Skip to content
2000
image of Targeting Microbiome-Derived Exosomes to Overcome Cancer Therapy Resistance: Mechanisms, Implications, and Opportunities

Abstract

Despite recent advances in both preclinical and clinical cancer therapies, the growing problem of treatment resistance remains one of the most critical challenges in oncology. To overcome the drawbacks of current oncologic treatments, there is a pressing need for new approaches and potential therapeutic strategies. The interaction between the host microbiome and cancer has recently attracted significant research. Among the various routes of microbiome-cancer interaction, microbiome-derived exosomes also offer an intriguing avenue. Exosomes, which are small extracellular vesicles, originate from several distinct types of cells, including microbiome-associated cells. These vesicles participate in intra- and intercellular communication as well as alteration of the tumour microenvironment. Emphasising their possible functions as treatment response modifiers and mediators, this review seeks to explain an intricate link between cancer therapy resistance and exosomes produced from the microbiome. Preclinical studies reveal that microbiome-derived exosomes operate through horizontal transfer of resistance-conferring enzymes and TLR4/MYD88-dependent signalling, demonstrating 2-5 fold upregulation of resistance-associated miRNAs in drug-resistant models. Clinical evidence shows improves anti-PD-1 immunotherapy outcomes. -derived vesicles promote oxaliplatin resistance through autophagy activation. We investigate how microbiota-derived exosomes might leverage resistance to conventional cancer treatments and their consequences for these treatments. However, limitations include inter-individual microbiome variability, challenging isolation protocols, and regulatory hurdles under FDA guidelines. We examine the possible applications of microbiome-derived exosomes as therapeutic and diagnostic tools, thereby reflecting the applicability of these findings in clinical practice. This offers an interesting path for new therapeutic approaches meant to solve treatment resistance and raise patient survival.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575416455251014053321
2025-10-28
2025-12-24
Loading full text...

Full text loading...

References

  1. Gu Y. Yang R. Zhang Y. Guo M. Takehiro K. Zhan M. Yang L. Wang H. Molecular mechanisms and therapeutic strategies in overcoming chemotherapy resistance in cancer. Mol. Biomed. 2025 6 1 2 10.1186/s43556‑024‑00239‑2 39757310
    [Google Scholar]
  2. Ouverney G. Hottz D. Robbs B.K. Drug resistance and novel targets for cancer therapy: An overview of recent findings. Biomedicines 2024 12 4 816 10.3390/biomedicines12040816 38672171
    [Google Scholar]
  3. Khan S.U. Fatima K. Aisha S. Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun. Signal. 2024 22 1 109 10.1186/s12964‑023‑01302‑1 38347575
    [Google Scholar]
  4. Boumahdi S. de Sauvage F.J. The great escape: Tumour cell plasticity in resistance to targeted therapy. Nat. Rev. Drug Discov. 2020 19 1 39 56 10.1038/s41573‑019‑0044‑1 31601994
    [Google Scholar]
  5. Michaelis M. Wass M.N. Cinatl J. Drug-adapted cancer cell lines as preclinical models of acquired resistance. Cancer Drug Resist. 2019 2 3 447 456 10.20517/cdr.2019.005 35582596
    [Google Scholar]
  6. Oun R. Moussa Y.E. Wheate N.J. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 2018 47 19 6645 6653 10.1039/C8DT00838H 29632935
    [Google Scholar]
  7. Tao J.J. Visvanathan K. Wolff A.C. Long term side effects of adjuvant chemotherapy in patients with early breast cancer. Breast 2015 24 0 2 S149 S 10.1016/j.breast.2015.07.035 26299406
    [Google Scholar]
  8. Wang Z. Drug resistance and novel therapies in cancers. Cancers 2020 12 10 2929 10.3390/cancers12102929 33053621
    [Google Scholar]
  9. Zhang Z. Zhou L. Xie N. Nice E.C. Zhang T. Cui Y. Huang C. Ma Y. Yu M. Feng X. Zheng J. Li J. Liu Z. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther. 2020 5 1 113 10.1038/s41392‑020‑00213‑8 32616710
    [Google Scholar]
  10. DeRidder L. Rubinson D.A. Langer R. Traverso G. The past, present, and future of chemotherapy with a focus on individualization of drug dosing. J. Control. Release 2022 352 840 860 10.1016/j.jconrel.2022.10.043 36334860
    [Google Scholar]
  11. Xu H. Wang W. Liu X. Huang W. Zhu C. Xu Y. Yang H. Bai J. Geng D. Targeting strategies for bone diseases: Signaling pathways and clinical studies. Signal Transduct. Target. Ther. 2023 8 1 202 10.1038/s41392‑023‑01467‑8 37198232
    [Google Scholar]
  12. Miglietta F. Iamartino L. Palmini G. Giusti F. Marini F. Iantomasi T. Brandi M.L. Rocca A. Endocrine sequelae of hematopoietic stem cell transplantation: Effects on mineral homeostasis and bone metabolism. Front. Endocrinol. 2023 13 1085315 10.3389/fendo.2022.1085315 36714597
    [Google Scholar]
  13. Mansoori B. Mohammadi A. Davudian S. Shirjang S. Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 2017 7 3 339 348 10.15171/apb.2017.041 29071215
    [Google Scholar]
  14. Wang X. Zhang H. Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019 2 2 141 160 10.20517/cdr.2019.10 34322663
    [Google Scholar]
  15. Wang N. Wu S. Huang L. Hu Y. He X. He J. Hu B. Xu Y. Rong Y. Yuan C. Zeng X. Wang F. Intratumoral microbiome: Implications for immune modulation and innovative therapeutic strategies in cancer. J. Biomed. Sci. 2025 32 1 23 10.1186/s12929‑025‑01117‑x 39966840
    [Google Scholar]
  16. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  17. Keshtkar S. Kaviani M. Soleimanian S. Azarpira N. Asvar Z. Pakbaz S. Stem cell-derived exosome as potential therapeutics for microbial diseases. Front. Microbiol. 2022 12 786111 10.3389/fmicb.2021.786111 35237239
    [Google Scholar]
  18. Li I. Nabet B.Y. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol. Cancer 2019 18 1 32 10.1186/s12943‑019‑0975‑5 30823926
    [Google Scholar]
  19. Kim S.B. Function and therapeutic development of exosomes for cancer therapy. Arch. Pharm. Res. 2022 45 5 295 308 10.1007/s12272‑022‑01387‑1 35604532
    [Google Scholar]
  20. Jóźwicka T.M. Erdmańska P.M. Stachowicz-Karpińska A. Olkiewicz M. Jóźwicki W. Exosomes—Promising carriers for regulatory therapy in oncology. Cancers 2024 16 5 923 10.3390/cancers16050923 38473285
    [Google Scholar]
  21. Li X. Liu H. Xing P. Li T. Fang Y. Chen S. Dong S. Exosomal circRNAs: Deciphering the novel drug resistance roles in cancer therapy. J. Pharm. Anal. 2025 15 2 101067 10.1016/j.jpha.2024.101067 39957900
    [Google Scholar]
  22. Ramos P. Bentires-Alj M. Mechanism-based cancer therapy: Resistance to therapy, therapy for resistance. Oncogene 2015 34 28 3617 3626 10.1038/onc.2014.314 25263438
    [Google Scholar]
  23. Emran T.B. Shahriar A. Mahmud A.R. Rahman T. Abir M.H. Siddiquee M.F.R. Ahmed H. Rahman N. Nainu F. Wahyudin E. Mitra S. Dhama K. Habiballah M.M. Haque S. Islam A. Hassan M.M. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front. Oncol. 2022 12 891652 10.3389/fonc.2022.891652 35814435
    [Google Scholar]
  24. Shirbhate E. Singh V. Kore R. Vishwakarma S. Veerasamy R. Tiwari A.K. Rajak H. The role of cytokines in activation of tumour-promoting pathways and emergence of cancer drug resistance. Curr. Top. Med. Chem. 2024 24 6 523 540 10.2174/0115680266284527240118041129 38258788
    [Google Scholar]
  25. Singh V. Shirbhate E. Kore R. Mishra A. Johariya V. Veerasamy R. Tiwari A.K. Rajak H. Dietary plant metabolites induced epigenetic modification as a novel strategy for the management of prostate cancer. Mini Rev. Med. Chem. 2024 24 15 1409 1426 10.2174/0113895575283895240207065454 38385496
    [Google Scholar]
  26. Shirbhate E. Singh V. Jahoriya V. Mishra A. Veerasamy R. Tiwari A.K. Rajak H. Dual inhibitors of HDAC and other epigenetic regulators: A novel strategy for cancer treatment. Eur. J. Med. Chem. 2024 263 115938 10.1016/j.ejmech.2023.115938 37989059
    [Google Scholar]
  27. Zahreddine H. Borden K.L.B. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol. 2013 4 28 10.3389/fphar.2013.00028 23504227
    [Google Scholar]
  28. Mann A. Ramirez-Otero M.A. De Antoni A. Hanthi Y.W. Sannino V. Baldi G. Falbo L. Schrempf A. Bernardo S. Loizou J. Costanzo V. Sartori A.A. Pellegrini L. Costanzo V. POLθ prevents MRE11-NBS1-CtIP-dependent fork breakage in the absence of BRCA2/RAD51 by filling lagging-strand gaps. Mol. Cell 2022 82 22 4218 4231.e8 10.1016/j.molcel.2022.09.013 36400008
    [Google Scholar]
  29. Alsaafeen B.H. Ali B.R. Elkord E. Resistance mechanisms to immune checkpoint inhibitors: Updated insights. Mol. Cancer 2025 24 1 20 10.1186/s12943‑024‑02212‑7 39815294
    [Google Scholar]
  30. Piper M. Kluger H. Ruppin E. Hu-Lieskovan S. Immune resistance mechanisms and the road to personalized immunotherapy. Am. Soc. Clin. Oncol. Educ. Book 2023 43 43 e390290 10.1200/EDBK_390290 37459578
    [Google Scholar]
  31. Costello E.K. Lauber C.L. Hamady M. Fierer N. Gordon J.I. Knight R. Bacterial community variation in human body habitats across space and time. Science 2009 326 5960 1694 1697 10.1126/science.1177486 19892944
    [Google Scholar]
  32. Bose M. Mukherjee P. Role of microbiome in modulating immune responses in cancer. Mediators Inflamm. 2019 2019 1 1 7 10.1155/2019/4107917 31308831
    [Google Scholar]
  33. Flint H.J. The impact of nutrition on the human microbiome. Nutr. Rev. 2012 70 Suppl. 1 S10 S13 10.1111/j.1753‑4887.2012.00499.x 22861801
    [Google Scholar]
  34. Ochoa-Repáraz J. Kasper L.H. The second brain: Is the gut microbiota a link between obesity and central nervous system disorders? Curr. Obes. Rep. 2016 5 1 51 64 10.1007/s13679‑016‑0191‑1 26865085
    [Google Scholar]
  35. Baquero F. Nombela C. The microbiome as a human organ. Clin. Microbiol. Infect. 2012 18 Suppl. 4 2 4 10.1111/j.1469‑0691.2012.03916.x 22647038
    [Google Scholar]
  36. Qin J. Li R. Raes J. Arumugam M. Burgdorf K.S. Manichanh C. Nielsen T. Pons N. Levenez F. Yamada T. Mende D.R. Li J. Xu J. Li S. Li D. Cao J. Wang B. Liang H. Zheng H. Xie Y. Tap J. Lepage P. Bertalan M. Batto J.M. Hansen T. Le Paslier D. Linneberg A. Nielsen H.B. Pelletier E. Renault P. Sicheritz-Ponten T. Turner K. Zhu H. Yu C. Li S. Jian M. Zhou Y. Li Y. Zhang X. Li S. Qin N. Yang H. Wang J. Brunak S. Doré J. Guarner F. Kristiansen K. Pedersen O. Parkhill J. Weissenbach J. Bork P. Ehrlich S.D. Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010 464 7285 59 65 10.1038/nature08821 20203603
    [Google Scholar]
  37. Turnbaugh P.J. Ley R.E. Hamady M. Fraser-Liggett C.M. Knight R. Gordon J.I. The human microbiome project. Nature 2007 449 7164 804 810 10.1038/nature06244 17943116
    [Google Scholar]
  38. Koren O. Moody microbes: Do microbes influence our behavior? Eur. Neuropsychopharmacol. 2017 27 S478 10.1016/j.euroneuro.2016.09.561
    [Google Scholar]
  39. Martin A.M. Sun E.W. Rogers G.B. Keating D.J. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. Front. Physiol. 2019 10 428 10.3389/fphys.2019.00428 31057420
    [Google Scholar]
  40. Van Treuren W. Dodd D. Microbial contribution to the human metabolome: Implications for health and disease. Annu. Rev. Pathol. 2020 15 1 345 369 10.1146/annurev‑pathol‑020117‑043559 31622559
    [Google Scholar]
  41. Huang T.T. Lai J.B. Du Y.L. Xu Y. Ruan L.M. Hu S.H. Current understanding of gut microbiota in mood disorders: An update of human studies. Front. Genet. 2019 10 98 10.3389/fgene.2019.00098 30838027
    [Google Scholar]
  42. Merchak A. Gaultier A. Microbial metabolites and immune regulation: New targets for major depressive disorder. Brain Behav. Immun. Health. 2020 9 100169 10.1016/j.bbih.2020.100169 34589904
    [Google Scholar]
  43. Zhou X. Kandalai S. Hossain F. Zheng Q. Tumor microbiome metabolism: A game changer in cancer development and therapy. Front. Oncol. 2022 12 933407 10.3389/fonc.2022.933407 35936744
    [Google Scholar]
  44. Rayan M. Sayed T.S. Hussein O.J. Therachiyil L. Maayah Z.H. Maccalli C. Uddin S. Prehn J.H.M. Korashy H.M. Unlocking the secrets: Exploring the influence of the aryl hydrocarbon receptor and microbiome on cancer development. Cell. Mol. Biol. Lett. 2024 29 1 33 10.1186/s11658‑024‑00538‑0 38448800
    [Google Scholar]
  45. Teymournejad O. Mobarez AM. Hassan ZM. Talebi Bezmin Abadi, A Binding of the Helicobacter pylori OipA causes apoptosis of host cells via modulation of Bax/Bcl-2 levels. Sci. Rep. 2017 7 1 8036 8036 10.1038/s41598‑017‑08176‑7 28808292
    [Google Scholar]
  46. Rubinstein MR. Wang X. Liu W. Hao Y. Cai G. Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013 14 2 195 206 10.1016/j.chom.2013.07.012 23954158
    [Google Scholar]
  47. Wassenaar T.M.E. coli and colorectal cancer: A complex relationship that deserves a critical mindset. Crit. Rev. Microbiol. 2018 44 5 619 632 10.1080/1040841X.2018.1481013 29909724
    [Google Scholar]
  48. Öğrendik M. Oral bacteria in pancreatic cancer: Mutagenesis of the p53 tumour suppressor gene. Int. J. Clin. Exp. Pathol. 2015 8 9 11835 11836 26617937
    [Google Scholar]
  49. Doocey C.M. Finn K. Murphy C. Guinane C.M. The impact of the human microbiome in tumorigenesis, cancer progression, and biotherapeutic development. BMC Microbiol. 2022 22 1 53 10.1186/s12866‑022‑02465‑6 35151278
    [Google Scholar]
  50. Cheng W.Y. Wu C.Y. Yu J. The role of gut microbiota in cancer treatment: Rriend or foe? Gut 2020 69 10 1867 1876 10.1136/gutjnl‑2020‑321153 32759302
    [Google Scholar]
  51. Jain T. Sharma P. Are A.C. Vickers S.M. Dudeja V. New insights into the cancer–microbiome–immune axis: Decrypting a decade of discoveries. Front. Immunol. 2021 12 622064 10.3389/fimmu.2021.622064 33708214
    [Google Scholar]
  52. Dhingra A. Sharma D. Kumar A. Singh S. Kumar P. Microbiome and development of ovarian cancer. Endocr. Metab. Immune Disord. Drug Targets 2022 22 11 1073 1090 10.2174/1871530322666220509034847 35532247
    [Google Scholar]
  53. Waldenström A. Gennebäck N. Hellman U. Ronquist G. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 2012 7 4 e34653 10.1371/journal.pone.0034653 22506041
    [Google Scholar]
  54. Harmati M. Bukva M. Böröczky T. Buzás K. Gyukity-Sebestyén E. The role of the metabolite cargo of extracellular vesicles in tumor progression. Cancer Metastasis Rev. 2021 40 4 1203 1221 10.1007/s10555‑021‑10014‑2 34957539
    [Google Scholar]
  55. Wandrey M. Jablonska J. Stauber R.H. Gül D. Exosomes in cancer progression and therapy resistance: Molecular insights and therapeutic opportunities. Life 2023 13 10 2033 10.3390/life13102033 37895415
    [Google Scholar]
  56. Yang X. Zhang Y. Zhang Y. Zhang S. Qiu L. Zhuang Z. Wei M. Deng X. Wang Z. Han J. The key role of exosomes on the pre-metastatic niche formation in tumors. Front. Mol. Biosci. 2021 8 703640 10.3389/fmolb.2021.703640 34595207
    [Google Scholar]
  57. Sharma A. Chemoresistance in cancer cells: Exosomes as potential regulators of therapeutic tumor heterogeneity. Nanomedicine 2017 12 17 2137 2148 10.2217/nnm‑2017‑0184 28805111
    [Google Scholar]
  58. Han Q.F. Li W.J. Hu K.S. Gao J. Zhai W.L. Yang J.H. Zhang S.J. Liu Y.H. Sun B. Exosome biogenesis: Machinery, regulation, and therapeutic implications in cancer. Mol. Cancer 2022 21 1 207 10.1186/s12943‑022‑01671‑0 36320056
    [Google Scholar]
  59. Wei H. Chen Q. Lin L. Sha C. Li T. Liu Y. Yin X. Xu Y. Chen L. Gao W. Li Y. Zhu X. Regulation of exosome production and cargo sorting. Int. J. Biol. Sci. 2021 17 1 163 177 10.7150/ijbs.53671 33390841
    [Google Scholar]
  60. Zubkova E. Kalinin A. Bolotskaya A. Beloglazova I. Menshikov M. Autophagy-dependent secretion: Crosstalk between autophagy and exosome biogenesis. Curr. Issues Mol. Biol. 2024 46 3 2209 2235 10.3390/cimb46030142 38534758
    [Google Scholar]
  61. Huo L. Du X. Li X. Liu S. Xu Y. The emerging role of neural cell-derived exosomes in intercellular communication in health and neurodegenerative diseases. Front. Neurosci. 2021 15 738442 10.3389/fnins.2021.738442 34531720
    [Google Scholar]
  62. Patil M. Henderson J. Luong H. Annamalai D. Sreejit G. Krishnamurthy P. The art of intercellular wireless communications: Exosomes in heart disease and therapy. Front. Cell Dev. Biol. 2019 7 315 10.3389/fcell.2019.00315 31850349
    [Google Scholar]
  63. Di Naro M. Petronio Petronio G. Mukhtar F. Cutuli M.A. Magnifico I. Falcone M. Brancazio N. Guarnieri A. Di Marco R. Nicolosi D. Extracellular vesicles in bacteria, archaea, and eukaryotes: Mechanisms of inter-kingdom communication and clinical implications. Microorganisms 2025 13 3 636 10.3390/microorganisms13030636 40142528
    [Google Scholar]
  64. Ñahui Palomino R.A. Vanpouille C. Costantini P.E. Margolis L. Microbiota–host communications: Bacterial extracellular vesicles as a common language. PLoS Pathog. 2021 17 5 e1009508 10.1371/journal.ppat.1009508 33984071
    [Google Scholar]
  65. Stathatos I. Koumandou V.L. Comparative analysis of prokaryotic extracellular vesicle proteins and their targeting signals. Microorganisms 2023 11 8 1977 10.3390/microorganisms11081977 37630535
    [Google Scholar]
  66. Ghadami S. Dellinger K. The lipid composition of extracellular vesicles: Applications in diagnostics and therapeutic delivery. Front. Mol. Biosci. 2023 10 1198044 10.3389/fmolb.2023.1198044 37520326
    [Google Scholar]
  67. Skotland T. Sagini K. Sandvig K. Llorente A. An emerging focus on lipids in extracellular vesicles. Adv. Drug Deliv. Rev. 2020 159 308 321 10.1016/j.addr.2020.03.002 32151658
    [Google Scholar]
  68. Barathan M. Ng S.L. Lokanathan Y. Ng M.H. Law J.X. The profound influence of gut microbiome and extracellular vesicles on animal health and disease. Int. J. Mol. Sci. 2024 25 7 4024 10.3390/ijms25074024 38612834
    [Google Scholar]
  69. Zhang B. Zhao J. Jiang M. Peng D. Dou X. Song Y. Shi J. Zhu J. Yang X. Jia W. You Y. The potential role of gut microbial-derived exosomes in metabolic-associated fatty liver disease: Implications for treatment. Front. Immunol. 2022 13 893617 10.3389/fimmu.2022.893617 35634340
    [Google Scholar]
  70. Manzaneque-López M.C. Sánchez-López C.M. Pérez-Bermúdez P. Soler C. Marcilla A. Dietary-derived exosome-like nanoparticles as bacterial modulators: Beyond microRNAs. Nutrients 2023 15 5 1265 10.3390/nu15051265 36904264
    [Google Scholar]
  71. Schwarzenbach H. Potential of exosomes as therapeutics and therapy targets in cancer patients. Int. J. Transl. Med. 2024 4 2 247 261 10.3390/ijtm4020015
    [Google Scholar]
  72. Lin Z. Wu Y. Xu Y. Li G. Li Z. Liu T. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: Recent advances and therapeutic potential. Mol. Cancer 2022 21 1 179 10.1186/s12943‑022‑01650‑5 36100944
    [Google Scholar]
  73. Paskeh M.D.A. Entezari M. Mirzaei S. Zabolian A. Saleki H. Naghdi M.J. Sabet S. Khoshbakht M.A. Hashemi M. Hushmandi K. Sethi G. Zarrabi A. Kumar A.P. Tan S.C. Papadakis M. Alexiou A. Islam M.A. Mostafavi E. Ashrafizadeh M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J. Hematol. Oncol. 2022 15 1 83 10.1186/s13045‑022‑01305‑4 35765040
    [Google Scholar]
  74. Yang S. Sun Y. Liu W. Zhang Y. Sun G. Xiang B. Yang J. Zhang Z. Li C. Exosomes in glioma: Unraveling their roles in progression, diagnosis, and therapy. Cancers 2024 16 4 823 10.3390/cancers16040823 38398214
    [Google Scholar]
  75. Subha D. AnuKiruthika, R.; Sreeraj, H.; Tamilselvi, K.S. Plant exosomes: Nano conveyors of pathogen resistance. Discov. Nano. 2023 18 1 146 10.1186/s11671‑023‑03931‑4 38032422
    [Google Scholar]
  76. Ten A. Kumeiko V. Farniev V. Gao H. Shevtsov M. Tumor microenvironment modulation by cancer-derived extracellular vesicles. Cells 2024 13 8 682 10.3390/cells13080682 38667297
    [Google Scholar]
  77. Maia J. Caja S. Strano Moraes M.C. Couto N. Costa-Silva B. Exosome-based cell-cell communication in the tumor microenvironment. Front. Cell Dev. Biol. 2018 6 18 10.3389/fcell.2018.00018 29515996
    [Google Scholar]
  78. Gangadaran P. Madhyastha H. Madhyastha R. Rajendran R.L. Nakajima Y. Watanabe N. Velikkakath A.K.G. Hong C.M. Gopi R.V. Muthukalianan G.K. Valsala Gopalakrishnan A. Jeyaraman M. Ahn B.C. Zalutsky M.R. Lee H.W. Ahn B.C. The emerging role of exosomes in innate immunity, diagnosis and therapy. Front. Immunol. 2023 13 1085057 10.3389/fimmu.2022.1085057 36726968
    [Google Scholar]
  79. Hussain M.W.A. Jahangir S. Ghosh B. Yesmin F. Anis A. Satil S.N. Anwar F. Rashid M.H. Bin Borhan M.Z. Emran T.B. Simal-Gandara J. Exosomes for regulation of immune responses and immunotherapy. J. Nanotheranostics 2022 3 1 55 85 10.3390/jnt3010005
    [Google Scholar]
  80. De Langhe N. Van Dorpe S. Guilbert N. Vander Cruyssen A. Roux Q. Deville S. Dedeyne S. Tummers P. Denys H. Vandekerckhove L. De Wever O. Hendrix A. Mapping bacterial extracellular vesicle research: Insights, best practices and knowledge gaps. Nat. Commun. 2024 15 1 9410 10.1038/s41467‑024‑53279‑1 39482295
    [Google Scholar]
  81. Lathia J.D. Watson D.C. Dose determination and administration of bacterial extracellular vesicles for in vivo preclinical studies. Methods Mol. Biol. 2024 2843 219 237 10.1007/978‑1‑0716‑4055‑5_14 39141303
    [Google Scholar]
  82. Li J. Gao N. Gao Z. Liu W. Pang B. Dong X. Li Y. Fan T. The emerging role of exosomes in cancer chemoresistance. Front. Cell Dev. Biol. 2021 9 737962 10.3389/fcell.2021.737962 34778252
    [Google Scholar]
  83. Zhao X. Wu Y. Duan J. Ma Y. Shen Z. Wei L. Cui X. Zhang J. Xie Y. Liu J. Quantitative proteomic analysis of exosome protein content changes induced by hepatitis B virus in Huh-7 cells using SILAC labeling and LC-MS/MS. J. Proteome Res. 2014 13 12 5391 5402 10.1021/pr5008703 25265333
    [Google Scholar]
  84. Sonwane S. Telrandhe U. Chambhare N. Vaidya S. Unraveling exosome-mediated cancer therapy resistance: Pathways and therapeutic challenges. J. Egypt. Natl. Canc. Inst. 2025 37 1 30 10.1186/s43046‑025‑00289‑9 40310494
    [Google Scholar]
  85. Zhong Y. Li H. Li P. Chen Y. Zhang M. Yuan Z. Zhang Y. Xu Z. Luo G. Fang Y. Li X. Exosomes: A new pathway for cancer drug resistance. Front. Oncol. 2021 11 743556 10.3389/fonc.2021.743556 34631581
    [Google Scholar]
  86. Guo Q. Wang H. Yan Y. Liu Y. Su C. Chen H. Yan Y. Adhikari R. Wu Q. Zhang J. The role of exosomal microRNA in cancer drug resistance. Front. Oncol. 2020 10 472 10.3389/fonc.2020.00472 32318350
    [Google Scholar]
  87. Morrissey S.M. Yan J. Exosomal PD-L1: Roles in tumor progression and immunotherapy. Trends Cancer 2020 6 7 550 558 10.1016/j.trecan.2020.03.002 32610067
    [Google Scholar]
  88. Serratì S. Guida M. Di Fonte R. De Summa S. Strippoli S. Iacobazzi R.M. Quarta A. De Risi I. Guida G. Paradiso A. Porcelli L. Azzariti A. Circulating extracellular vesicles expressing PD1 and PD-L1 predict response and mediate resistance to checkpoint inhibitors immunotherapy in metastatic melanoma. Mol. Cancer 2022 21 1 20 10.1186/s12943‑021‑01490‑9 35042524
    [Google Scholar]
  89. Chinnappan M. Srivastava A. Amreddy N. Razaq M. Pareek V. Ahmed R. Mehta M. Peterson J.E. Munshi A. Ramesh R. Exosomes as drug delivery vehicle and contributor of resistance to anticancer drugs. Cancer Lett. 2020 486 18 28 10.1016/j.canlet.2020.05.004 32439419
    [Google Scholar]
  90. Giallombardo M. Taverna S. Alessandro R. Hong D. Rolfo C. Exosome-mediated drug resistance in cancer: The near future is here. Ther. Adv. Med. Oncol. 2016 8 5 320 322 10.1177/1758834016648276 27583023
    [Google Scholar]
  91. Thakur A. Rai D. Global requirements for manufacturing and validation of clinical grade extracellular vesicles. J. Liq. Biopsy. 2024 6 100278 10.1016/j.jlb.2024.100278 40027307
    [Google Scholar]
  92. Wang C.K. Tsai T.H. Lee C.H. Regulation of exosomes as biologic medicines: Regulatory challenges faced in exosome development and manufacturing processes. Clin. Transl. Sci. 2024 17 8 e13904 10.1111/cts.13904 39115257
    [Google Scholar]
  93. Hosseini-Giv N. Basas A. Hicks C. El-Omar E. El-Assaad F. Hosseini-Beheshti E. Bacterial extracellular vesicles and their novel therapeutic applications in health and cancer. Front. Cell. Infect. Microbiol. 2022 12 962216 10.3389/fcimb.2022.962216 36439225
    [Google Scholar]
  94. Rodriguez J. Cordaillat-Simmons M. Pot B. Druart C. The regulatory framework for microbiome-based therapies: Insights into European regulatory developments. NPJ Biofilms Microbiomes 2025 11 1 53 53 10.1038/s41522‑025‑00683‑0 40155609
    [Google Scholar]
  95. Fujita M. Hatta T. Ikka T. Onishi T. The urgent need for clear and concise regulations on exosome-based interventions. Stem Cell Reports 2024 19 11 1517 1519 10.1016/j.stemcr.2024.09.008 39454583
    [Google Scholar]
  96. Wang L. Liu S. Li K. Ma A. Hu C. Wang C. Cao N. Zhao Y. Fu R. Jia W. Xiang P. Liu H. Qi Z. Zhu N. Liang L. Wang L. Cao J. Zhai P. Zhou J. Wei J. Na T. Wu J. He Z. Zhou G. Yu W. Wu J. Zeng W. Zhang Y. Zhu L. Fu B. Zhang J. Yang S. Dai C. Cui H. Jing J. Yan H. He X. Lu Y. Tong C. Zhao T. Hao J. Liu X. Jin Y. Wang Y. General requirements for the production of extracellular vesicles derived from human stem cells. Cell Prolif. 2024 57 3 e13554 10.1111/cpr.13554 37767639
    [Google Scholar]
  97. Théry C. Witwer K.W. Aikawa E. Alcaraz M.J. Anderson J.D. Andriantsitohaina R. Antoniou A. Arab T. Archer F. Atkin-Smith G.K. Ayre D.C. Bach J.M. Bachurski D. Baharvand H. Balaj L. Baldacchino S. Bauer N.N. Baxter A.A. Bebawy M. Beckham C. Bedina Zavec A. Benmoussa A. Berardi A.C. Bergese P. Bielska E. Blenkiron C. Bobis-Wozowicz S. Boilard E. Boireau W. Bongiovanni A. Borràs F.E. Bosch S. Boulanger C.M. Breakefield X. Breglio A.M. Brennan M.Á. Brigstock D.R. Brisson A. Broekman M.L.D. Bromberg J.F. Bryl-Górecka P. Buch S. Buck A.H. Burger D. Busatto S. Buschmann D. Bussolati B. Buzás E.I. Byrd J.B. Camussi G. Carter D.R.F. Caruso S. Chamley L.W. Chang Y.T. Chen C. Chen S. Cheng L. Chin A.R. Clayton A. Clerici S.P. Cocks A. Cocucci E. Coffey R.J. Cordeiro-da-Silva A. Couch Y. Coumans F.A.W. Coyle B. Crescitelli R. Criado M.F. D’Souza-Schorey C. Das S. Datta Chaudhuri A. de Candia P. De Santana E.F. De Wever O. del Portillo H.A. Demaret T. Deville S. Devitt A. Dhondt B. Di Vizio D. Dieterich L.C. Dolo V. Dominguez Rubio A.P. Dominici M. Dourado M.R. Driedonks T.A.P. Duarte F.V. Duncan H.M. Eichenberger R.M. Ekström K. Andaloussi E.L. S.; Elie-Caille, C.; Erdbrügger, U.; Falcón-Pérez, J.M.; Fatima, F.; Fish, J.E.; Flores-Bellver, M.; Försönits, A.; Frelet-Barrand, A.; Fricke, F.; Fuhrmann, G.; Gabrielsson, S.; Gámez-Valero, A.; Gardiner, C.; Gärtner, K.; Gaudin, R.; Gho, Y.S.; Giebel, B.; Gilbert, C.; Gimona, M.; Giusti, I.; Goberdhan, D.C.I.; Görgens, A.; Gorski, S.M.; Greening, D.W.; Gross, J.C.; Gualerzi, A.; Gupta, G.N.; Gustafson, D.; Handberg, A.; Haraszti, R.A.; Harrison, P.; Hegyesi, H.; Hendrix, A.; Hill, A.F.; Hochberg, F.H.; Hoffmann, K.F.; Holder, B.; Holthofer, H.; Hosseinkhani, B.; Hu, G.; Huang, Y.; Huber, V.; Hunt, S.; Ibrahim, A.G.E.; Ikezu, T.; Inal, J.M.; Isin, M.; Ivanova, A.; Jackson, H.K.; Jacobsen, S.; Jay, S.M.; Jayachandran, M.; Jenster, G.; Jiang, L.; Johnson, S.M.; Jones, J.C.; Jong, A.; Jovanovic-Talisman, T.; Jung, S.; Kalluri, R.; Kano, S.; Kaur, S.; Kawamura, Y.; Keller, E.T.; Khamari, D.; Khomyakova, E.; Khvorova, A.; Kierulf, P.; Kim, K.P.; Kislinger, T.; Klingeborn, M.; Klinke, D.J.; Kornek, M.; Kosanović, M.M.; Kovács, Á.F.; Krämer-Albers, E.M.; Krasemann, S.; Krause, M.; Kurochkin, I.V.; Kusuma, G.D.; Kuypers, S.; Laitinen, S.; Langevin, S.M.; Languino, L.R.; Lannigan, J.; Lässer, C.; Laurent, L.C.; Lavieu, G.; Lázaro-Ibáñez, E.; Le Lay, S.; Lee, M.S.; Lee, Y.X.F.; Lemos, D.S.; Lenassi, M.; Leszczynska, A.; Li, I.T.S.; Liao, K.; Libregts, S.F.; Ligeti, E.; Lim, R.; Lim, S.K.; Linē, A.; Linnemannstöns, K.; Llorente, A.; Lombard, C.A.; Lorenowicz, M.J.; Lörincz, Á.M.; Lötvall, J.; Lovett, J.; Lowry, M.C.; Loyer, X.; Lu, Q.; Lukomska, B.; Lunavat, T.R.; Maas, S.L.N.; Malhi, H.; Marcilla, A.; Mariani, J.; Mariscal, J.; Martens-Uzunova, E.S.; Martin-Jaular, L.; Martinez, M.C.; Martins, V.R.; Mathieu, M.; Mathivanan, S.; Maugeri, M.; McGinnis, L.K.; McVey, M.J.; Meckes, D.G.; Meehan, K.L.; Mertens, I.; Minciacchi, V.R.; Möller, A.; Møller Jørgensen, M.; Morales-Kastresana, A.; Morhayim, J.; Mullier, F.; Muraca, M.; Musante, L.; Mussack, V.; Muth, D.C.; Myburgh, K.H.; Najrana, T.; Nawaz, M.; Nazarenko, I.; Nejsum, P.; Neri, C.; Neri, T.; Nieuwland, R.; Nimrichter, L.; Nolan, J.P.; Nolte-’t Hoen, E.N.M.; Noren Hooten, N.; O’Driscoll, L.; O’Grady, T.; O’Loghlen, A.; Ochiya, T.; Olivier, M.; Ortiz, A.; Ortiz, L.A.; Osteikoetxea, X.; Østergaard, O.; Ostrowski, M.; Park, J.; Pegtel, D.M.; Peinado, H.; Perut, F.; Pfaffl, M.W.; Phinney, D.G.; Pieters, B.C.H.; Pink, R.C.; Pisetsky, D.S.; Pogge von Strandmann, E.; Polakovicova, I.; Poon, I.K.H.; Powell, B.H.; Prada, I.; Pulliam, L.; Quesenberry, P.; Radeghieri, A.; Raffai, R.L.; Raimondo, S.; Rak, J.; Ramirez, M.I.; Raposo, G.; Rayyan, M.S.; Regev-Rudzki, N.; Ricklefs, F.L.; Robbins, P.D.; Roberts, D.D.; Rodrigues, S.C.; Rohde, E.; Rome, S.; Rouschop, K.M.A.; Rughetti, A.; Russell, A.E.; Saá, P.; Sahoo, S.; Salas-Huenuleo, E.; Sánchez, C.; Saugstad, J.A.; Saul, M.J.; Schiffelers, R.M.; Schneider, R.; Schøyen, T.H.; Scott, A.; Shahaj, E.; Sharma, S.; Shatnyeva, O.; Shekari, F.; Shelke, G.V.; Shetty, A.K.; Shiba, K.; Siljander, P.R.M.; Silva, A.M.; Skowronek, A.; Snyder, O.L.; Soares, R.P.; Sódar, B.W.; Soekmadji, C.; Sotillo, J.; Stahl, P.D.; Stoorvogel, W.; Stott, S.L.; Strasser, E.F.; Swift, S.; Tahara, H.; Tewari, M.; Timms, K.; Tiwari, S.; Tixeira, R.; Tkach, M.; Toh, W.S.; Tomasini, R.; Torrecilhas, A.C.; Tosar, J.P.; Toxavidis, V.; Urbanelli, L.; Vader, P.; van Balkom, B.W.M.; van der Grein, S.G.; Van Deun, J.; van Herwijnen, M.J.C.; Van Keuren-Jensen, K.; van Niel, G.; van Royen, M.E.; van Wijnen, A.J.; Vasconcelos, M.H.; Vechetti, I.J.; Veit, T.D.; Vella, L.J.; Velot, É.; Verweij, F.J.; Vestad, B.; Viñas, J.L.; Visnovitz, T.; Vukman, K.V.; Wahlgren, J.; Watson, D.C.; Wauben, M.H.M.; Weaver, A.; Webber, J.P.; Weber, V.; Wehman, A.M.; Weiss, D.J.; Welsh, J.A.; Wendt, S.; Wheelock, A.M.; Wiener, Z.; Witte, L.; Wolfram, J.; Xagorari, A.; Xander, P.; Xu, J.; Yan, X.; Yáñez-Mó, M.; Yin, H.; Yuana, Y.; Zappulli, V.; Zarubova, J.; Žėkas, V.; Zhang, J.; Zhao, Z.; Zheng, L.; Zheutlin, A.R.; Zickler, A.M.; Zimmermann, P.; Zivkovic, A.M.; Zocco, D.; Zuba-Surma, E.K. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018 7 1 1535750 10.1080/20013078.2018.1535750 30637094
    [Google Scholar]
  98. Welsh J.A. Goberdhan D.C.I. O’Driscoll L. Buzas E.I. Blenkiron C. Bussolati B. Cai H. Di Vizio D. Driedonks T.A.P. Erdbrügger U. Falcon-Perez J.M. Fu Q.L. Hill A.F. Lenassi M. Lim S.K. Mahoney M.G. Mohanty S. Möller A. Nieuwland R. Ochiya T. Sahoo S. Torrecilhas A.C. Zheng L. Zijlstra A. Abuelreich S. Bagabas R. Bergese P. Bridges E.M. Brucale M. Burger D. Carney R.P. Cocucci E. Crescitelli R. Hanser E. Harris A.L. Haughey N.J. Hendrix A. Ivanov A.R. Jovanovic-Talisman T. Kruh-Garcia N.A. Ku’ulei-Lyn Faustino V. Kyburz D. Lässer C. Lennon K.M. Lötvall J. Maddox A.L. Martens-Uzunova E.S. Mizenko R.R. Newman L.A. Ridolfi A. Rohde E. Rojalin T. Rowland A. Saftics A. Sandau U.S. Saugstad J.A. Shekari F. Swift S. Ter-Ovanesyan D. Tosar J.P. Useckaite Z. Valle F. Varga Z. van der Pol E. van Herwijnen M.J.C. Wauben M.H.M. Wehman A.M. Williams S. Zendrini A. Zimmerman A.J. Théry C. Witwer K.W. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024 13 2 e12404 10.1002/jev2.12404 38326288
    [Google Scholar]
  99. Díaz-Garrido N. Badia J. Baldomà L. Microbiota‐derived extracellular vesicles in interkingdom communication in the gut. J. Extracell. Vesicles 2021 10 13 e12161 10.1002/jev2.12161 34738337
    [Google Scholar]
  100. Chronopoulos A. Kalluri R. Emerging role of bacterial extracellular vesicles in cancer. Oncogene 2020 39 46 6951 6960 10.1038/s41388‑020‑01509‑3 33060855
    [Google Scholar]
  101. Li S. Zhu S. Yu J. The role of gut microbiota and metabolites in cancer chemotherapy. J. Adv. Res. 2024 64 223 235 10.1016/j.jare.2023.11.027 38013112
    [Google Scholar]
  102. Jiang B. Lai Y. Xiao W. Zhong T. Liu F. Gong J. Huang J. Microbial extracellular vesicles contribute to antimicrobial resistance. PLoS Pathog. 2024 20 5 e1012143 10.1371/journal.ppat.1012143 38696356
    [Google Scholar]
  103. Shan C. Liang Y. Wang K. Li P. Mesenchymal stem cell-derived extracellular vesicles in cancer therapy resistance: From biology to clinical opportunity. Int. J. Biol. Sci. 2024 20 1 347 366 10.7150/ijbs.88500 38164177
    [Google Scholar]
  104. Zhou M. He X. Mei C. Ou C. Exosome derived from tumor-associated macrophages: Biogenesis, functions, and therapeutic implications in human cancers. Biomark. Res. 2023 11 1 100 10.1186/s40364‑023‑00538‑w 37981718
    [Google Scholar]
  105. Kanlikilicer P. Bayraktar R. Denizli M. Rashed M.H. Ivan C. Aslan B. Mitra R. Karagoz K. Bayraktar E. Zhang X. Rodriguez-Aguayo C. El-Arabey A.A. Kahraman N. Baydogan S. Ozkayar O. Gatza M.L. Ozpolat B. Calin G.A. Sood A.K. Lopez-Berestein G. Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. EBioMedicine 2018 38 100 112 10.1016/j.ebiom.2018.11.004 30487062
    [Google Scholar]
  106. Li C. Zhou T. Chen J. Li R. Chen H. Luo S. Chen D. Cai C. Li W. The role of Exosomal miRNAs in cancer. J. Transl. Med. 2022 20 1 6 10.1186/s12967‑021‑03215‑4 34980158
    [Google Scholar]
  107. Guenther M. Haas M. Heinemann V. Kruger S. Westphalen C.B. von Bergwelt-Baildon M. Mayerle J. Werner J. Kirchner T. Boeck S. Ormanns S. Bacterial lipopolysaccharide as negative predictor of gemcitabine efficacy in advanced pancreatic cancer – Translational results from the AIO-PK0104 Phase 3 study. Br. J. Cancer 2020 123 9 1370 1376 10.1038/s41416‑020‑01029‑7 32830200
    [Google Scholar]
  108. Wu X. Qian S. Zhang J. Feng J. Luo K. Sun L. Zhao L. Ran Y. Sun L. Wang J. Xu F. Lipopolysaccharide promotes metastasis via acceleration of glycolysis by the nuclear factor-κB/snail/hexokinase3 signaling axis in colorectal cancer. Cancer Metab. 2021 9 1 23 10.1186/s40170‑021‑00260‑x 33980323
    [Google Scholar]
  109. Yin H. Pu N. Chen Q. Zhang J. Zhao G. Xu X. Wang D. Kuang T. Jin D. Lou W. Wu W. Gut-derived lipopolysaccharide remodels tumoral microenvironment and synergizes with PD-L1 checkpoint blockade via TLR4/MyD88/AKT/NF-κB pathway in pancreatic cancer. Cell Death Dis. 2021 12 11 1033 10.1038/s41419‑021‑04293‑4 34718325
    [Google Scholar]
  110. Routy B. Le Chatelier E. Derosa L. Duong C.P.M. Alou M.T. Daillère R. Fluckiger A. Messaoudene M. Rauber C. Roberti M.P. Fidelle M. Flament C. Poirier-Colame V. Opolon P. Klein C. Iribarren K. Mondragón L. Jacquelot N. Qu B. Ferrere G. Clémenson C. Mezquita L. Masip J.R. Naltet C. Brosseau S. Kaderbhai C. Richard C. Rizvi H. Levenez F. Galleron N. Quinquis B. Pons N. Ryffel B. Minard-Colin V. Gonin P. Soria J.C. Deutsch E. Loriot Y. Ghiringhelli F. Zalcman G. Goldwasser F. Escudier B. Hellmann M.D. Eggermont A. Raoult D. Albiges L. Kroemer G. Zitvogel L. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 2018 359 6371 91 97 10.1126/science.aan3706 29097494
    [Google Scholar]
  111. Singh V. Shirbhate E. Kore R. Vishwakarma S. Parveen S. Veerasamy R. Tiwari A.K. Rajak H. Microbial metabolites-induced epigenetic modifications for inhibition of colorectal cancer: Current status and future perspectives. Mini Rev. Med. Chem. 2025 25 1 76 93 10.2174/0113895575320344240625080555 38982701
    [Google Scholar]
  112. Rezaie J. Feghhi M. Etemadi T. A review on exosomes application in clinical trials: Perspective, questions, and challenges. Cell Commun. Signal. 2022 20 1 145 10.1186/s12964‑022‑00959‑4 36123730
    [Google Scholar]
  113. Tang Z. Li D. Hou S. Zhu X. The cancer exosomes: Clinical implications, applications and challenges. Int. J. Cancer 2020 146 11 2946 2959 10.1002/ijc.32762 31671207
    [Google Scholar]
  114. Dhar R. Devi A. Patil S. Tovani-Palone M.R. Exosomes in cancer therapy: Advances and current challenges. Electron. J. Gen. Med. 2023 20 5 em524 10.29333/ejgm/13456
    [Google Scholar]
  115. Sevcikova A. Izoldova N. Stevurkova V. Kasperova B. Chovanec M. Ciernikova S. Mego M. The impact of the microbiome on resistance to cancer treatment with chemotherapeutic agents and immunotherapy. Int. J. Mol. Sci. 2022 23 1 488 10.3390/ijms23010488 35008915
    [Google Scholar]
  116. Gurung S. Perocheau D. Touramanidou L. Baruteau J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal. 2021 19 1 47 10.1186/s12964‑021‑00730‑1 33892745
    [Google Scholar]
  117. Shelke G.V. Williamson C.D. Jarnik M. Bonifacino J.S. Inhibition of endolysosome fusion increases exosome secretion. J. Cell Biol. 2023 222 6 e202209084 10.1083/jcb.202209084 37213076
    [Google Scholar]
  118. Valdes A.M. Walter J. Segal E. Spector T.D. Role of the gut microbiota in nutrition and health. BMJ 2018 361 k2179 10.1136/bmj.k2179 29899036
    [Google Scholar]
  119. Ferenc K. Sokal-Dembowska A. Helma K. Motyka E. Jarmakiewicz-Czaja S. Filip R. Modulation of the gut microbiota by nutrition and its relationship to epigenetics. Int. J. Mol. Sci. 2024 25 2 1228 10.3390/ijms25021228 38279228
    [Google Scholar]
  120. Pham V.T. Dold S. Rehman A. Bird J.K. Steinert R.E. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr. Res. 2021 95 35 53 10.1016/j.nutres.2021.09.001 34798467
    [Google Scholar]
  121. Hasan N. Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 2019 7 e7502 10.7717/peerj.7502 31440436
    [Google Scholar]
  122. Zhao L.Y. Mei J.X. Yu G. Lei L. Zhang W.H. Liu K. Chen X.L. Kołat D. Yang K. Hu J.K. Role of the gut microbiota in anticancer therapy: From molecular mechanisms to clinical applications. Signal Transduct. Target. Ther. 2023 8 1 201 10.1038/s41392‑023‑01406‑7 37179402
    [Google Scholar]
  123. Kumar M.A. Baba S.K. Sadida H.Q. Marzooqi S.A. Jerobin J. Altemani F.H. Algehainy N. Alanazi M.A. Abou-Samra A.B. Kumar R. Al-Shabeeb Akil A.S. Macha M.A. Mir R. Bhat A.A. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct. Target. Ther. 2024 9 1 27 10.1038/s41392‑024‑01735‑1 38311623
    [Google Scholar]
  124. Abbasi R. Mesgin R.M. Nazari-Khanamiri F. Abdyazdani N. Imani Z. Talatapeh S.P. Nourmohammadi A. Nejati V. Rezaie J. Mesenchymal stem cells-derived exosomes: Novel carriers for nanoparticle to combat cancer. Eur. J. Med. Res. 2023 28 1 579 10.1186/s40001‑023‑01556‑y 38071346
    [Google Scholar]
  125. Dry J.R. Yang M. Saez-Rodriguez J. Looking beyond the cancer cell for effective drug combinations. Genome Med. 2016 8 1 125 10.1186/s13073‑016‑0379‑8 27887656
    [Google Scholar]
  126. Knippel R.J. Drewes J.L. Sears C.L. The cancer microbiome: Recent highlights and knowledge gaps. Cancer Discov. 2021 11 10 2378 2395 10.1158/2159‑8290.CD‑21‑0324 34400408
    [Google Scholar]
  127. Catalano M. O’Driscoll L. Inhibiting extracellular vesicles formation and release: A review of EV inhibitors. J. Extracell. Vesicles 2020 9 1 1703244 10.1080/20013078.2019.1703244 32002167
    [Google Scholar]
  128. Liang X. Dai N. Sheng K. Lu H. Wang J. Chen L. Wang Y. Gut bacterial extracellular vesicles: Important players in regulating intestinal microenvironment. Gut Microbes 2022 14 1 2134689 10.1080/19490976.2022.2134689 36242585
    [Google Scholar]
  129. Juodeikis R. Carding S.R. Outer membrane vesicles: Biogenesis, functions, and issues. Microbiol. Mol. Biol. Rev. 2022 86 4 e00032 e22 10.1128/mmbr.00032‑22 36154136
    [Google Scholar]
  130. Chen J. Li P. Zhang T. Xu Z. Huang X. Wang R. Du L. Review on strategies and technologies for exosome isolation and purification. Front. Bioeng. Biotechnol. 2022 9 811971 10.3389/fbioe.2021.811971 35071216
    [Google Scholar]
  131. Si C. Gao J. Ma X. Engineered exosomes in emerging cell-free therapy. Front. Oncol. 2024 14 1382398 10.3389/fonc.2024.1382398 38595822
    [Google Scholar]
  132. Choi H. Choi Y. Yim H.Y. Mirzaaghasi A. Yoo J.K. Choi C. Biodistribution of exosomes and engineering strategies for targeted delivery of therapeutic exosomes. Tissue Eng. Regen. Med. 2021 18 4 499 511 10.1007/s13770‑021‑00361‑0 34260047
    [Google Scholar]
  133. Pang J.L. Shao H. Xu X.G. Lin Z.W. Chen X.Y. Chen J.Y. Mou X.Z. Hu P.Y. Targeted drug delivery of engineered mesenchymal stem/stromal-cell-derived exosomes in cardiov-ascular disease: Recent trends and future perspectives. Front. Bioeng. Biotechnol. 2024 12 1363742 10.3389/fbioe.2024.1363742 38558788
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575416455251014053321
Loading
/content/journals/mrmc/10.2174/0113895575416455251014053321
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cancer ; exosomes ; FDA guidelines ; Microbiome ; therapy resistance ; tumour microenvironment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test