16i7.5976 33550579
    [Google Scholar]
  13. Suarez ArbelaezM.C. MonshineJ. PortoJ.G. ShahK. SinghP.K. RoyS. AminK. MarcovichR. HerrmannT.R.W. ShahH.N. The emerging role of the urinary microbiome in benign noninfectious urological conditions: An up-to-date systematic review.World J. Urol.202341112933294810.1007/s00345‑023‑04588‑5 37737900
    [Google Scholar]
  14. YuanF. HuangZ. YangT. WangG. LiP. YangB. LiJ. Pathogenesis of Proteus mirabilis in catheter-associated urinary tract infections.Urol. Int.20211055-635436110.1159/000514097 33691318
    [Google Scholar]
  15. PulipatiS. BabuP.S. NarasuM.L. AnushaN. An overview on urinary tract infections and effective natural remedies.Faslnamah-i Giyahan-i Daruyi201755056
    [Google Scholar]
  16. SobelJ.D. VazquezJ.A. Fungal infections of the urinary tract.World J. Urol.199917641041410.1007/s003450050167 10654372
    [Google Scholar]
  17. PaduchD.A. Viral lower urinary tract infections.Curr. Urol. Rep.20078432433510.1007/s11934‑007‑0080‑y 18519018
    [Google Scholar]
  18. PriceT.K. WolffB. HalversonT. LimeiraR. BrubakerL. DongQ. MuellerE.R. WolfeA.J. Temporal dynamics of the adult female lower urinary tract microbiota.MBio202011210.1128/mbio.00475‑20
    [Google Scholar]
  19. MeštrovićT. MatijašićM. PerićM. Čipčić PaljetakH. BarešićA. VerbanacD. The role of gut, vaginal, and urinary microbiome in urinary tract infections: From bench to bedside.Diagnostics2020111710.3390/diagnostics11010007 33375202
    [Google Scholar]
  20. HicklingD.R. SunT.T. WuX.R. Anatomy and physiology of the urinary tract: relation to host defense and microbial infection.Microbiol. Spectr.2015343.4.2110.1128/microbiolspec.UTI‑0016‑2012 26350322
    [Google Scholar]
  21. WorkowskiK.A. BachmannL.H. ChanP.A. JohnstonC.M. MuznyC.A. ParkI. RenoH. ZenilmanJ.M. BolanG.A. Sexually transmitted infections treatment guidelines, 2021.MMWR Recomm. Rep.2021704118710.15585/mmwr.rr7004a1 34292926
    [Google Scholar]
  22. AmbrogiM. Neuroendocrine Cells and Serotonin Mediated a Urethral Defense Against UTIs. Doctor of Philosophy.The University of Wisconsin - Madison2024
    [Google Scholar]
  23. StormeO. Tirán SaucedoJ. Garcia-MoraA. Dehesa-DávilaM. NaberK.G. Risk factors and predisposing conditions for urinary tract infection.Ther. Adv. Urol.201911175628721881438210.1177/1756287218814382 31105772
    [Google Scholar]
  24. ZengG. ZhuW. LamW. BayramgilA. Treatment of urinary tract infections in the old and fragile.World J. Urol.202038112709272010.1007/s00345‑020‑03159‑2 32221713
    [Google Scholar]
  25. RagnarsdóttirB. LutayN. Grönberg-HernandezJ. KövesB. SvanborgC. Genetics of innate immunity and UTI susceptibility.Nat. Rev. Urol.20118844946810.1038/nrurol.2011.100 21750501
    [Google Scholar]
  26. KawalecA. ZwolińskaD. Emerging role of microbiome in the prevention of urinary tract infections in children.Int. J. Mol. Sci.202223287010.3390/ijms23020870 35055056
    [Google Scholar]
  27. WhitesideS.A. RazviH. DaveS. ReidG. BurtonJ.P. The microbiome of the urinary tract - A role beyond infection.Nat. Rev. Urol.2015122819010.1038/nrurol.2014.361 25600098
    [Google Scholar]
  28. NeugentM.L. HulyalkarN.V. NguyenV.H. ZimmernP.E. De NiscoN.J. Advances in understanding the human urinary microbiome and its potential role in urinary tract infection.mBio202011210112810.1128/mbio.00218‑20
    [Google Scholar]
  29. La ScolaC. GuiducciC. MontiniG. Urinary tract infections: An overview of urine collection, imaging, and prevention.In: Pediatric Urology. LimaM. ManzoniG. MilanoSpringer201434135110.1007/978‑88‑470‑5693‑0_28
    [Google Scholar]
  30. GhaffaryC. YohannesA. VillanuevaC. LeslieS.W. A practical approach to difficult urinary catheterizations.Curr. Urol. Rep.201314656557910.1007/s11934‑013‑0364‑3 23959835
    [Google Scholar]
  31. GasiorekM. HsiehM.H. ForsterC.S. Utility of DNA next-generation sequencing and expanded quantitative urine culture in diagnosis and management of chronic or persistent lower urinary tract symptoms.J. Clin. Microbiol.201958110112810.1128/JCM.00204‑19
    [Google Scholar]
  32. FritzenwankerM. ImirzaliogluC. ChakrabortyT. WagenlehnerF.M. Modern diagnostic methods for urinary tract infections.Expert Rev. Anti Infect. Ther.201614111047106310.1080/14787210.2016.1236685 27624932
    [Google Scholar]
  33. XuR. DeebelN. CasalsR. DuttaR. MirzazadehM. A new gold rush: a review of current and developing diagnostic tools for urinary tract infections.Diagnostics202111347910.3390/diagnostics11030479 33803202
    [Google Scholar]
  34. HiltE.E. McKinleyK. PearceM.M. RosenfeldA.B. ZillioxM.J. MuellerE.R. BrubakerL. GaiX. WolfeA.J. SchreckenbergerP.C. Urine is not sterile: Use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder.J. Clin. Microbiol.201452387187610.1128/JCM.02876‑13 24371246
    [Google Scholar]
  35. DeenN.S. AhmedA. TasnimN.T. KhanN. Clinical relevance of expanded quantitative urine culture in health and disease.Front. Cell. Infect. Microbiol.202313121016110.3389/fcimb.2023.1210161 37593764
    [Google Scholar]
  36. PriceT.K. DuneT. HiltE.E. Thomas-WhiteK.J. KliethermesS. BrincatC. BrubakerL. WolfeA.J. MuellerE.R. SchreckenbergerP.C. The clinical urine culture: Enhanced techniques improve detection of clinically relevant microorganisms.J. Clin. Microbiol.20165451216122210.1128/JCM.00044‑16 26962083
    [Google Scholar]
  37. KaliA. JosephN.M. Pravin CharlesM.V. Performance of chromogenic media for Candida in rapid presumptive identification of Candida species from clinical materials.Pharmacognosy Res.20157Suppl. 1S69S7310.4103/0974‑8490.150528 26109791
    [Google Scholar]
  38. BrubakerL. ChaiT.C. HorsleyH. KhasriyaR. MorelandR.B. WolfeA.J. Tarnished gold—the “standard” urine culture: reassessing the characteristics of a criterion standard for detecting urinary microbes.Front. Urol.20233120604610.3389/fruro.2023.1206046
    [Google Scholar]
  39. KsiezarekM.D. Comprehensive urogenital microbiome profiling: Towards better understanding of female urinary tract in health and disease.PortugalUniversidade do Porto2022
    [Google Scholar]
  40. MejutoP. LuengoM. Díaz-GiganteJ. Automated flow cytometry: An alternative to urine culture in a routine clinical microbiology laboratory?Int. J. Microbiol.2017201711810.1155/2017/8532736 29090008
    [Google Scholar]
  41. OrosD. CeprnjaM. ZuckoJ. CindricM. HozicA. SkrlinJ. BarisicK. MelvanE. UroicK. KosB. StarcevicA. Identification of pathogens from native urine samples by MALDI-TOF/TOF tandem mass spectrometry.Clin. Proteomics20201712510.1186/s12014‑020‑09289‑4 32581661
    [Google Scholar]
  42. BaturT. Diagnostic performance evaluation of complete urinalysis in the diagnosis of urinary tract infection: Complete urinalysis in the diagnosis of urinary tract infection.Chronicles Precision Medical Researchers2022325256
    [Google Scholar]
  43. ChaiT.C. WolfeA.J. BrubakerL. The urinary microbiome.Infect. Dis. Clin. North Am.202438224125310.1016/j.idc.2024.03.003 38729665
    [Google Scholar]
  44. CheungF. LoebC.A. CroglioM.P. WaltzerW.C. WeissbartS.J. Bacteria on urine microscopy is not associated with systemic infection in patients with obstructing urolithiasis.J. Endourol.201731994294510.1089/end.2017.0157 28558478
    [Google Scholar]
  45. Regueira-IglesiasA. Balsa-CastroC. Blanco-PintosT. TomásI. Critical review of 16S rRNA gene sequencing workflow in microbiome studies: From primer selection to advanced data analysis.Mol. Oral Microbiol.202338534739910.1111/omi.12434 37804481
    [Google Scholar]
  46. BarraudO. RavryC. FrançoisB. DaixT. PloyM.C. VignonP. Shotgun metagenomics for microbiome and resistome detection in septic patients with urinary tract infection.Int. J. Antimicrob. Agents201954680380810.1016/j.ijantimicag.2019.09.009 31536754
    [Google Scholar]
  47. LiaoY. Emerging tools for uncovering genetic and transcriptomic heterogeneities in bacteria.Biophys. Rev.202416110912410.1007/s12551‑023‑01178‑y 38495445
    [Google Scholar]
  48. AbdiG. TarighatM.A. JainM. TendulkarR. TendulkarM. BarwantM. Revolutionizing Genomics: Exploring the Potential of Next-Generation Sequencing.Advances in Bioinformatics. SinghV. KumarA. Springer202413310.1007/978‑981‑99‑8401‑5_1
    [Google Scholar]
  49. MoustafaA. LiW. SinghH. MonceraK.J. TorralbaM.G. YuY. ManuelO. BiggsW. VenterJ.C. NelsonK.E. PieperR. TelentiA. Microbial metagenome of urinary tract infection.Sci. Rep.201881433310.1038/s41598‑018‑22660‑8 29531289
    [Google Scholar]
  50. HalwachsB. MadhusudhanN. KrauseR. NilssonR.H. Moissl-EichingerC. HögenauerC. ThallingerG.G. GorkiewiczG. Critical issues in mycobiota analysis.Front. Microbiol.2017818010.3389/fmicb.2017.00180 28261162
    [Google Scholar]
  51. BellemainE. CarlsenT. BrochmannC. CoissacE. TaberletP. KauserudH. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases.BMC Microbiol.201010118910.1186/1471‑2180‑10‑189 20618939
    [Google Scholar]
  52. ZhaoY. ZhangW. ZhangX. Application of metagenomic next-generation sequencing in the diagnosis of infectious diseases.Front. Cell. Infect. Microbiol.202414145831610.3389/fcimb.2024.1458316 39619659
    [Google Scholar]
  53. DasguptaN. SrivastavaA. RaoA. MurugkarV. ShroffR. DasG. Microbiome Diagnostics and Interventions in Health and Disease.Microbiome in Human Health. and Disease. BramhachariP.V. SingaporeSpringer202115721510.1007/978‑981‑16‑3156‑6_10
    [Google Scholar]
  54. Santiago-RodriguezT.M. LyM. BonillaN. PrideD.T. The human urine virome in association with urinary tract infections.Front. Microbiol.201561410.3389/fmicb.2015.00014 25667584
    [Google Scholar]
  55. GuliciucM. Porav-HodadeD. MihailovR. RebegeaL.F. VoidazanS.T. GhircaV.M. MaierA.C. MarinescuM. FirescuD. Exploring the dynamic role of bacterial etiology in complicated urinary tract infections.Medicina2023599168610.3390/medicina59091686 37763805
    [Google Scholar]
  56. KellyM.S. DahlE.M. JeriesL.M. SysoevaT.A. KarstensL. Characterization of pediatric urinary microbiome at species-level resolution indicates variation due to sex, age, and urologic history.J. Pediatr. Urol.202420588489310.1016/j.jpurol.2024.05.016 38862292
    [Google Scholar]
  57. S ForsterC. LiuH. Kurs-LaskyM. UllmerW. KrumbeckJ.A. ShaikhN. Uromycobiome in infants and toddlers with and without urinary tract infections.Pediatr. Nephrol.20233872117212310.1007/s00467‑022‑05844‑3 36547733
    [Google Scholar]
  58. WehedyE. MurugesanS. GeorgeC.R. ShatatI.F. Al KhodorS. Characterization of the urinary metagenome and virome in healthy children.Biomedicines20221010241210.3390/biomedicines10102412 36289674
    [Google Scholar]
  59. MuellerE.R. WolfeA.J. BrubakerL. Female urinary microbiota.Curr. Opin. Urol.201727328228610.1097/MOU.0000000000000396 28234750
    [Google Scholar]
  60. AnglimB. PhillipsC. ShynlovaO. AlarabM. The effect of local estrogen therapy on the urinary microbiome composition of postmenopausal women with and without recurrent urinary tract infections.Int. Urogynecol. J. Pelvic Floor Dysfunct.20223382107211710.1007/s00192‑021‑04832‑9 34003309
    [Google Scholar]
  61. Thomas-WhiteK. TaegeS. LimeiraR. BrincatC. JoyceC. HiltE.E. Mac-DanielL. RadekK.A. BrubakerL. MuellerE.R. Vaginal estrogen therapy is associated with increased Lactobacillus in the urine of postmenopausal women with overactive bladder symptoms.Am. J. Obstet. Gynecol.20202235727.e1727.e1110.1016/j.ajog.2020.08.006
    [Google Scholar]
  62. PohlH.G. GroahS.L. Pérez-LosadaM. LjungbergI. SpragueB.M. ChandalN. CaldovicL. HsiehM. The urine microbiome of healthy men and women differs by urine collection method.Int. Neurourol. J.2020241415110.5213/inj.1938244.122 32252185
    [Google Scholar]
  63. El-AlawiS.H. Using culture independent approaches to gain insights into human urinary tract microbiome in healthy male and female individuals. Master of Science.The American University in Cairo AUC2021
    [Google Scholar]
  64. FoutsD.E. PieperR. SzpakowskiS. PohlH. KnoblachS. SuhM.J. HuangS.T. LjungbergI. SpragueB.M. LucasS.K. TorralbaM. NelsonK.E. GroahS.L. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury.J. Transl. Med.201210117410.1186/1479‑5876‑10‑174 22929533
    [Google Scholar]
  65. SingerM. Bacterial interactions in the female genital tract: A triangle affair between pathogens, microbiota, and host. Doctor of Philosophy.Vrije Universiteit Amsterdam2019
    [Google Scholar]
  66. TeseiD. JewczynkoA. LynchA. UrbaniakC. Understanding the complexities and changes of the astronaut microbiome for successful long-duration space missions.Life202212449510.3390/life12040495 35454986
    [Google Scholar]
  67. BradyS.S. BavendamT.G. BradwayC.K. ConroyB. Dowling-CastronovoA. EppersonC.N. HijazA.K. HsiR.S. HussK. KimM. LazarJ. LeeR.K. LiuC.K. LoizouC.N. MiranS. ModyL. NortonJ.M. ReynoldsW.S. SutcliffeS. ZhangN. HokansonJ.A. Noncancerous genitourinary conditions as a public health priority: Conceptualizing the hidden burden.Urology2022166394910.1016/j.urology.2021.08.040 34536410
    [Google Scholar]
  68. KrishnaswamyP.H. BasuM. Urinary tract infection in gynaecology and obstetrics.Obstetrics, Gynaecol. Reprod. Med.202030927628210.1016/j.ogrm.2020.06.002
    [Google Scholar]
  69. RothR.S. LidenM. HuttnerA. The urobiome in men and women: A clinical review.Clin. Microbiol. Infect.202329101242124810.1016/j.cmi.2022.08.010 36028087
    [Google Scholar]
  70. PederzoliF. FerrareseR. AmatoV. LocatelliI. AlcheraE. LucianòR. NebuloniM. BrigantiA. GallinaA. ColomboR. NecchiA. ClementiM. MontorsiF. ManciniN. SaloniaA. AlfanoM. Sex-specific alterations in the urinary and tissue microbiome in therapy-naïve urothelial bladder cancer patients.Eur. Urol. Oncol.20203678478810.1016/j.euo.2020.04.002 32345542
    [Google Scholar]
  71. Perez-CarrascoV. Soriano-LermaA. SorianoM. Gutiérrez-FernándezJ. Garcia-SalcedoJ.A. Urinary microbiome: Yin and yang of the urinary tract.Front. Cell. Infect. Microbiol.20211161700210.3389/fcimb.2021.617002 34084752
    [Google Scholar]
  72. PatangiaD.V. Anthony RyanC. DempseyE. Paul RossR. StantonC. Impact of antibiotics on the human microbiome and consequences for host health.MicrobiologyOpen2022111e126010.1002/mbo3.1260 35212478
    [Google Scholar]
  73. Josephs-SpauldingJ. KroghT.J. RettigH.C. LyngM. ChkoniaM. WaschinaS. GraspeuntnerS. RuppJ. Møller-JensenJ. KaletaC. Recurrent urinary tract infections: Unraveling the complicated environment of uncomplicated rUTIs.Front. Cell. Infect. Microbiol.20211156252510.3389/fcimb.2021.562525 34368008
    [Google Scholar]
  74. Lacerda MarianoL. IngersollM.A. The immune response to infection in the bladder.Nat. Rev. Urol.202017843945810.1038/s41585‑020‑0350‑8 32661333
    [Google Scholar]
  75. Sorić HosmanI. Cvitković RoićA. LamotL. A systematic review of the (Un) known host immune response biomarkers for predicting recurrence of urinary tract infection.Front. Med.2022993171710.3389/fmed.2022.931717 35860746
    [Google Scholar]
  76. LiuF. DuJ. ZhaiQ. HuJ. MillerA.W. RenT. FengY. JiangP. HuL. ShengJ. GuC. YanR. LvL. WolfeA.J. FengN. The bladder microbiome, metabolome, cytokines, and phenotypes in patients with systemic lupus erythematosus.Microbiol. Spectr.2022105e00212e0022210.1128/spectrum.00212‑22 35913213
    [Google Scholar]
  77. MurrayB.O. FloresC. WilliamsC. FlusbergD.A. MarrE.E. KwiatkowskaK.M. CharestJ.L. IsenbergB.C. RohnJ.L. Recurrent urinary tract infection: A mystery in search of better model systems.Front. Cell. Infect. Microbiol.20211169121010.3389/fcimb.2021.691210 34123879
    [Google Scholar]
  78. HiergeistA. GessnerA. Clinical implications of the microbiome in urinary tract diseases.Curr. Opin. Urol.2017272939810.1097/MOU.0000000000000367 27898455
    [Google Scholar]
  79. AragónI.M. Herrera-ImbrodaB. Queipo-OrtuñoM.I. CastilloE. Del MoralJ.S.G. Gómez-MillánJ. YucelG. LaraM.F. The urinary tract microbiome in health and disease.Eur. Urol. Focus20184112813810.1016/j.euf.2016.11.001 28753805
    [Google Scholar]
  80. Brauer-NikonowA. ZimmermannM. How the gut microbiota helps keep us vitaminized.Cell Host Microbe20223081063106610.1016/j.chom.2022.07.010 35952641
    [Google Scholar]
  81. SalazarA.M. NeugentM.L. De NiscoN.J. MysorekarI.U. Gut-bladder axis enters the stage: Implication for recurrent urinary tract infections.Cell Host Microbe20223081066106910.1016/j.chom.2022.07.008 35952642
    [Google Scholar]
  82. LeeK.W. SongH.Y. KimY.H. The microbiome in urological diseases.Investig. Clin. Urol.202061433834810.4111/icu.2020.61.4.338 32665990
    [Google Scholar]
  83. TanC.W. ChlebickiM.P. Urinary tract infections in adults.Singapore Med. J.201657948549010.11622/smedj.2016153 27662890
    [Google Scholar]
  84. MaoB.H. ChangY.F. ScariaJ. ChangC.C. ChouL.W. TienN. WuJ.J. TsengC.C. WangM.C. ChangC.C. HsuY.M. TengC.H. Identification of Escherichia coli genes associated with urinary tract infections.J. Clin. Microbiol.201250244945610.1128/JCM.00640‑11 22075599
    [Google Scholar]
  85. YooJ.J. SongJ.S. KimW.B. YunJ. ShinH.B. JangM.A. RyuC.B. KimS.S. ChungJ.C. KukJ.C. ShinE.J. SongH.Y. YuB.C. LeeE.S. RyuS. KimJ.H. JungS.S. KimY.H. Gardnerella vaginalis in recurrent urinary tract infection is associated with dysbiosis of the bladder microbiome.J. Clin. Med.2022119229510.3390/jcm11092295 35566419
    [Google Scholar]
  86. ChoiH.W. LeeK.W. KimY.H. Microbiome in urological diseases: Axis crosstalk and bladder disorders.Investig. Clin. Urol.202364212613910.4111/icu.20220357 36882171
    [Google Scholar]
  87. GuayD.R.P. Contemporary management of uncomplicated urinary tract infections.Drugs20086891169120510.2165/00003495‑200868090‑00002 18547131
    [Google Scholar]
  88. RoweT.A. Juthani-MehtaM. Urinary tract infection in older adults.Aging Health20139551952810.2217/ahe.13.38 24391677
    [Google Scholar]
  89. GilbertN.M. O’BrienV.P. LewisA.L. Transient microbiota exposures activate dormant Escherichia coli infection in the bladder and drive severe outcomes of recurrent disease.PLoS Pathog.2017133e100623810.1371/journal.ppat.1006238 28358889
    [Google Scholar]
  90. O’BrienV.P. LewisA.L. GilbertN.M. Bladder exposure to gardnerella activates host pathways necessary for Escherichia coli recurrent UTI.Front. Cell. Infect. Microbiol.20211178822910.3389/fcimb.2021.788229 34938672
    [Google Scholar]
  91. KrcmeryS. DubravaM. KrcmeryV. Fungal urinary tract infections in patients at risk.Int. J. Antimicrob. Agents1999113-428929110.1016/S0924‑8579(99)00032‑1 10394985
    [Google Scholar]
  92. PoloniJ.A.T. RottaL.N. Urine sediment findings and the immune response to pathologies in fungal urinary tract infections caused by Candida spp.J. Fungi (Basel)20206424510.3390/jof6040245 33114117
    [Google Scholar]
  93. SathiananthamoorthyS. Characterisation of the urinary microbial community and its association with lower urinary tract symptoms. Doctor of Philosophy.University College London2018
    [Google Scholar]
  94. WorbyC.J. SchreiberH.L. StraubT.J. van DijkL.R. BronsonR.A. OlsonB. PinknerJ.S. ObernuefemannC.L. MuñozV.L. PaharikA.E. Gut-bladder axis syndrome associated with recurrent UTIs in humans.medRxiv202110.1101/2021.11.15.21266268
    [Google Scholar]
  95. RothS. “Interstitial cystitis” or “bladder pain syndrome”?Aktuelle Urol.2008393163164 18574911
    [Google Scholar]
  96. AbernethyM.G. RosenfeldA. WhiteJ.R. MuellerM.G. Lewicky-GauppC. KentonK. Urinary microbiome and cytokine levels in women with interstitial cystitis.Obstet. Gynecol.2017129350050610.1097/AOG.0000000000001892 28178051
    [Google Scholar]
  97. SiddiquiH. LagesenK. NederbragtA.J. JeanssonS.L. JakobsenK.S. Alterations of microbiota in urine from women with interstitial cystitis.BMC Microbiol.201212120510.1186/1471‑2180‑12‑205 22974186
    [Google Scholar]
  98. AbernethyM.G. TsueiA. The bladder microbiome and interstitial cystitis: is there a connection?Curr. Opin. Obstet. Gynecol.202133646947310.1097/GCO.0000000000000747 34475365
    [Google Scholar]
  99. XuH. TamratN.E. GaoJ. XuJ. ZhouY. ZhangS. ChenZ. ShaoY. DingL. ShenB. WeiZ. Combined signature of the urinary microbiome and metabolome in patients with interstitial cystitis.Front. Cell. Infect. Microbiol.20211171174610.3389/fcimb.2021.711746 34527602
    [Google Scholar]
  100. NickelJ. Stephens-ShieldsA. LandisJ. MullinsC. van BokhovenA. LuciaM. HendersonJ. SenB. KrolJ. EhrlichG. A culture-independent analysis of the microbiota of female interstitial cystitis/bladder pain syndrome participants in the MAPP research network.J. Clin. Med.20198341510.3390/jcm8030415 30917614
    [Google Scholar]
  101. ZhengZ. HuJ. LiW. MaK. ZhangC. LiK. YaoY. Integrated microbiome and metabolome analysis reveals novel urinary microenvironmental signatures in interstitial cystitis/bladder pain syndrome patients.J. Transl. Med.202321126610.1186/s12967‑023‑04115‑5 37076836
    [Google Scholar]
  102. CeprnjaM. OrosD. MelvanE. SvetlicicE. SkrlinJ. BarisicK. StarcevicL. ZuckoJ. StarcevicA. Modeling of urinary microbiota associated with cystitis.Front. Cell. Infect. Microbiol.20211164363810.3389/fcimb.2021.643638 33796485
    [Google Scholar]
  103. NickelJ.C. StephensA. LandisJ.R. MullinsC. van BokhovenA. AngerJ.T. AckermanA.L. KimJ. SutcliffeS. KrolJ.E. SenB. HammondJ. EhrlichG.D. Urinary fungi associated with urinary symptom severity among women with interstitial cystitis/bladder pain syndrome (IC/BPS).World J. Urol.202038243344610.1007/s00345‑019‑02764‑0 31028455
    [Google Scholar]
  104. LarsenA.W. ChenY. CrandallK.A. IcenhourC.R. ValenciaC.A. Characterization of the Interstitial cystitis/Bladder pain syndrome microbiome in clinically diagnosed patients.Clin. Immunol. Rev.2022621910.33425/2639‑8494.1047
    [Google Scholar]
  105. RoblesM.T.S. CantalupoP.G. DurayA.M. FreelandM. MurkowskiM. van BokhovenA. Stephens-ShieldsA.J. PipasJ.M. ImperialeM.J. Analysis of viruses present in urine from patients with interstitial cystitis.Virus Genes202056443043810.1007/s11262‑020‑01767‑z 32447589
    [Google Scholar]
  106. JhangJ.F. LiuC.D. HsuY.H. ChenC.C. ChenH.C. JiangY.H. WuW.C. PengC.W. KuoH.C. EBV infection mediated BDNF expression is associated with bladder inflammation in interstitial cystitis/bladder pain syndrome with Hunner’s lesion.J. Pathol.2023259327629010.1002/path.6040 36441149
    [Google Scholar]
  107. PeyronnetB. MironskaE. ChappleC. CardozoL. OelkeM. DmochowskiR. AmarencoG. GaméX. KirbyR. Van Der AaF. CornuJ.N. A comprehensive review of overactive bladder pathophysiology: on the way to tailored treatment.Eur. Urol.2019756988100010.1016/j.eururo.2019.02.038 30922690
    [Google Scholar]
  108. LeronE. WeintraubA.Y. MastroliaS.A. SchwarzmanP. Overactive bladder syndrome: Evaluation and management.Curr. Urol.201811311712510.1159/000447205 29692690
    [Google Scholar]
  109. SiddiquiH. LagesenK. NederbragtA.J. EriL.M. JeanssonS.L. JakobsenK.S. Pathogens in urine from a female patient with overactive bladder syndrome detected by culture-independent high throughput sequencing: A case report.Open Microbiol. J.20148114815310.2174/1874285801408010148 25685246
    [Google Scholar]
  110. CurtissN. BalachandranA. KrskaL. Peppiatt-WildmanC. WildmanS. DuckettJ. A case controlled study examining the bladder microbiome in women with Overactive Bladder (OAB) and healthy controls.Eur. J. Obstet. Gynecol. Reprod. Biol.2017214313510.1016/j.ejogrb.2017.04.040 28463826
    [Google Scholar]
  111. LiK. ChenC. ZengJ. WenY. ChenW. ZhaoJ. WuP. Interplay between bladder microbiota and overactive bladder symptom severity: A cross‐sectional study.BMC Urol.20222213910.1186/s12894‑022‑00990‑0 35305613
    [Google Scholar]
  112. SzeC. PresslerM. LeeJ.R. ChughtaiB. The gut, vaginal, and urine microbiome in overactive bladder: a systematic review.Int. Urogynecol. J. Pelvic Floor Dysfunct.20223351157116410.1007/s00192‑022‑05127‑3 35237854
    [Google Scholar]
  113. JacobsenG.E. AminK. Our knowledge of the relationship of the urinary microbiome and overactive bladder: Past, present, future.Curr. Bladder Dysfunct. Rep.202318428529210.1007/s11884‑023‑00726‑2
    [Google Scholar]
  114. MilsomI. CoyneK.S. NicholsonS. KvaszM. ChenC.I. WeinA.J. Global prevalence and economic burden of urgency urinary incontinence: A systematic review.Eur. Urol.2014651799510.1016/j.eururo.2013.08.031 24007713
    [Google Scholar]
  115. GovenderY. GabrielI. MinassianV. FichorovaR. The current evidence on the association between the urinary microbiome and urinary incontinence in women.Front. Cell. Infect. Microbiol.2019913310.3389/fcimb.2019.00133 31119104
    [Google Scholar]
  116. AokiY. BrownH.W. BrubakerL. CornuJ.N. DalyJ.O. CartwrightR. Urinary incontinence in women.Nat. Rev. Dis. Primers2017311704310.1038/nrdp.2017.43
    [Google Scholar]
  117. PearceM.M. HiltE.E. RosenfeldA.B. ZillioxM.J. Thomas-WhiteK. FokC. KliethermesS. SchreckenbergerP.C. BrubakerL. GaiX. The female urinary microbiome: A comparison of women with and without urgency urinary incontinence.mBio2014541012810.1128/mbio.01283‑14
    [Google Scholar]
  118. KhanS.R. PearleM.S. RobertsonW.G. GambaroG. CanalesB.K. DoiziS. TraxerO. TiseliusH.G. Kidney stones.Nat. Rev. Dis. Primers2016211600810.1038/nrdp.2016.8 27188687
    [Google Scholar]
  119. ÇiftçiogluN. BjörklundM. KuorikoskiK. BergströmK. KajanderE.O. Nanobacteria: An infectious cause for kidney stone formation.Kidney Int.19995651893189810.1046/j.1523‑1755.1999.00755.x 10571799
    [Google Scholar]
  120. WangZ. ZhangY. ZhangJ. DengQ. LiangH. Recent advances on the mechanisms of kidney stone formation (Review).Int. J. Mol. Med.202148214910.3892/ijmm.2021.4982 34132361
    [Google Scholar]
  121. SuryavanshiM.V. BhuteS.S. JadhavS.D. BhatiaM.S. GuneR.P. ShoucheY.S. Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures.Sci. Rep.2016613471210.1038/srep34712 27708409
    [Google Scholar]
  122. BichlerK.H. EipperE. NaberK. BraunV. ZimmermannR. LahmeS. Urinary infection stones.Int. J. Antimicrob. Agents200219648849810.1016/S0924‑8579(02)00088‑2 12135839
    [Google Scholar]
  123. XieJ. HuangJ. HuangX. PengJ. YuZ. YuanY. XiaoK. GuoJ. Profiling the urinary microbiome in men with calcium-based kidney stones.BMC Microbiol.20202014110.1186/s12866‑020‑01734‑6 32111156
    [Google Scholar]
  124. AbrattV.R. ReidS.J. Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease.Adv. Appl. Microbiol.201072638710.1016/S0065‑2164(10)72003‑7 20602988
    [Google Scholar]
  125. CuiH. Distribution and drug resistance of pathogens causing urinary tract infection in patients with urinary calculi.Am. J. Transl. Res.20211391055410561 34650726
    [Google Scholar]
  126. KishorebabuA. SreeS.N. ChandralekhaS.P. A review on benign prostatic hyperplasia.World J. Curr. Med. Pharm. Res.201915192197
    [Google Scholar]
  127. KimM.S. JungS.I. The urinary tract microbiome in male genitourinary diseases: focusing on benign prostate hyperplasia and lower urinary tract symptoms.Int. Neurourol. J.202125131110.5213/inj.2040174.087 33504133
    [Google Scholar]
  128. TakezawaK. FujitaK. MatsushitaM. MotookaD. HatanoK. BannoE. ShimizuN. TakaoT. TakadaS. OkadaK. FukuharaS. KiuchiH. UemuraH. NakamuraS. KojimaY. NonomuraN. The Firmicutes/Bacteroidetes ratio of the human gut microbiota is associated with prostate enlargement.Prostate202181161287129310.1002/pros.24223 34516694
    [Google Scholar]
  129. LiJ. LiY. ZhouL. LiC. LiuJ. LiuD. FuY. WangY. TangJ. ZhouL. TanS. WangL. The human microbiome and benign prostatic hyperplasia: Current understandings and clinical implications.Microbiol. Res.202428112759610.1016/j.micres.2023.127596 38215640
    [Google Scholar]
  130. RadejS. SzewcM. MaciejewskiR. Prostate infiltration by Treg and Th17 cells as an immune response to Propionibacterium acnes infection in the course of benign prostatic hyperplasia and prostate cancer.Int. J. Mol. Sci.20222316884910.3390/ijms23168849 36012113
    [Google Scholar]
  131. OkadaK. TakezawaK. TsujimuraG. ImanakaT. KuribayashiS. UedaN. HatanoK. FukuharaS. KiuchiH. FujitaK. MotookaD. NakamuraS. KoyamaY. ShimadaS. NonomuraN. Localization and potential role of prostate microbiota.Front. Cell. Infect. Microbiol.202212104831910.3389/fcimb.2022.1048319 36569206
    [Google Scholar]
  132. SarkarP. MalikS. BanerjeeA. DattaC. PalD.K. GhoshA. SahaA. Differential microbial signature associated with benign prostatic hyperplasia and prostate cancer.Front. Cell. Infect. Microbiol.20221289477710.3389/fcimb.2022.894777 35865814
    [Google Scholar]
  133. JainS. SamalA.G. DasB. PradhanB. SahuN. MohapatraD. BeheraP.K. SatpathiP.S. MohantyA.K. SatpathiS. SenapatiS. Escherichia coli, a common constituent of benign prostate hyperplasia‐associated microbiota induces inflammation and DNA damage in prostate epithelial cells.Prostate202080151341135210.1002/pros.24063 32835423
    [Google Scholar]
  134. BajicP. Van KuikenM.E. BurgeB.K. KirshenbaumE.J. JoyceC.J. WolfeA.J. BranchJ.D. BreslerL. FarooqA.V. Male bladder microbiome relates to lower urinary tract symptoms.Eur. Urol. Focus20206237638210.1016/j.euf.2018.08.001 30143471
    [Google Scholar]
  135. SpinuD. BratuO. MarcuD. MischianuD. HuicaR. SurcelM. MunteanuA. SoceaB. BodeanO. UrsaciucC. The use of ELISA and PCR in identifying correlations between viral infections and benign prostatic hypertrophy.Revista de Chimie201869364564910.37358/RC.18.3.6167
    [Google Scholar]
  136. SatoskarA.A. ParikhS.V. NadasdyT. Epidemiology, pathogenesis, treatment and outcomes of infection-associated glomerulonephritis.Nat. Rev. Nephrol.2020161325010.1038/s41581‑019‑0178‑8 31399725
    [Google Scholar]
  137. MosqueraJ. PedreañezA. Acute post-streptococcal glomerulonephritis: Analysis of the pathogenesis.Int. Rev. Immunol.202140638140010.1080/08830185.2020.1830083 33030969
    [Google Scholar]
  138. BatemanE. MansourS. OkaforE. ArringtonK. HongB.Y. CervantesJ. Examining the efficacy of antimicrobial therapy in preventing the development of postinfectious glomerulonephritis: A systematic review and meta-analysis.Infect. Dis. Rep.202214217618310.3390/idr14020022 35314652
    [Google Scholar]
  139. KoyamaA. KobayashiM. YamaguchiN. YamagataK. TakanoK. NakajimaM. IrieF. GotoM. IgarashiM. IitsukaT. AokiY. SakuraiH. SakurayamaN. FukaoK. Glomerulonephritis associated with MRSA infection: A possible role of bacterial superantigen.Kidney Int.199547120721610.1038/ki.1995.25 7731148
    [Google Scholar]
  140. CasuscelliC. LonghitanoE. MaressaV. Di CarloS. PeritoreL. Di LorenzoS. CalabreseV. CernaroV. SantoroD. Autoimmunity and infection in glomerular disease.Microorganisms2023119222710.3390/microorganisms11092227 37764071
    [Google Scholar]
  141. Tzvi-BehrS. FrishbergY. MeggedO. Weinbrand-GoichbergJ. Becher-CohenR. TerespolskyH. RinatC. ChoshenS. Ben-ShalomE. Acute glomerulonephritis with concurrent suspected bacterial pneumonia - Is it the tip of the iceberg?Pediatr. Nephrol.20231510.1007/s00467‑023‑06217‑0 37943374
    [Google Scholar]
  142. SkrzypczykP. OfiaraA. ZacharzewskaA. Pańczyk-TomaszewskaM. Acute post-streptococcal glomerulonephritis – Immune-mediated acute kidney injury – Case report and literature review.Cent. Eur. J. Immunol.202146451652310.5114/ceji.2021.112244 35125952
    [Google Scholar]
  143. YacoubaA. AlouM.T. LagierJ.C. DubourgG. RaoultD. Urinary microbiota and bladder cancer: A systematic review and a focus on uropathogens.Semin. Cancer Biol.202286Part 387588410.1016/j.semcancer.2021.12.010
    [Google Scholar]
  144. KaramA. MjaessG. AlbisinniS. El DaccacheY. FarahM. DaouS. KazziH. HassounR. Bou KheirG. AounF. RoumeguèreT. Uncovering the role of urinary microbiota in urological tumors: a systematic review of literature.World J. Urol.202240495196410.1007/s00345‑021‑03924‑x 34997296
    [Google Scholar]
  145. AlajeeliF. Al-KarawiA.S. AbidF.M. A-lKurwi, M.; Abdulla, M. Revealing the urinary microbiota in prostate cancer: A comprehensive review unveiling insights into pathogenesis and clinical application. Al-Salam.J. Med. Sci.202431455410.55145/ajbms.2024.03.01.008
    [Google Scholar]
  146. TsaiK.Y. WuD.C. WuW.J. WangJ.W. JuanY.S. LiC.C. LiuC.J. LeeH.Y. Exploring the association between gut and urine microbiota and prostatic disease including benign prostatic hyperplasia and prostate cancer using 16S rRNA sequencing.Biomedicines20221011267610.3390/biomedicines10112676 36359196
    [Google Scholar]
  147. GuptaS. KanwarS.S. The influence of dysbiosis on kidney stones that risk up renal cell carcinoma (RCC).Semin. Cancer Biol.20217013413810.1016/j.semcancer.2020.06.011
    [Google Scholar]
  148. WuP. ZhangG. ZhaoJ. ChenJ. ChenY. HuangW. ZhongJ. ZengJ. Profiling the urinary microbiota in male patients with bladder cancer in China.Front. Cell. Infect. Microbiol.2018816710.3389/fcimb.2018.00167 29904624
    [Google Scholar]
  149. SaeedA. RiazS. RiazS. Study of urinary tract infection in patients suffering from cancer.J. Cancer Res. Rev. Rep.20202211510.47363/JCRR/2020(2)124
    [Google Scholar]
  150. HeidlerS. LusuardiL. MadersbacherS. FreibauerC. The microbiome in benign renal tissue and in renal cell carcinoma.Urol. Int.20201043-424725210.1159/000504029 31715602
    [Google Scholar]
  151. RandazzoG. BovolentaE. CeccatoT. ReitanoG. BettoG. NovaraG. IafrateM. MorlaccoA. Dal MoroF. ZattoniF. Urinary microbiome and urological cancers: A mini review.Front. Urol.20244136772010.3389/fruro.2024.1367720
    [Google Scholar]
  152. ShresthaE. WhiteJ.R. YuS.H. KulacI. ErtuncO. De MarzoA.M. YegnasubramanianS. MangoldL.A. PartinA.W. SfanosK.S. Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer.J. Urol.2018199116117110.1016/j.juro.2017.08.001 28797714
    [Google Scholar]
  153. AlaneeS. El-ZawahryA. DyndaD. DabajaA. McVaryK. KarrM. Braundmeier-FlemingA. A prospective study to examine the association of the urinary and fecal microbiota with prostate cancer diagnosis after transrectal biopsy of the prostate using 16sRNA gene analysis.Prostate2019791818710.1002/pros.23713 30117171
    [Google Scholar]
  154. YuH. MengH. ZhouF. NiX. ShenS. DasU.N. Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia.Arch. Med. Sci.20152238539410.5114/aoms.2015.50970 25995756
    [Google Scholar]
  155. de DeusA. GonçalvesG. da SilvaJ. de JesusL.C. Azevedo-SantosA.P.S. Dall AgnolH. PereiraS.R. Microbiome reveals inflammatory‐related bacteria and putative functional pathways involved in human papillomavirus‐associated penile squamous cell carcinoma.Andrology202412480982010.1111/andr.13545 37840240
    [Google Scholar]
  156. BiH. TianY. SongC. LiJ. LiuT. ChenZ. ChenC. HuangY. ZhangY. Urinary microbiota – A potential biomarker and therapeutic target for bladder cancer.J. Med. Microbiol.201968101471147810.1099/jmm.0.001058 31418671
    [Google Scholar]
  157. BajicP. WolfeA.J. GuptaG.N. The urinary microbiome: Implications in bladder cancer pathogenesis and therapeutics.Urology2019126101510.1016/j.urology.2018.12.034 30615894
    [Google Scholar]
  158. FriedrichV. ChoiH.W. The urinary microbiome: role in bladder cancer and treatment.Diagnostics (Basel)2022129206810.3390/diagnostics12092068 36140470
    [Google Scholar]
  159. HrbáčekJ. HanáčekV. KadlečkováD. CirbusováA. ČermákP. TachezyR. ZachovalR. SalákováM. Urinary shedding of common DNA viruses and their possible association with bladder cancer: A qPCR-based study.Neoplasma202370231131810.4149/neo_2023_220703N681 37226931
    [Google Scholar]
  160. YangH. LuoZ.Y. LinF. LiL.J. LuM. XieL.X. YangL.Y. Comparison of urine and genital samples for detecting human papillomavirus (HPV) in clinical patients.Obstet. Gynecol. Int.2023202311810.1155/2023/7483783 37020494
    [Google Scholar]
  161. ReggianiF. L’ImperioV. CalatroniM. PagniF. SinicoR.A. Goodpasture syndrome and anti-glomerular basement membrane disease.Clin. Exp. Rheumatol.202341496497410.55563/clinexprheumatol/tep3k5 36995324
    [Google Scholar]
  162. GesualdoL. Di LeoV. CoppoR. The mucosal immune system and IgA nephropathy.Semin. Immunopathol.202143565766810.1007/s00281‑021‑00871‑y 34642783
    [Google Scholar]
  163. SuzukiS. NakatomiY. OdaniS. SatoH. GejyoF. ArakawaM. Circulating IgA, IgG, and IgM class antibody against Haemophilus parainfluenzae antigens in patients with IgA nephropathy.Clin. Exp. Immunol.2003104230631110.1046/j.1365‑2249.1996.09703.x 8625525
    [Google Scholar]
  164. SuginoH. SawadaY. NakamuraM. IgA vasculitis: etiology, treatment, biomarkers and epigenetic changes.Int. J. Mol. Sci.20212214753810.3390/ijms22147538 34299162
    [Google Scholar]
  165. KeriK.C. BlumenthalS. KulkarniV. BeckL. ChongkrairatanakulT. Primary membranous nephropathy: comprehensive review and historical perspective.Postgrad. Med. J.2019951119233110.1136/postgradmedj‑2018‑135729 30683678
    [Google Scholar]
  166. AlmaaniS. MearaA. RovinB.H. Update on Lupus Nephritis.Clin. J. Am. Soc. Nephrol.201712582583510.2215/CJN.05780616 27821390
    [Google Scholar]
  167. DhillonS. HigginsR.M. Interstitial nephritis.Postgrad. Med. J.19977385715115510.1136/pgmj.73.857.151 9135830
    [Google Scholar]
  168. MarcuI. CampianE. TuF. Interstitial cystitis/bladder pain syndrome.Semin. Reprod. Med.201836212313510.1055/s‑0038‑1676089 30566978
    [Google Scholar]
  169. KarlsenT.H. FolseraasT. ThorburnD. VesterhusM. Primary sclerosing cholangitis – A comprehensive review.J. Hepatol.20176761298132310.1016/j.jhep.2017.07.022 28802875
    [Google Scholar]
  170. HansonL.A. AhlstedtS. FasthA. HagbergM. KaijserB. Mattsby-BaltzerI. Svanborg-EdenC. Immunological aspects of pyelonephritis.Contrib. Nephrol.197916162110.1159/000402868
    [Google Scholar]
  171. RifaiA.O. DenigK.M. CazaT. WebbS.M. RifaiS. KhanS. DahanS. AlaminS. Antitubular basement membrane antibody disease associated with nivolumab infusion and concomitant acute pyelonephritis leading to acute kidney injury: A case report and literature review.Case Rep. Nephrol.202320231510.1155/2023/6681756 37051373
    [Google Scholar]
  172. LuJ.C. ShenJ.M. HuX.C. PengL.P. HongZ.W. YaoB. Identification and preliminary study of immunogens involved in autoimmune prostatitis in human males.Prostate201878141092110210.1002/pros.23684 29947032
    [Google Scholar]
  173. HyunM. LeeJ.Y. LimK.R. KimH. Clinical characteristics of uncomplicated acute pyelonephritis caused by Escherichia coli and Klebsiella pneumoniae.Infect. Dis. Ther.202413358159510.1007/s40121‑024‑00940‑3 38460083
    [Google Scholar]
  174. JirilloE. PalmirottaR. ColellaM. SantacroceL. A bird’s-eye view of the pathophysiologic role of the human urobiota in health and disease: Can we modulate it?Pathophysiology2024311526710.3390/pathophysiology31010005 38390942
    [Google Scholar]
  175. KlineK. LewisA. Gram-positive uropathogens, polymicrobial urinary tract infection, and the emerging microbiota of the urinary tract. Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, Second EditionWiley201745950210.1128/microbiolspec.UTI‑0012‑2012
    [Google Scholar]
  176. AlteriC.J. HimpslS.D. MobleyH.L.T. Preferential use of central metabolism in vivo reveals a nutritional basis for polymicrobial infection.PLoS Pathog.2015111e100460110.1371/journal.ppat.1004601 25568946
    [Google Scholar]
  177. KeoghD. TayW.H. HoY.Y. DaleJ.L. ChenS. UmashankarS. WilliamsR.B.H. ChenS.L. DunnyG.M. KlineK.A. Enterococcal metabolite cues facilitate interspecies niche modulation and polymicrobial infection.Cell Host Microbe201620449350310.1016/j.chom.2016.09.004 27736645
    [Google Scholar]
  178. MohamedA.H. MohamudH.A. Emphysematous pyelonephritis caused by candida species: A case report and outcome of 1 year follow-up.Urol. Case Rep.20203010111310.1016/j.eucr.2020.101113 32055447
    [Google Scholar]
  179. ZhangJ. LiQ. LinX. WuZ. HeL. WangW. CaoQ. Immuno-histochemistry analysis of Helicobacter pylori antigen in renal biopsy specimens from patients with glomerulonephritis.Saudi J. Kidney Dis. Transpl.201324475175810.4103/1319‑2442.113871 23816725
    [Google Scholar]
  180. OguraY. SuzukiS. ShirakawaT. MasudaM. NakamuraH. IijimaK. YoshikawaN. Haemophilus parainfluenzae antigen and antibody in children with IgA nephropathy and Henoch-Schönlein nephritis.Am. J. Kidney Dis.2000361475210.1053/ajkd.2000.8264 10873871
    [Google Scholar]
  181. MasudaM. NakanishiK. YoshizawaN. IijimaK. YoshikawaN. Group A streptococcal antigen in the glomeruli of children with henoch-schönlein nephritis.Am. J. Kidney Dis.200341236637010.1053/ajkd.2003.50045 12552498
    [Google Scholar]
  182. SchmittR. CarlssonF. MörgelinM. TatiR. LindahlG. KarpmanD. Tissue deposits of IgA-binding streptococcal M proteins in IgA nephropathy and Henoch-Schonlein purpura.Am. J. Pathol.2010176260861810.2353/ajpath.2010.090428 20056836
    [Google Scholar]
  183. KronbichlerA. KerschbaumJ. MayerG. The influence and role of microbial factors in autoimmune kidney diseases: a systematic review.J. Immunol. Res.2015201511310.1155/2015/858027 26078982
    [Google Scholar]
  184. ElsayedN.S. WolfeA.J. BurkR.D. Urine microbiome in individuals with an impaired immune system.Front. Cell. Infect. Microbiol.202413130866510.3389/fcimb.2023.1308665 38274734
    [Google Scholar]
  185. LiuF. LingZ. XiaoY. YangQ. ZhengL. JiangP. LiL. WangW. Characterization of the urinary microbiota of elderly women and the effects of type 2 diabetes and urinary tract infections on the microbiota.Oncotarget201785910067810069010.18632/oncotarget.21126 29246012
    [Google Scholar]
  186. LiuF. LingZ. XiaoY. YangQ. WangB. ZhengL. JiangP. LiL. WangW. Alterations of urinary microbiota in type 2 diabetes mellitus with hypertension and/or hyperlipidemia.Front. Physiol.2017812610.3389/fphys.2017.00126 28316574
    [Google Scholar]
  187. GraellsT. LinY-T. AhmadS. FallT. ÄrnlövJ. The urinary microbiome in association with diabetes and diabetic kidney disease: A systematic review.bioRxiv201eo31796010.1101/2024.09.21.614275
    [Google Scholar]
  188. SpighiL. BroccatelliA. NotaristefanoF. VerdecchiaP. AmbrosioG. CavalliniC. Peri-myocarditis during urinary tract infection by Escherichia coli.G. Ital. Cardiol. (Rome)202021322422710.1714/3306.32771 32100735
    [Google Scholar]
  189. OudihM. HarharaT. Escherichia coli bacteremia due to urinary tract infection complicated by acute myocarditis: A rare complication.SAGE Open Med. Case Rep.202192050313X21102367410.1177/2050313X21102367434211715
    [Google Scholar]
  190. IvanovI.B. KuzminM.D. GritsenkoV.A. Microflora of the seminal fluid of healthy men and men suffering from chronic prostatitis syndrome.Int. J. Androl.200932546246710.1111/j.1365‑2605.2008.00878.x 18328042
    [Google Scholar]
  191. NickelJ.C. StephensA. LandisJ.R. ChenJ. MullinsC. van BokhovenA. LuciaM.S. Melton-KreftR. EhrlichG.D. NetworkM.R. Search for microorganisms in men with urologic chronic pelvic pain syndrome: a culture-independent analysis in the MAPP research network.J. Urol.2015194112713510.1016/j.juro.2015.01.037 25596358
    [Google Scholar]
  192. ShoskesD.A. AltemusJ. PolackwichA.S. TuckyB. WangH. EngC. The urinary microbiome differs significantly between patients with chronic prostatitis/chronic pelvic pain syndrome and controls as well as between patients with different clinical phenotypes.Urology201692263210.1016/j.urology.2016.02.043 26970449
    [Google Scholar]
  193. MändarR. PunabM. KorrovitsP. TürkS. AusmeesK. LappE. PreemJ.K. OopkaupK. SalumetsA. TruuJ. Seminal microbiome in men with and without prostatitis.Int. J. Urol.201724321121610.1111/iju.13286 28147438
    [Google Scholar]
  194. MiyakeM. TatsumiY. OhnishiK. FujiiT. NakaiY. TanakaN. FujimotoK. Prostate diseases and microbiome in the prostate, gut, and urine.Prostate Int.20221029610710.1016/j.prnil.2022.03.004 35510078
    [Google Scholar]
  195. VenturiniS. ReffoI. AvolioM. BasagliaG. Del FabroG. CallegariA. TonizzoM. SabenaA. RondinellaS. ManciniW. ConteC. CrapisM. The management of recurrent urinary tract infection: Non-antibiotic bundle treatment.Probiotics Antimicrob. Proteins20241651857186510.1007/s12602‑023‑10141‑y 37584833
    [Google Scholar]
  196. FisherJ.F. SobelJ.D. KauffmanC.A. NewmanC.A. Candida urinary tract infections - Treatment.Clin. Infect. Dis.201152Suppl. 6S457S46610.1093/cid/cir112 21498839
    [Google Scholar]
  197. Amaya-TapiaG. Ibarra-NietoG. RivasO.C. SánchezJ.L.G. Urinary tract infection in HIV/AIDS patients.In: Urinary Tract Infections - New Insights.IntechOpen202310.5772/intechopen.110017
    [Google Scholar]
  198. PessoaW.F.B. MelgaçoA.C.C. AlmeidaM.E. SantosT.F. RomanoC.C. Chapter22 - Probiotics for urinary tract disease prevention and treatment.Probiotics for Human Nutrition in Health. and Disease.Elsevier202251353610.1016/B978‑0‑323‑89908‑6.00011‑X
    [Google Scholar]
  199. AhmedR. kamilM. KamalL. AhmedH. The mechanisms of Lactobacillus activities: Probiotic importance of Lactobacillus species.Egypt. Acad. J. Biol. Sci. E Med. Entomol. Parasitol.2021132456310.21608/eajbse.2021.210635
    [Google Scholar]
  200. IannittiT. PalmieriB. Therapeutical use of probiotic formulations in clinical practice.Clin. Nutr.201029670172510.1016/j.clnu.2010.05.004 20576332
    [Google Scholar]
  201. ZagagliaC. AmmendoliaM.G. MauriziL. NicolettiM. LonghiC. Urinary tract infections caused by uropathogenic Escherichia coli strains - New strategies for an old pathogen.Microorganisms2022107142510.3390/microorganisms10071425 35889146
    [Google Scholar]
  202. KamelM. AleyaS. AlsubihM. AleyaL. Microbiome dynamics: A paradigm shift in combatting infectious diseases.J. Pers. Med.202414221710.3390/jpm14020217 38392650
    [Google Scholar]
  203. SchwartzL. de Dios Ruiz-RosadoJ. StonebrookE. BecknellB. SpencerJ.D. Uropathogen and host responses in pyelonephritis.Nat. Rev. Nephrol.2023191065867110.1038/s41581‑023‑00737‑6 37479904
    [Google Scholar]
  204. KenneallyC. MurphyC.P. SleatorR.D. CulliganE.P. The urinary microbiome and biological therapeutics: Novel therapies for urinary tract infections.Microbiol. Res.202225912701010.1016/j.micres.2022.127010 35338973
    [Google Scholar]
  205. AbdulsalamA.A. SalehM.K. Effect of colicin from E. coli product on some species of gram-negative bacteria isolated from Urinary Tract infections.J. Educ. Sci. Stud.202131710.1155/2014/869610
    [Google Scholar]
  206. RoyS.M. RileyM.A. Evaluation of the potential of colicins to prevent extraluminal contamination of urinary catheters by Escherichia coli.Int. J. Antimicrob. Agents201954561962510.1016/j.ijantimicag.2019.07.004 31284040
    [Google Scholar]
  207. BaoJ. WuN. ZengY. ChenL. LiL. YangL. ZhangY. GuoM. LiL. LiJ. TanD. ChengM. GuJ. QinJ. LiuJ. LiS. PanG. JinX. YaoB. GuoX. ZhuT. LeS. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae.Emerg. Microbes Infect.20209177177410.1080/22221751.2020.1747950 32212918
    [Google Scholar]
  208. Zalewska-PiątekB. PiątekR. Phage therapy as a novel strategy in the treatment of urinary tract infections caused by E. coli.Antibiotics20209630410.3390/antibiotics9060304 32517088
    [Google Scholar]
  209. Petrovic FabijanA. IredellJ. Danis-WlodarczykK. KebriaeiR. AbedonS.T. Translating phage therapy into the clinic: Recent accomplishments but continuing challenges.PLoS Biol.2023215e300211910.1371/journal.pbio.3002119 37220114
    [Google Scholar]
  210. StapletonA.E. Au-YeungM. HootonT.M. FredricksD.N. RobertsP.L. CzajaC.A. Yarova-YarovayaY. FiedlerT. CoxM. StammW.E. Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection.Clin. Infect. Dis.201152101212121710.1093/cid/cir183 21498386
    [Google Scholar]
  211. HosseiniM. YousefifardM. AtaeiN. OraiiA. Mirzay RazazJ. IzadiA. The efficacy of probiotics in prevention of urinary tract infection in children: A systematic review and meta-analysis.J. Pediatr. Urol.201713658159110.1016/j.jpurol.2017.08.018 29102297
    [Google Scholar]
  212. NewF.J. TheivendrampillaiS. Juliebø-JonesP. SomaniB. Role of probiotics for recurrent UTIs in the twenty-first century: A systematic review of literature.Curr. Urol. Rep.2022232192810.1007/s11934‑022‑01085‑x 35156175
    [Google Scholar]
  213. DanielM. Szymanik-GrzelakH. TurczynA. Pańczyk-TomaszewskaM. Lactobacillus rhamnosus PL1 and Lactobacillus plantarum PM1 versus placebo as a prophylaxis for recurrence urinary tract infections in children: A study protocol for a randomised controlled trial.BMC Urol.202020116810.1186/s12894‑020‑00723‑1 33097017
    [Google Scholar]
  214. MeenaJ. ThomasC.C. KumarJ. RautS. HariP. Non-antibiotic interventions for prevention of urinary tract infections in children: a systematic review and meta-analysis of randomized controlled trials.Eur. J. Pediatr.2021180123535354510.1007/s00431‑021‑04091‑2 34156540
    [Google Scholar]
  215. AbdullatifV.A. SurR.L. EshaghianE. GauraK.A. GoldmanB. PanchatsharamP.K. WilliamsN.J. AbbottJ.E. Efficacy of probiotics as prophylaxis for urinary tract infections in premenopausal women: a systematic review and meta-analysis.Cureus20211310e1884310.7759/cureus.18843 34671514
    [Google Scholar]
  216. DasS. AmeeruddinS. Probiotics in common urological conditions: a narrative review.Longhua Chin. Med.202251410.21037/lcm‑21‑62
    [Google Scholar]
  217. Fazly BazzazB.S. Darvishi ForkS. AhmadiR. KhamenehB. Deep insights into urinary tract infections and effective natural remedies.Afr. J. Urol.2021271610.1186/s12301‑020‑00111‑z
    [Google Scholar]
  218. AndreuA. Lactobacillus as a probiotic for preventing urogenital infections.Rev. Med. Microbiol.20041511610.1097/01.revmedmi.0000131423.90481.82
    [Google Scholar]
  219. PascualL. BarberisL. Prevention strategy of urogenital infections by using Lactobacilli with probiotic properties.Urinary Tract Infections. TenkeP. Rijeka, CroatiaIntechOpen201124526410.5772/24716
    [Google Scholar]
  220. AnukamK.C. HayesK. SummersK. ReidG. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 may help downregulate TNF-Alpha, IL-6, IL-8, IL-10 and IL-12 (p70) in the neurogenic bladder of spinal cord injured patient with urinary tract infections: a two-case study.Adv. Urol.2009200911510.1155/2009/680363 19753131
    [Google Scholar]
  221. AsaharaT. NomotoK. WatanukiM. YokokuraT. Antimicrobial activity of intraurethrally administered probiotic Lactobacillus casei in a murine model of Escherichia coli urinary tract infection.Antimicrob. Agents Chemother.20014561751176010.1128/AAC.45.6.1751‑1760.2001 11353622
    [Google Scholar]
  222. StormD.W. KoffS.A. HorvathD.J. LiB. JusticeS.S. In vitro analysis of the bactericidal activity of Escherichia coli Nissle 1917 against pediatric uropathogens.J. Urol.2011186Suppl. 41678168310.1016/j.juro.2011.04.021 21855931
    [Google Scholar]
  223. AyiviR.D. GyawaliR. KrastanovA. AljaloudS.O. WorkuM. TahergorabiR. SilvaR.C. IbrahimS.A. Lactic acid bacteria: Food safety and human health applications.Dairy20201320223210.3390/dairy1030015
    [Google Scholar]
  224. VoidarouC. AlexopoulosA. TsinasA. RozosG. TzoraA. SkoufosI. VarzakasT. BezirtzoglouE. Effectiveness of bacteriocin-producing lactic acid bacteria and bifidobacterium isolated from honeycombs against spoilage microorganisms and pathogens isolated from fruits and vegetables.Appl. Sci.20201020730910.3390/app10207309
    [Google Scholar]
  225. SongC.H. KimY.H. NaskarM. HayesB.W. AbrahamM.A. NohJ.H. SukG. KimM.J. ChoK.S. ShinM. LeeE.J. AbrahamS.N. ChoiH.W. Lactobacillus crispatus limits bladder uropathogenic E. coli infection by triggering a host type I interferon response.Proc. Natl. Acad. Sci. USA202211933e211790411910.1073/pnas.2117904119 35939684
    [Google Scholar]
  226. HariP. MeenaJ. Vesicoureteral reflux and recurrent urinary tract infections.Asian J. Pediatr. Nephrol201922617010.4103/AJPN.AJPN_26_19
    [Google Scholar]
  227. González de LlanoD. Moreno-ArribasM.V. BartoloméB. Cranberry polyphenols and prevention against urinary tract infections: Relevant considerations.Molecules20202515352310.3390/molecules25153523 32752183
    [Google Scholar]
  228. Amábile-CuevasC.F. Ascorbate and antibiotics, at concentrations attainable in urine, can inhibit the growth of resistant strains of Escherichia coli cultured in synthetic human urine.Antibiotics202312698510.3390/antibiotics12060985 37370304
    [Google Scholar]
  229. PaniA. ValeriaL. DugnaniS. SenatoreM. ScaglioneF. Pharmacodynamics of D-mannose in the prevention of recurrent urinary infections.J. Chemother.202234745946410.1080/1120009X.2022.2061184 35416116
    [Google Scholar]
  230. Ala-JaakkolaR. LaitilaA. OuwehandA.C. LehtorantaL. Role of D-mannose in urinary tract infections – A narrative review.Nutr. J.20222111810.1186/s12937‑022‑00769‑x 35313893
    [Google Scholar]
  231. O’DohertyK.C. ViraniA. WilcoxE.S. The human microbiome and public health: social and ethical considerations.Am. J. Public Health2016106341442010.2105/AJPH.2015.302989 26794165
    [Google Scholar]
  232. MaY. ChenH. LanC. RenJ. Help, hope and hype: ethical considerations of human microbiome research and applications.Protein Cell20189540441510.1007/s13238‑018‑0537‑4 29675808
    [Google Scholar]
  233. AhmedE. HensK. Microbiome in precision psychiatry: An overview of the ethical challenges regarding microbiome big data and microbiome-based interventions.AJOB Neurosci.202213427028610.1080/21507740.2021.1958096 34379050
    [Google Scholar]
  234. HootonT.M. BradleyS.F. CardenasD.D. ColganR. GeerlingsS.E. RiceJ.C. SaintS. SchaefferA.J. TambayhP.A. TenkeP. NicolleL.E. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America.Clin. Infect. Dis.201050562566310.1086/650482 20175247
    [Google Scholar]
  235. ShamarinaD. StoyantchevaI. MasonC.E. BibbyK. ElhaikE. Communicating the promise, risks, and ethics of large-scale, open space microbiome and metagenome research.Microbiome20175113210.1186/s40168‑017‑0349‑4 28978331
    [Google Scholar]
  236. OgunjobiT.T. OkaforA.M-A. OhuonuN.I. NebolisaN.M. AbimboluA.K. AjayiR.O. AfuapeA.R. OjajuniM.G. OgunborO.O. ElijahE.U. Navigating the complexity of the human microbiome: Implications for biomedical science and disease treatment.Medinformatics202410.47852/bonviewMEDIN42022988
    [Google Scholar]
  237. ZhangJ. LeiY. DuH. LiZ. WangX. YangD. GaoF. LiJ. Exploring urinary microbiome: Insights into neurogenic bladder and improving management of urinary tract infections.Front. Cell. Infect. Microbiol.202515151289110.3389/fcimb.2025.1512891 40235931
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575398906250825113635
Loading
/content/journals/mrmc/10.2174/0113895575398906250825113635
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test