Skip to content
2000
image of Advances in 4-Hydroxycoumarin Chemistry: Functionalization, Prominent 4-Hydroxycoumarin-based Therapeutics and their Pharmacological Significance

Abstract

Background

This review discusses recent advances in 4-hydroxycoumarin (4-HC) and its derivatives, emphasising its promise as a versatile pharmacological agent with diverse bioactivities.

Introduction

4-Hydroxycoumarin (4-HC) represents a pivotal heterocyclic compound widely recognized in medicinal and pharmaceutical chemistry, serving as a central scaffold for the development of various therapeutic agents. The derivatives of 4-HC have garnered considerable attention due to their broad range of pharmacological activities, including antibacterial, antiviral, antifungal, anti-inflammatory, and anticancer effects.

Methods

This review employs a combined bibliosemantic and analytical approach, utilizing major bibliographic databases and specialized chemical repositories to extract, categorize, and evaluate relevant studies on 4-HC derivatives. Emphasis is placed on literature from 2018 onwards.

Results

The review presents a systematic overview of structurally diverse 4-HC derivatives, elucidating the synthetic strategies employed for their functionalization. Their pharmacological profiles are critically examined across distinct therapeutic domains. Structurally and mechanistically relevant analogues, such as clinically established anticoagulants, are highlighted. The derivatives are discussed according to their primary bioactivities to ensure clarity and prevent redundancy.

Discussion

The study highlights 4-HC as an important scaffold in medicinal chemistry. Structural adaptability and functionalization enable the synthesis of derivatives with targeted pharmacological effects. While significant advancement has been made, further investigation into structure–activity relationships and mechanistic insights will improve the rational design of next-generation therapeutics.

Conclusion

4-Hydroxycoumarin and its derivatives exhibit substantial promise as lead scaffolds in drug discovery. Their structural adaptability and diverse biological targets position them as valuable candidates for generating novel therapeutic agents across multiple disease spectra.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575412635251009051729
2025-11-03
2025-12-24
Loading full text...

Full text loading...

References

  1. Rusu A. Moga I.M. Uncu L. Hancu G. The role of five-membered heterocycles in the molecular structure of antibacterial drugs used in therapy. Pharmaceutics 2023 15 11 2554 10.3390/pharmaceutics15112554 38004534
    [Google Scholar]
  2. Kabir E. Uzzaman M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem. 2022 4 100606 10.1016/j.rechem.2022.100606
    [Google Scholar]
  3. Traven V.F. Manaev A.V. Safronova O.B. Chibisova T.A. HeI photoelectron spectra and structure of 4-hydroxycoumarin. J. Electron Spectrosc. Relat. Phenom. 2002 122 1 47 55 10.1016/S0368‑2048(01)00320‑6
    [Google Scholar]
  4. Heidarnezhad Z. Heidarnezhad F. Ganiev I. Obidov Z. A DFT study on tautomer stability of 4-hydroxyquinoline considering solvent effect and NBO analysis. Chem. Sci. Trans. 2013 2 4 1370 1378 10.7598/cst2013.448
    [Google Scholar]
  5. Zborowski K.K. Mohammadpour M. Sadeghi A. Proniewicz L.M. Theoretical study on the molecular tautomerism of the 3-hydroxy-pyridin-4-one system. Mol. Phys. 2013 111 8 958 967 10.1080/00268976.2012.760052
    [Google Scholar]
  6. Ulubelen A. Öztürk M. Alkaloids and coumarins from Ruta species. Nat. Prod. Commun. 2006 1 10 10.1177/1934578X0600101006
    [Google Scholar]
  7. Olyaei A. Sadeghpour M. Recent advances in the synthesis and biological activities of 3-aminoalkyl/3-amidoalkyl-4-hydroxyc-oumarin derivatives. Synth. Commun. 2023 53 4 275 297 10.1080/00397911.2022.2164509
    [Google Scholar]
  8. Robertson D.N. Link K.P. Studies on 4-hydroxycoumarins. XII. 3-Substituted-aminomethyl-4-hydroxycoumarin derivatives by the Mannich Reaction1. J. Am. Chem. Soc. 1953 75 8 1883 1885 10.1021/ja01104a031
    [Google Scholar]
  9. Laze L. Romero P. Bosque I. Gonzalez-Gomez J.C. Oxidative coupling of 4‐hydroxycoumarins with quinoxalin‐2(1H)‐ones induced by visible light under aerobic conditions. Eur. J. Org. Chem. 2023 26 6 202201484 10.1002/ejoc.202201484
    [Google Scholar]
  10. Abdou M.M. El-Saeed R.A. Bondock S. Recent advances in 4-hydroxycoumarin chemistry. Part 1: Synthesis and reactions. Arab. J. Chem. 2019 12 1 88 121 10.1016/j.arabjc.2015.06.012
    [Google Scholar]
  11. Lamara K.O. Makhloufi-Chebli M. Benazzouz-Touami A. Terrachet-Bouaziz S. Hamdi N. Silva A.M.S. Behr J.B. Selectivity control in the reaction between 2-hydroxyarylaldehydes and 4-hydroxycoumarin. Antioxidant activities and computational studies of the formed products. J. Mol. Struct. 2021 1231 129936 10.1016/j.molstruc.2021.129936
    [Google Scholar]
  12. Fylaktakidou K. Hadjipavlou-Litina D. Litinas K. Nicolaides D. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des. 2004 10 30 3813 3833 10.2174/1381612043382710 15579073
    [Google Scholar]
  13. Au N. Rettie A.E. Pharmacogenomics of 4-hydroxycoumarin anticoagulants. Drug Metab. Rev. 2008 40 2 355 375 10.1080/03602530801952187 18464049
    [Google Scholar]
  14. Vanjeri V.N. Goudar N. Kasai D. Masti S.P. Chougale R.B. Thermal and tensile properties study of 4-hydroxycoumarin doped polyvinyl alcohol/chitosan blend films. Chem. Data Collect 2019 23 100257 10.1016/j.cdc.2019.100257
    [Google Scholar]
  15. Frosch P.J. Johansen J.D. Menné T. Pirker C. Rastogi S.C. Andersen K.E. Bruze M. Goossens A. Lepoittevin J.P. White I.R. Further important sensitizers in patients sensitive to fragrances. Contact Dermat. 2002 47 5 279 287 10.1034/j.1600‑0536.2002.4704171.x 12534532
    [Google Scholar]
  16. Bulut M. Erk Ç. Improved synthesis of some hydroxycoumarins. Dyes Pigments 1996 30 2 99 104 10.1016/0143‑7208(95)00060‑7
    [Google Scholar]
  17. Mohammadi Ziarani G. Hajiabbasi P. Recent application of 4-hydroxycoumarin in multi-component reactions. Heterocycles 2013 87 7 1415 1440 10.3987/REV‑13‑768
    [Google Scholar]
  18. Calcio Gaudino E. Tagliapietra S. Martina K. Palmisano G. Cravotto G. Recent advances and perspectives in the synthesis of bioactive coumarins. RSC Advances 2016 6 52 46394 46405 10.1039/C6RA07071J
    [Google Scholar]
  19. Medina F.G. Marrero J.G. Macías-Alonso M. González M.C. Córdova-Guerrero I. Teissier García A.G. Osegueda-Robles S. Coumarin heterocyclic derivatives: Chemical synthesis and biological activity. Nat. Prod. Rep. 2015 32 10 1472 1507 10.1039/C4NP00162A 26151411
    [Google Scholar]
  20. Manolov I. Maichle-Moessmer C. Nicolova I. Danchev N. Synthesis and anticoagulant activities of substituted 2,4-diketochromans, biscoumarins, and chromanocoumarins. Arch. Pharm. 2006 339 6 319 326 10.1002/ardp.200500149 16649158
    [Google Scholar]
  21. Thijssen H.H.W. Warfarin‐based rodenticides: Mode of action and mechanism of resistance. Pestic. Sci. 1995 43 1 73 78 10.1002/ps.2780430112
    [Google Scholar]
  22. Link K.P. The discovery of dicumarol and its sequels. Circulation 1959 19 1 97 107 10.1161/01.CIR.19.1.97 13619027
    [Google Scholar]
  23. Karaky R. Al-Akhdar J. Saab F. Rostom B. Shebaby W. Mroueh M. Diab-Assaf M. Kassab I. Veitia M.S-I. Anticancer effect of new cyclocoumarol derivatives. Eur. J. Med. Chem. Rep. 2024 12 100220 10.1016/j.ejmcr.2024.100220
    [Google Scholar]
  24. Heide L. The aminocoumarins: Biosynthesis and biology. Nat. Prod. Rep. 2009 26 10 1241 1250 10.1039/b808333a 19779639
    [Google Scholar]
  25. Olmedo D. Sancho R. Bedoya L.M. López-Pérez J.L. Del Olmo E. Muñoz E. Alcamí J. Gupta M.P. San Feliciano A. 3-Phenylcoumarins as inhibitors of HIV-1 replication. Molecules 2012 17 8 9245 9257 10.3390/molecules17089245 22858844
    [Google Scholar]
  26. da Fonsêca D.V. Rocha J.S. da Silva P.R. de Sá Novaes Pereira H.N. dos Santos L.V.N. de Santana M.A.D. Alves A.F. Pontes A.H.O. de Souza Gomes J. Felipe C.F.B. de Sousa D.P. Scotti M.T. Scotti L. 4-Hydroxycoumarin exhibits antinociceptive and anti-inflammatory effects through cytokine modulation: An integrated in silico and in vivo study. Int. J. Mol. Sci. 2025 26 6 2788 10.3390/ijms26062788 40141429
    [Google Scholar]
  27. Chiarino D. Grancini G.C. Frigeni V. Carenzi A. Preparation and formulation of 4-(3-coumarinyl) thiazole derivatives with antiallergic, antianaphylactic and antiarthritic activity. Eur. Pat. Appl. EP 1988 284017
    [Google Scholar]
  28. Luchini A.C. Rodrigues-Orsi P. Cestari S.H. Seito L.N. Witaicenis A. Pellizzon C.H. Di Stasi L.C. Intestinal anti-inflammatory activity of coumarin and 4-hydroxycoumarin in the trinitrobenzenesulphonic acid model of rat colitis. Biol. Pharm. Bull. 2008 31 7 1343 1350 10.1248/bpb.31.1343 18591772
    [Google Scholar]
  29. Stern P. Deželić M. Košak R. Über die analgetische und antipyretische Wirkung von k-Vitamin und Dicumarol mit besonderer Berücksichtigung des 4-Hydroxycumarins. Naunyn Schmiedebergs Arch. Pharmacol. 1957 232 1 356 359 10.1007/BF00259919
    [Google Scholar]
  30. Chohan Z.H. Shaikh A.U. Rauf A. Supuran C.T. Antibacterial, antifungal and cytotoxic properties of novel N-substituted sulfonamides from 4-hydroxycoumarin. J. Enzyme Inhib. Med. Chem. 2006 21 6 741 748 10.1080/14756360600810340 17252948
    [Google Scholar]
  31. Kirkiacharian B.S. De Clercq E. Kurkjian R. Pannecouque C. New synthesis and anti-HIV and antiviral properties of 3-arylsulfonyl derivatives of 4-ydroxycoumarin and 4-hydroxyquinolone. Pharm. Chem. J. 2008 42 5 265 270 10.1007/s11094‑008‑0103‑0
    [Google Scholar]
  32. Velascovelázquez M. Agramonte-Hevia J. Barrera D. Jiménez-Orozco A. García-Mondragón M.J. Mendoza-Patiño N. Landa A. Mandoki J. 4-Hydroxycoumarin disorganizes the actin cytoskeleton in B16?F10 melanoma cells but not in B82 fibroblasts, decreasing their adhesion to extracellular matrix proteins and motility. Cancer Lett. 2003 198 2 179 186 10.1016/S0304‑3835(03)00333‑1 12957356
    [Google Scholar]
  33. Oates J.A. Wood A.J.J. Hirsh J. Oral anticoagulant drugs. N. Engl. J. Med. 1991 324 26 1865 1875 10.1056/NEJM199106273242606 1801769
    [Google Scholar]
  34. Butsch W.L. Stewart J.D. Administration of dicoumarin compound for prophylaxis of postoperative thrombosis and embolism: A preliminary report. Arch. Surg. 1942 45 4 551 553 10.1001/archsurg.1942.01220040047005
    [Google Scholar]
  35. Hintz K.K. Ren J. Tetramethylpyrazine elicits disparate responses in cardiac contraction and intracellular Ca2+ transients in isolated adult rat ventricular myocytes. Vascul. Pharmacol. 2003 40 4 213 217 10.1016/j.vph.2003.08.002 14746828
    [Google Scholar]
  36. Manolov I. Maichle-Moessmer C. Danchev N. Synthesis, structure, toxicological and pharmacological investigations of 4-hydroxycoumarin derivatives. Eur. J. Med. Chem. 2006 41 7 882 890 10.1016/j.ejmech.2006.03.007 16647160
    [Google Scholar]
  37. Tummino P.J. Ferguson D. Hupe L. Hupe D. Competitive Inhibition of HIV-1 Protease by 4-Hydroxy-benzopyran-2-ones and by 4-Hydroxy-6-phenylpyran-2-ones. Biochem. Biophys. Res. Commun. 1994 200 3 1658 1664 10.1006/bbrc.1994.1642 8185622
    [Google Scholar]
  38. Stanchev S. Hadjimitova V. Traykov T. Boyanov T. Manolov I. Investigation of the antioxidant properties of some new 4-hydroxycoumarin derivatives. Eur. J. Med. Chem. 2009 44 7 3077 3082 10.1016/j.ejmech.2008.07.007 18725173
    [Google Scholar]
  39. Al-Majedy Y.K. Al-Amiery A.A. Kadhum A.A.H. Mohamad A.B. Efficient catalyst one-pot synthesis of 7-(Aryl)-10,10-dimethyl-10,11-dihydrochromeno[4,3-b]chromene-6,8(7H,9H)-dione derivatives complemented by antibacterial activity. BioMed Res. Int. 2016 2016 1 1 7 10.1155/2016/5891703 27563671
    [Google Scholar]
  40. Nolan K.A. Zhao H. Faulder P.F. Frenkel A.D. Timson D.J. Siegel D. Ross D. Burke T.R. Stratford I.J. Bryce R.A. Coumarin-based inhibitors of human NAD(P)H:quinone oxidoreductase-1. Identification, structure-activity, off-target effects and in vitro human pancreatic cancer toxicity. J. Med. Chem. 2007 50 25 6316 6325 10.1021/jm070472p 17999461
    [Google Scholar]
  41. Nolan K.A. Scott K.A. Barnes J. Doncaster J. Whitehead R.C. Stratford I.J. Pharmacological inhibitors of NAD(P)H quinone oxidoreductase, NQO1: Structure/activity relationships and functional activity in tumour cells. Biochem. Pharmacol. 2010 80 7 977 981 10.1016/j.bcp.2010.06.024 20599803
    [Google Scholar]
  42. Kasperkiewicz K. Ponczek M.B. Owczarek J. Guga P. Budzisz E. Antagonists of vitamin K—popular coumarin drugs and new synthetic and natural coumarin derivatives. Molecules 2020 25 6 1465 10.3390/molecules25061465 32213944
    [Google Scholar]
  43. Handin R.I. The history of antithrombotic therapy. Hematol. Oncol. Clin. North Am. 2016 30 5 987 993 10.1016/j.hoc.2016.06.002 27637302
    [Google Scholar]
  44. Gebauer M. Synthesis and structure–activity relationships of novel warfarin derivatives. Bioorg. Med. Chem. 2007 15 6 2414 2420 10.1016/j.bmc.2007.01.014 17275317
    [Google Scholar]
  45. Silva V.L.M. Silva-Reis R. Moreira-Pais A. Ferreira T. Oliveira P.A. Ferreira R. Cardoso S.M. Sharifi-Rad J. Butnariu M. Costea M.A. Grozea I. Dicoumarol: From chemistry to antitumor benefits. Chin. Med. 2022 17 1 145 10.1186/s13020‑022‑00699‑0 36575479
    [Google Scholar]
  46. Xie G. Tong F. Xu M. Shu Y. Li Z. DT-13 inhibits the proliferation of pancreatic cancer by inducing apoptosis via AMPK-mTOR signaling. Biochem. Biophys. Res. Commun. 2024 695 149451 10.1016/j.bbrc.2023.149451 38176173
    [Google Scholar]
  47. Lewis A. Ough M. Li L. Hinkhouse M.M. Ritchie J.M. Spitz D.R. Cullen J.J. Treatment of pancreatic cancer cells with dicumarol induces cytotoxicity and oxidative stress. Clin. Cancer Res. 2004 10 13 4550 4558 10.1158/1078‑0432.CCR‑03‑0667 15240547
    [Google Scholar]
  48. Du J. Daniels D.H. Asbury C. Venkataraman S. Liu J. Spitz D.R. Oberley L.W. Cullen J.J. Mitochondrial production of reactive oxygen species mediate dicumarol-induced cytotoxicity in cancer cells. J. Biol. Chem. 2006 281 49 37416 37426 10.1074/jbc.M605063200 17040906
    [Google Scholar]
  49. Watanabe J. Nishiyama H. Matsui Y. Ito M. Kawanishi H. Kamoto T. Ogawa O. Dicoumarol potentiates cisplatin-induced apoptosis mediated by c-Jun N-terminal kinase in p53 wild-type urogenital cancer cell lines. Oncogene 2006 25 17 2500 2508 10.1038/sj.onc.1209162 16518417
    [Google Scholar]
  50. Brar S.S. Kennedy T.P. Whorton A.R. Sturrock A.B. Huecksteadt T.P. Ghio A.J. Hoidal J.R. Reactive oxygen species from NAD(P)H:quinone oxidoreductase constitutively activate NF-κB in malignant melanoma cells. Am. J. Physiol. Cell Physiol. 2001 280 3 C659 C676 10.1152/ajpcell.2001.280.3.C659 11171586
    [Google Scholar]
  51. Park E.J. Min K. Choi K.S. Kwon T.K. Dicoumarol sensitizes renal cell carcinoma Caki cells to TRAIL-induced apoptosis through down-regulation of Bcl-2, Mcl-1 and c-FLIP in a NQO1-independent manner. Exp. Cell Res. 2014 323 1 144 154 10.1016/j.yexcr.2014.01.009 24462458
    [Google Scholar]
  52. Cresteil T. Jaiswal A.K. High levels of expression of the NAD(P)H:Quinone oxidoreductase (NQO1) gene in tumor cells compared to normal cells of the same origin. Biochem. Pharmacol. 1991 42 5 1021 1027 10.1016/0006‑2952(91)90284‑C 1651729
    [Google Scholar]
  53. Oh E.T. Park H.J. Implications of NQO1 in cancer therapy. BMB Rep. 2015 48 11 609 617 10.5483/BMBRep.2015.48.11.190 26424559
    [Google Scholar]
  54. Preusch P.C. Siegel D. Gibson N.W. Ross D. A note on the inhibition of DT-diaphorase by dicoumarol. Free Radic. Biol. Med. 1991 11 1 77 80 10.1016/0891‑5849(91)90191‑5 1718826
    [Google Scholar]
  55. Scott K.A. Barnes J. Whitehead R.C. Stratford I.J. Nolan K.A. Inhibitors of NQO1: Identification of compounds more potent than dicoumarol without associated off-target effects. Biochem. Pharmacol. 2011 81 3 355 363 10.1016/j.bcp.2010.10.011 20970406
    [Google Scholar]
  56. Madari H. Panda D. Wilson L. Jacobs R.S. Dicoumarol: A unique microtubule stabilizing natural product that is synergistic with Taxol. Cancer Res. 2003 63 6 1214 1220 12649179
    [Google Scholar]
  57. Aras D. Cinar O. Cakar Z. Ozkavukcu S. Can A. Can dicoumarol be used as a gonad-safe anticancer agent: An in vitro and in vivo experimental study. Mol. Hum. Reprod. 2016 22 1 57 67 10.1093/molehr/gav065 26612783
    [Google Scholar]
  58. Kammari K. Devaraya K. Bommakanti A. Kondapi A.K. Development of pyridine dicoumarols as potent anti HIV-1 leads, targeting HIV-1 associated topoisomeraseIIβ kinase. Future Med. Chem. 2017 9 14 1597 1609 10.4155/fmc‑2017‑0091 28891315
    [Google Scholar]
  59. Hamdi N. Puerta M.C. Valerga P. Synthesis, structure, antimicrobial and antioxidant investigations of dicoumarol and related compounds. Eur. J. Med. Chem. 2008 43 11 2541 2548 10.1016/j.ejmech.2008.03.038 18485537
    [Google Scholar]
  60. Thijssen H.H. Hamulyak K. Willigers H. 4-hydroxycoumarin oral anticoagulants: Pharmacokinetics-response relationship. J. Thromb. Haemost. 1988 60 4 35 38 10.1055/s‑0038‑1647630
    [Google Scholar]
  61. Gallop P.M. Lian J.B. Hauschka P.V. Carboxylated calcium-binding proteins and vitamin K. N. Engl. J. Med. 1980 302 26 1460 1466 10.1056/NEJM198006263022608 6990261
    [Google Scholar]
  62. Majerus P.W. Tollefsen D.M. Blood coagulation and anticoagulant, thrombolytic, and antiplatelet drugs Goodman and Gilman’s the Pharmacological Basis of Therapeutics. 11th ed Brunton L. N Y McGraw Hill 2006 1467 1488
    [Google Scholar]
  63. Schlag G. Gaudernak T. Pelinka H. Kuderna H. Welzel D. Thromboembolic prophylaxis in hip fracture. Acta Orthop. Scand. 1986 57 4 340 343 10.3109/17453678608994407 3788500
    [Google Scholar]
  64. Marongiu F. Sorano G. Conti M. Mameli G. Biondi G. Licheri D. Balastrieri A. Known vitamin K intake and management of poorly controlled oral anticoagulant therapy. Lancet 1992 340 8818 545 546 10.1016/0140‑6736(92)91739‑U 1354291
    [Google Scholar]
  65. Brandjes D.P.M. Heijboer H. Büller H.R. de Rijk M. Jagt H. ten Cate J.W. Acenocoumarol and heparin compared with acenocoumarol alone in the initial treatment of proximal-vein thrombosis. N. Engl. J. Med. 1992 327 21 1485 1489 10.1056/NEJM199211193272103 1406880
    [Google Scholar]
  66. Monti M. Pinotti M. Appendino G. Dallocchio F. Bellini T. Antognoni F. Poli F. Bernardi F. Characterization of anti-coagulant properties of prenylated coumarin ferulenol. Biochim. Biophys. Acta, Gen. Subj. 2007 1770 10 1437 1440 10.1016/j.bbagen.2007.06.013 17693024
    [Google Scholar]
  67. Endepols S. Klemann N. Richter D. Matuschka F.R. The potential of coumatetralyl enhanced by cholecalciferol in the control of anticoagulant-resistant Norway rats (Rattus norvegicus). Pest Manag. Sci. 2017 73 2 280 286 10.1002/ps.4235 26800251
    [Google Scholar]
  68. Jung J.C. Lim E. Lee Y. Min D. Ricci J. Park O.S. Jung M. Total synthesis of flocoumafen via knoevenagel condensation and intramolecular ring cyclization: General access to natural products. Molecules 2012 17 2 2091 2102 10.3390/molecules17022091 22354187
    [Google Scholar]
  69. Khalifa B.A.A. Salem F.M.S. Menha M.A. Embryotoxic and teratogenic effects of flocoumafen in chick embryos and white rats. J. Appl. Anim. Res. 1992 2 2 81 85 10.1080/09712119.1992.9705936
    [Google Scholar]
  70. Lefebvre S. Fourel I. Chatron N. Caruel H. Benoit E. Lattard V. Comparative biological properties of the four stereoisomers of difethialone, a second-generation anticoagulant rodenticide, in rats: Development of a model allowing to choose the appropriate stereoisomeric ratio. Arch. Toxicol. 2020 94 3 795 801 10.1007/s00204‑020‑02662‑0 32047980
    [Google Scholar]
  71. May J.M. Owens T.W. Mandler M.D. Simpson B.W. Lazarus M.B. Sherman D.J. Davis R.M. Okuda S. Massefski W. Ruiz N. Kahne D. The antibiotic novobiocin binds and activates the ATPase that powers lipopolysaccharide transport. J. Am. Chem. Soc. 2017 139 48 17221 17224 10.1021/jacs.7b07736 29135241
    [Google Scholar]
  72. McKee T.C. Covington C.D. Fuller R.W. Bokesch H.R. Young S. Cardellina J.H. Kadushin M.R. Soejarto D.D. Stevens P.F. Cragg G.M. Boyd M.R. Pyranocoumarins from tropical species of the genus Calophyllum: A chemotaxonomic study of extracts in the National Cancer Institute collection. J. Nat. Prod. 1998 61 10 1252 1256 10.1021/np980140a 9784162
    [Google Scholar]
  73. Rayar A.M. Lagarde N. Martin F. Blanchard F. Liagre B. Ferroud C. Zagury J.F. Montes M. Sylla-Iyarreta Veitía M. New selective cyclooxygenase-2 inhibitors from cyclocoumarol: Synthesis, characterization, biological evaluation and molecular modeling. Eur. J. Med. Chem. 2018 146 577 587 10.1016/j.ejmech.2018.01.054 29407982
    [Google Scholar]
  74. Dekić B.R. Radulović N.S. Dekić V.S. Vukićević R.D. Palić R.M. Synthesis and antimicrobial activity of new 4-heteroarylamino coumarin derivatives containing nitrogen and sulfur as heteroatoms. Molecules 2010 15 4 2246 2256 10.3390/molecules15042246 20428040
    [Google Scholar]
  75. Lei L. Yang D. Liu Z. Wu L. Mono‐nitration of coumarins by nitric oxide. Synth. Commun. 2004 34 6 985 992 10.1081/SCC‑120028628
    [Google Scholar]
  76. Huang C.N. Kuo P.Y. Lin C.H. Yang D.Y. Synthesis and characterization of 2H-pyrano[3,2-c]coumarin derivatives and their photochromic and redox properties. Tetrahedron 2007 63 40 10025 10033 10.1016/j.tet.2007.07.041
    [Google Scholar]
  77. Ganguly N.C. Datta M. De P. Chakravarty R. Studies on regioselectivity of nitration of coumarins with cerium (IV) ammonium nitrate: Solid-state nitration of 6-hydroxy-coumarins on montmorillonite K-10 clay support under microwave irradiation. Synth. Commun. 2003 33 4 647 659 10.1081/SCC‑120015821
    [Google Scholar]
  78. Anand N. Jaiswal N. Pandey S.K. Srivastava A.K. Tripathi R.P. Application of click chemistry towards an efficient synthesis of 1,2,3-1H-triazolyl glycohybrids as enzyme inhibitors. Carbohydr. Res. 2011 346 1 16 25 10.1016/j.carres.2010.10.017 21129735
    [Google Scholar]
  79. Arcau J. Andermark V. Aguiló E. Gandioso A. Moro A. Cetina M. Lima J.C. Rissanen K. Ott I. Rodríguez L. Luminescent alkynyl-gold (i) coumarin derivatives and their biological activity. Dalton Trans. 2014 43 11 4426 4436 10.1039/C3DT52594E 24302256
    [Google Scholar]
  80. Kotharkar S.A. Shinde D.B. Synthesis of antimicrobial 2,9,10-trisubstituted-6-oxo-7,12-dihydro-chromeno[3,4-b]quinoxalines. Bioorg. Med. Chem. Lett. 2006 16 24 6181 6184 10.1016/j.bmcl.2006.09.040 17027265
    [Google Scholar]
  81. Venkateswarlu K. Suneel K. Das B. Reddy K.N. Reddy T.S. Simple catalyst-free regio-and chemoselective monobromination of aromatics using NBS in polyethylene glycol. Synth. Commun. 2008 39 2 215 219 10.1080/00397910801911752
    [Google Scholar]
  82. Das B. Venkateswarlu K. Krishnaiah M. Holla H. An efficient, rapid and regioselective nuclear bromination of aromatics and heteroaromatics with NBS using sulfonic-acid-functionalized silica as a heterogeneous recyclable catalyst. Tetrahedron Lett. 2006 47 49 8693 8697 10.1016/j.tetlet.2006.10.029
    [Google Scholar]
  83. Das B. Venkateswarlu K. Majhi A. Siddaiah V. Reddy K.R. A facile nuclear bromination of phenols and anilines using NBS in the presence of ammonium acetate as a catalyst. J. Mol. Catal. Chem. 2007 267 1-2 30 33 10.1016/j.molcata.2006.11.002
    [Google Scholar]
  84. Zhang L. Meng T. Fan R. Wu J. General and efficient route for the synthesis of 3,4-disubstituted coumarins via Pd-catalyzed site-selective cross-coupling reactions. J. Org. Chem. 2007 72 19 7279 7286 10.1021/jo071117+ 17705544
    [Google Scholar]
  85. Ganguly N.C. De P. Dutta S. Mild regioselective monob-romination of activated aromatics and heteroaromatics with N-bromosuccinimide in tetrabutylammonium bromide. Synthesis 2005 2005 7 1103 1108 10.1055/s‑2005‑861866
    [Google Scholar]
  86. Kovác M. Sabatié A. Floch L. Synthesis of coumarin sulfon-amides and sulfonylurea. ARKIVOC 2001 2001 6 100 108 10.3998/ark.5550190.0002.610
    [Google Scholar]
  87. Majumdar K.C. Bhattacharyya T. Studies of bioactive heter-ocycles: Amino Claisen rearrangement of 4-N-(4-aryloxybut-2-ynyl),N-methylaminocoumarins. Tetrahedron Lett. 2001 42 25 4231 4233 10.1016/S0040‑4039(01)00656‑6
    [Google Scholar]
  88. Zhang W. Li Z. Zhou M. Wu F. Hou X. Luo H. Liu H. Han X. Yan G. Ding Z. Li R. Synthesis and biological evaluation of 4-(1,2,3-triazol-1-yl)coumarin derivatives as potential antitumor agents. Bioorg. Med. Chem. Lett. 2014 24 3 799 807 10.1016/j.bmcl.2013.12.095 24418772
    [Google Scholar]
  89. Xiao D. Martini L.A. Snoeberger R.C. Crabtree R.H. Batista V.S. Inverse design and synthesis of acac-coumarin anchors for robust TiO2 sensitization. J. Am. Chem. Soc. 2011 133 23 9014 9022 10.1021/ja2020313 21553881
    [Google Scholar]
  90. Premsagar Miriyala V. Raj Thommandru P. Kashanna J. Govinda V. Ravi G. Kishore R. Design, synthesis and cytotoxicity of new coumarin‐1,2,3‐triazole derivatives: Evaluation of anticancer activity and molecular docking studies. Chem. Biodivers. 2023 20 7 202300269 10.1002/cbdv.202300269 37204157
    [Google Scholar]
  91. Chahal M. Dhillon S. Rani P. Kumari G. Aneja D.K. Kinger M. Unravelling the synthetic and therapeutic aspects of five, six and fused heterocycles using Vilsmeier–Haack reagent. RSC Advances 2023 13 38 26604 26629 10.1039/D3RA04309F 37674485
    [Google Scholar]
  92. Mulwad V.V. Shirodkar J.M. Synthesis anti‐fungal and anti‐bacterial screening of 3‐phenyl‐1,4,5‐trihydro‐pyrazol and 2, 4‐dihydro[ 1,2,4]‐triazol‐3‐one derivatives of 4‐hydroxy‐2‐oxo‐2 H‐1‐benzopyran. J. Heterocycl. Chem. 2003 40 2 377 381 10.1002/jhet.5570400231
    [Google Scholar]
  93. Rajanna K.C. Solomon F. Ali M.M. Sai Prakash P.K. Vilsmeier-Haack formylation of coumarin derivatives. A solvent dependent kinetic study. Int. J. Chem. Kinet. 1996 28 12 865 872 10.1002/(SICI)1097‑4601(1996)28:12<865:AID‑KIN1>3.0.CO;2‑L
    [Google Scholar]
  94. Miri R. Motamedi R. Rezaei M.R. Firuzi O. Javidnia A. Shafiee A. Design, synthesis and evaluation of cytotoxicity of novel chromeno[4,3-b]quinoline derivatives. Arch. Pharm. 2011 344 2 111 118 10.1002/ardp.201000196 21290427
    [Google Scholar]
  95. Popovski E. Stamboliyska B. Janevska V. Shivachev B. Nikolova R.P. Stojkovic G. Mikhova B. Experimental and theoretical investigation of the structure and nucleophilic properties of 4-aminocoumarin. ARKIVOC 2010 2010 10 62 76 10.3998/ark.5550190.0011.a06
    [Google Scholar]
  96. Chavan A.P. Microwave assisted synthesis of 4-aryl/alkylamin-ocoumarins. J. Chem. Res. 2006 2006 3 179 181 10.3184/030823406776330675
    [Google Scholar]
  97. Glasnov T.N. Ivanov I.C. A Convenient Approach to the Synthesis of Dialkyl 5‐Oxo‐1,2‐dihydro‐5 H‐chromeno [4,3‐ b]pyridine‐2,3‐dicarboxylates. Synth. Commun. 2008 38 10 1579 1588 10.1080/00397910801929465
    [Google Scholar]
  98. Stadlbauers W. Hojas G. Ring closure reactions of 3‐arylhydrazonoalkyl‐quinolin‐2‐ones to 1‐aryl‐pyrazolo[4,3‐ c]quin-olin‐2‐ones. J. Heterocycl. Chem. 2004 41 5 681 690 10.1002/jhet.5570410505
    [Google Scholar]
  99. Hamdi N. Saoud M. Romerosa A. Hassen R.B. Synthesis, spectroscopic and antibacterial investigations of new hydroxy ethers and heterocyclic coumarin derivatives. J. Heterocycl. Chem. 2008 45 6 1835 1842 10.1002/jhet.5570450644
    [Google Scholar]
  100. Li J. Li X. Wang S. Synthesis, photoluminescent behaviors, and theoretical studies of two novel ketocoumarin derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012 88 31 36 10.1016/j.saa.2011.11.044 22204881
    [Google Scholar]
  101. Gašparová R. Kotlebová K. Lácová M. Reactions of 4-hydroxycoumarin with heterocyclic aldehydes. Nova Biotechnologica et Chimica 2021 9 3 349 354 10.36547/nbc.1146
    [Google Scholar]
  102. Vazquez-Rodriguez S. Matos M.J. Santana L. Uriarte E. Borges F. Kachler S. Klotz K.N. Chalcone-based derivatives as new scaffolds for h A3 adenosine receptor antagonists. J. Pharm. Pharmacol. 2013 65 5 697 703 10.1111/jphp.12028 23600387
    [Google Scholar]
  103. Sułko J. Methylation of 4-hydroxycoumarin with diazomethane. Acta Pol. Pharm. 2000 57 1 79 80 10846803
    [Google Scholar]
  104. Takaishi K. Izumi M. Baba N. Kawazu K. Nakajima S. Synthesis and biological evaluation of alkoxycoumarins as novel nematicidal constituents. Bioorg. Med. Chem. Lett. 2008 18 20 5614 5617 10.1016/j.bmcl.2008.08.102 18793855
    [Google Scholar]
  105. Cao X.H. Pan X. Zhou P.J. Zou J.P. Asekun O.T. Manganese (iii)-mediated direct Csp2–H radical trifluoromethylation of coumarins with sodium trifluoromethanesulfinate. Chem. Commun. (Camb.) 2014 50 25 3359 3362 10.1039/c3cc49689a 24549088
    [Google Scholar]
  106. Garro Hugo A. Manzur Jimena M. Ciuffo Gladys M. Tonn Carlos E. Pungitore Carlos R. Inhibition of reverse transcriptase and Taq DNA polymerase by compounds possessing the coumarin framework. Bioorg. Med. Chem. Lett. 2014 24 3 760 764 10.1016/j.bmcl.2013.12.104 24418776
    [Google Scholar]
  107. Stoyanov E.V. Ivanov I.C. Convenient replacement of the hydroxy by an amino group in 4 hydroxycoumarin and 4-hydroxy-6-methyl-2-pyrone under microwave irradiation. Molecules 2004 9 8 627 631 10.3390/90800627 18007464
    [Google Scholar]
  108. Luo Y. Wu J. Palladium-catalyzed direct arylation of 4-hydroxycoumarins with arylboronic acids via C–OH bond activation. Tetrahedron Lett. 2009 50 18 2103 2105 10.1016/j.tetlet.2009.02.116
    [Google Scholar]
  109. Shah P. Santana M.D. García J. Serrano J.L. Naik M. Pednekar S. Kapdi A.R. [Pd(PPh3)2(saccharinate)2]—general catalyst for Suzuki–Miyaura, Negishi cross-coupling and C–H bond functionalization of coumaryl and pyrone substrates. Tetrahedron 2013 69 5 1446 1453 10.1016/j.tet.2012.12.030
    [Google Scholar]
  110. Ganina O.G. Zamotaeva S.G. Nosarev M.A. Kosenkova O.V. Naumov M.I. Shavyrin A.S. Finet J.P. Fedorov A.Y. 2-(Azidomethyl) phenylboronic acid in the synthesis of isoquinoline derivatives. Russ. Chem. Bull. 2005 54 7 1606 1611 10.1007/s11172‑006‑0011‑y
    [Google Scholar]
  111. Majumdar K.C. Sarkar S. N-Iodosuccinimide mediated regioselective heterocyclization of 3-cyclohex-2′-enyl-4-hydroxycoumarin. Tetrahedron 2002 58 42 8501 8504 10.1016/S0040‑4020(02)01024‑4
    [Google Scholar]
  112. Talapatra B. Mandal S.K. Biswas K. Chakrabarti R. Talapatra S.K. Reactions of 4-hydroxycoumarin with some α, β-unsaturated carbonyls and 1, 3-dicarbonyls: Trapping of 4-hydroxycoumarin tautomers; formation of a pimelic acid derivative and a novel bicyclo compound. J. Indian Chem. Soc. 2001 78 10-12 765 771 10.5281/zenodo.5910727
    [Google Scholar]
  113. Ahmed N. van Lier J.E. Molecular iodine in isopropenyl acetate (IPA): A highly efficient catalyst for the acetylation of alcohols, amines and phenols under solvent free conditions. Tetrahedron Lett. 2006 47 30 5345 5349 10.1016/j.tetlet.2006.05.122
    [Google Scholar]
  114. Bhattacharya A.K. Diallo M.A. Ganesh K.N. SbCl3 as a highly efficient catalyst for the acetylation of alcohols, phenols, and amines under solvent‐free conditions. Synth. Commun. 2008 38 10 1518 1526 10.1080/00397910801928640
    [Google Scholar]
  115. Liu Z. Ma Q. Liu Y. Wang Q. 4-(N,N-Dimethylami-no)pyridine hydrochloride as a recyclable catalyst for acylation of inert alcohols: Substrate scope and reaction mechanism. Org. Lett. 2014 16 1 236 239 10.1021/ol4030875 24328854
    [Google Scholar]
  116. Ibrahim N.M. The behavior of certain coumarins and furocoumarins toward sulfur reagents. Phosphorus Sulfur Silicon Relat. Elem. 2006 181 8 1773 1784 10.1080/10426500500536523
    [Google Scholar]
  117. Avetisyan A.A. Alvandzhyan A.G. Syntheses on the basis of 2H-chromen-2-one and 2H-chromene-2-thione. Russ. J. Org. Chem. 2006 42 7 1063 1067 10.1134/S1070428006070244
    [Google Scholar]
  118. Chougala B.M. Samundeeswari S. Holiyachi M. Shastri L.A. Dodamani S. Jalalpure S. Dixit S.R. Joshi S.D. Sunagar V.A. Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents. Eur. J. Med. Chem. 2017 125 101 116 10.1016/j.ejmech.2016.09.021 27657808
    [Google Scholar]
  119. Das R. Harit A.K. Raghuvansi J. Dohare S. Das R. Efficient one-pot synthesis of bis-(4-hydroxycoumarin-3yl) methane derivatives using DMAP as a catalyst studies their antibacterial activity and molecular docking. J. Med. Pharm. Allied Sci. 2022 11 3 4788 4793 10.55522/jmpas.V11I3.2221
    [Google Scholar]
  120. Wang Y.H. Jiang S.C. Chen Y. Guo T. Xia R.J. Tang X. He M. Xue W. Synthesis and antibacterial activity of novel chalcone derivatives bearing a coumarin moiety. Chem. Pap. 2019 73 10 2493 2500 10.1007/s11696‑019‑00802‑0
    [Google Scholar]
  121. Kovvuri J. Nagaraju B. Ganesh Kumar C. Sirisha K. Chandrasekhar C. Alarifi A. Kamal A. Catalyst-free synthesis of pyrazole-aniline linked coumarin derivatives and their antimicrobial evaluation. J. Saudi Chem. Soc. 2018 22 6 665 677 10.1016/j.jscs.2017.12.002
    [Google Scholar]
  122. Kalalbandi V.K.A. Bijjaragi S.C. Seetharamappa J. Multicomponent synthesis and antimicrobial activity of dihydropyran‐bis coumarins. ChemistrySelect 2018 3 14 3925 3929 10.1002/slct.201800335
    [Google Scholar]
  123. Mukherjee A. Ghosh S. Sarkar R. Samanta S. Ghosh S. Pal M. Majee A. Sen S.K. Singh B. Synthesis, characterization and unravelling the molecular interaction of new bioactive 4-hydroxycoumarin derivative with biopolymer: Insights from spectroscopic and theoretical aspect. J. Photochem. Photobiol. B 2018 189 124 137 10.1016/j.jphotobiol.2018.10.003 30342308
    [Google Scholar]
  124. Jelali H. Chakchouk-Mtibaa A. Baklouti L. Bilel H. Bathich Y. Mellouli L. Hamdi N. Development of new multicomponent reactions in eco-friendly media-greener reaction and expeditious synthesis of novel bioactive benzylpyranocoumarins. J. Chem. 2019 2019 1 1 10 10.1155/2019/8693614
    [Google Scholar]
  125. Foroughi H.O. Kargar M. Erjaee Z. Zarenezhad E. One-pot three-component reaction for facile and efficient green synthesis of chromene pyrimidine-2,4-dione derivatives and evaluation of their anti-bacterial activity. Monatsh. Chem. 2020 151 10 1603 1608 10.1007/s00706‑020‑02692‑5
    [Google Scholar]
  126. Obaiah N. Bodke Y.D. Telkar S. Synthesis of 3‐[(1H‐Benzimidazol‐2‐ylsulfanyl)(aryl)methyl]‐4‐hydroxycoumarin derivatives as potent bioactive molecules. ChemistrySelect 2020 5 1 178 184 10.1002/slct.201903472
    [Google Scholar]
  127. Saleem A. Bukhari S.M. Zaidi A. Farooq U. Ali M. Khan A. Khan S. Shah K.H. Mahmood A. Khan F.A. Enzyme inhibition and antibacterial potential of 4-Hydroxycoumarin derivatives. Braz. J. Pharm. Sci. 2020 56 18654 10.1590/s2175‑97902019000418654
    [Google Scholar]
  128. Nagaraja O. Bodke Y.D. Pushpavathi I. Ravi Kumar S. Synthesis, characterization and biological investigations of potentially bioactive heterocyclic compounds containing 4-hydroxy coumarin. Heliyon 2020 6 6 04245 10.1016/j.heliyon.2020.e04245 32637685
    [Google Scholar]
  129. de Moura A. Gaglieri C. Alarcon R.T. Ferreira L.T. Vecchi R. Sanches M.L.R. de Oliveira R.C. Venturini J. da Silva-Filho L.C. Junior Caires F. A new curcuminoids‐coumarin derivative: Mechanochemical synthesis, characterization and evaluation of its in vitro cytotoxicity and antimicrobial properties. ChemistrySelect 2021 6 41 11352 11361 10.1002/slct.202103359
    [Google Scholar]
  130. Sarkar S. Chatterjee R. Mukherjee A. Mukherjee D. Chandra Mandal N. Mahato S. Santra S. Zyryanov G.V. Majee A. Mechanochemical synthesis and antimicrobial studies of 4-hydroxy-3-thiomethylcoumarins using imidazolium zwitterionic molten salt as an organocatalyst. ACS Sustain. Chem.& Eng. 2021 9 16 5557 5569 10.1021/acssuschemeng.0c08975
    [Google Scholar]
  131. Yasameen K. Al-Majedy K.H. Ibraheem H.H. Shaker S.M. Synthesis and bio-evaluation of some 4-hydroxycoumarin derivatives. Research Square 2022 10.21203/rs.3.rs‑1376784/v1
    [Google Scholar]
  132. Zala A.R. Rajani D.P. Kumari P. Synthesis, molecular docking, ADME study, and antimicrobial potency of piperazine based cinnamic acid bearing coumarin moieties as a DNA gyrase inhibitor. J. Biochem. Mol. Toxicol. 2023 37 1 23231 10.1002/jbt.23231 36181335
    [Google Scholar]
  133. Li Z. Kong D. Liu Y. Li M. Pharmacological perspectives and molecular mechanisms of coumarin derivatives against virus disease. Genes Dis. 2022 9 1 80 94 10.1016/j.gendis.2021.03.007 35005109
    [Google Scholar]
  134. Trivedi J.C. Bariwal J.B. Upadhyay K.D. Naliapara Y.T. Joshi S.K. Pannecouque C.C. De Clercq E. Shah A.K. Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity. Tetrahedron Lett. 2007 48 48 8472 8474 10.1016/j.tetlet.2007.09.175
    [Google Scholar]
  135. Patel R.B. Chikhalia K.H. Pannecouque C. Clercq E. Synthesis of novel PETT analogues: 3,4-dimethoxy phenyl ethyl 1,3,5-triazinyl thiourea derivatives and their antibacterial and anti-HIV studies. J. Braz. Chem. Soc. 2007 18 2 312 321 10.1590/S0103‑50532007000200011
    [Google Scholar]
  136. Jorgensen W.L. Efficient drug lead discovery and optimization. Acc. Chem. Res. 2009 42 6 724 733 10.1021/ar800236t 19317443
    [Google Scholar]
  137. Mahajan D.H. Pannecouque C. De Clercq E. Chikhalia K.H. Synthesis and studies of new 2-(coumarin-4-yloxy)-4,6-(substituted)-S-triazine derivatives as potential anti-HIV agents. Arch. Pharm. 2009 342 5 281 290 10.1002/ardp.200800149 19415671
    [Google Scholar]
  138. Alimi Livani Z. Safakish M. Hajimahdi Z. Soleymani S. Zabihollahi R. Aghasadeghi M.R. Alipour E. Zarghi A. Design, synthesis, molecular modeling, in silico ADME studies and anti-HIV-1 assay of new diazocoumarin derivatives. Iran J. Pharm.Res 2018 17 65 77 (Suppl 2) 10.22037/ijpr.2018.2376 31011343
    [Google Scholar]
  139. Lee S.W. Shin H.J. Park B. Shome S. Whang D.R. Bae H. Chung S. Cho K. Ko S.J. Choi H. Chang D.W. Effect of electron-withdrawing chlorine substituent on morphological and photovoltaic properties of all chlorinated D–A-type quinoxaline-based polymers. ACS Appl. Mater. Interfaces 2022 14 17 19785 19794 10.1021/acsami.2c00764 35420778
    [Google Scholar]
  140. Rosa M. Caltabiano G. Barreto-Valer K. Gonzalez-Nunez V. Gómez-Tamayo J.C. Ardá A. Jiménez-Barbero J. Pardo L. Rodríguez R.E. Arsequell G. Valencia G. Modulation of the interaction between a peptide ligand and a G protein-coupled receptor by halogen atoms. ACS Med. Chem. Lett. 2015 6 8 872 876 10.1021/acsmedchemlett.5b00126 26288687
    [Google Scholar]
  141. Souza J.P.A. Benatto L. Candiotto G. Roman L.S. Koehler M. Binding energy of triplet excitons in nonfullerene acceptors: The effects of fluorination and chlorination. J. Phys. Chem. A 2022 126 8 1393 1402 10.1021/acs.jpca.1c10607 35192353
    [Google Scholar]
  142. Romo-Gutiérrez A. Cisneros-García Z.N. Rodríguez-Zavala J.G. Improvement of photovoltaic-related parameters through bromination and the role of chlorine, bromine, iodine, and dehalogenation in the fluorinated Y6 small molecule. Mol. Phys. 2022 120 23 2135466 10.1080/00268976.2022.2135466
    [Google Scholar]
  143. Hasegawa T. Ashizawa M. Kawauchi S. Masunaga H. Ohta N. Matsumoto H. Fluorination and chlorination effects on quinoxalineimides as an electron-deficient building block for n-channel organic semiconductors. RSC Advances 2019 9 19 10807 10813 10.1039/C9RA02413A 35515293
    [Google Scholar]
  144. Ait-Ramdane-Terbouche C. Abdeldjebar H. Terbouche A. Lakhdari H. Bachari K. Roisnel T. Hauchard D. Crystal structure, chemical reactivity, kinetic and thermodynamic studies of new ligand derived from 4-hydroxycoumarin: Interaction with SARS-CoV-2. J. Mol. Struct. 2020 1222 128918 10.1016/j.molstruc.2020.128918 32834114
    [Google Scholar]
  145. Zhang L. Lin D. Sun X. Curth U. Drosten C. Sauerhering L. Becker S. Rox K. Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020 368 6489 409 412 10.1126/science.abb3405 32198291
    [Google Scholar]
  146. Rey Apostol Romal J. Kee Ong S. Extending the library of 4‐hydroxycoumarin derivatives with potential pharmacological activity by a catalyst‐free and purification‐free method. ChemistrySelect 2023 8 10 202300519 10.1002/slct.202300519
    [Google Scholar]
  147. Batran R.Z. Khedr M.A. Abdel Latif N.A. Abd El Aty A.A. Shehata A.N. Synthesis, homology modeling, molecular docking, dynamics, and antifungal screening of new 4-hydroxycoumarin derivatives as potential chitinase inhibitors. J. Mol. Struct. 2019 1180 260 271 10.1016/j.molstruc.2018.11.099
    [Google Scholar]
  148. Sharma V. Bhatia P. Alam O. Javed Naim M. Nawaz F. Ahmad Sheikh A. Jha M. Recent advancement in the discovery and development of COX-2 inhibitors: Insight into biological activities and SAR studies (2008–2019). Bioorg. Chem. 2019 89 103007 10.1016/j.bioorg.2019.103007 31132600
    [Google Scholar]
  149. Kang J.K. Hyun C.G. 4-Hydroxy-7-methoxycoumarin inhibits inflammation in LPS-activated RAW264. 7 macrophages by suppressing NF-κB and MAPK activation. Molecules 2020 25 19 4424 10.3390/molecules25194424 32993156
    [Google Scholar]
  150. Yadav S. Gupta J. Kumar N. Bhalla V. Jogpal V. Synthesis, in-silico and anti-inflammatory activities of novel coumarin derivatives. Research Square 2022 10.21203/rs.3.rs‑1916173/v1
    [Google Scholar]
  151. Manjunatha B. Bodke Y.D. Kumaraswamy H.M. Meghana P. Nagaraja O. Anjan kumar, G.C. Novel thioether linked 4-hydroxycoumarin derivatives: Synthesis, characterization, in vitro pharmacological investigation and molecular docking studies. J. Mol. Struct. 2022 1249 131642 10.1016/j.molstruc.2021.131642
    [Google Scholar]
  152. Pawar V. Shastri L.A. Gudimani P. Joshi S. Kumbar V.M. Sunagar V. Rational design, synthesis and SAR study of novel warfarin analogous of 4-hydroxy coumarin-beta-aryl propanoic acid derivatives as potent anti-inflammatory agents. J. Mol. Struct. 2022 1254 132300 10.1016/j.molstruc.2021.132300
    [Google Scholar]
  153. Stojković D.L. Jevtić V.V. Vuković N. Vukić M. Čanović P. Zarić M.M. Mišić M.M. Radovanović D.M. Baskić D. Trifunović S.R. Synthesis, characterization, antimicrobial and antitumor reactivity of new palladium(II) complexes with methionine and tryptophane coumarine derivatives. J. Mol. Struct. 2018 1157 425 433 10.1016/j.molstruc.2017.12.095
    [Google Scholar]
  154. An R. Hou Z. Li J.T. Yu H.N. Mou Y.H. Guo C. Design, synthesis and biological evaluation of novel 4-substituted coumarin derivatives as antitumor agents. Molecules 2018 23 9 2281 10.3390/molecules23092281 30200625
    [Google Scholar]
  155. Govindaiah P. Dumala N. Grover P. Jaya Prakash M. Synthesis and biological evaluation of novel 4,7-dihydroxyc-oumarin derivatives as anticancer agents. Bioorg. Med. Chem. Lett. 2019 29 14 1819 1824 10.1016/j.bmcl.2019.05.008 31104996
    [Google Scholar]
  156. Li G. Zhang J. Liu Z. Wang Q. Chen Y. Liu M. Li D. Han J. Wang B. Development of a series of 4-hydroxycoumarin platinum(IV) hybrids as antitumor agents: Synthesis, biological evaluation and action mechanism investigation. J. Inorg. Biochem. 2019 194 34 43 10.1016/j.jinorgbio.2019.02.011 30826588
    [Google Scholar]
  157. Ramdani L.H. Talhi O. Decombat C. Vermerie M. Berry A. Silva A. Bachari K. Vasson M.P. Delort L. Caldefie-Chézet F. Bis (4-hydroxy-2H-chromen-2-one) coumarin induces apoptosis in MCF-7 human breast cancer cells through aromatase inhibition. Anticancer Res. 2019 39 11 6107 6114 10.21873/anticanres.13818 31704838
    [Google Scholar]
  158. Fayed E.A. Sabour R. Harras M.F. Mehany A.B.M. Design, synthesis, biological evaluation and molecular modeling of new coumarin derivatives as potent anticancer agents. Med. Chem. Res. 2019 28 8 1284 1297 10.1007/s00044‑019‑02373‑x
    [Google Scholar]
  159. Sanduja M. Gupta J. Singh H. Pagare P.P. Rana A. Uracil-coumarin based hybrid molecules as potent anti-cancer and anti-bacterial agents. J. Saudi Chem. Soc. 2020 24 2 251 266 10.1016/j.jscs.2019.12.001
    [Google Scholar]
  160. Avdović E.H. Petrović I.P. Stevanović M.J. Saso L. Dimitrić Marković J.M. Filipović N.D. Živić M.Ž. Cvetić Antić T.N. Žižić M.V. Todorović N.V. Vukić M. Trifunović S.R. Marković Z.S. Synthesis and biological screening of new 4‐hydroxycoumarin derivatives and their Palladium(II) complexes. Oxid. Med. Cell. Longev. 2021 2021 1 8849568 10.1155/2021/8849568 34007407
    [Google Scholar]
  161. Vaseghi S. Yousefi M. Shokrzadeh M. Hossaini Z. Hosseini-khah Z. Emami S. Synthesis, computational study and cytotoxicity of 4-hydroxycoumarin-derived imines/enamines. Mol. Divers. 2021 25 2 1011 1024 10.1007/s11030‑020‑10086‑2 32323127
    [Google Scholar]
  162. Gaber A. Alsanie W.F. Alhomrani M. Alamri A.S. El-Deen I.M. Refat M.S. Synthesis and characterization of some new coumarin derivatives as probable breast anticancer MCF-7 drugs. Crystals 2021 11 5 565 10.3390/cryst11050565
    [Google Scholar]
  163. Bakare S.B. Synthesis and anticancer evaluation of some coumarin and azacoumarin derivatives. Pol. J. Chem. Technol. 2021 23 2 27 34 10.2478/pjct‑2021‑0013
    [Google Scholar]
  164. Dimić D.S. Kaluđerović G.N. Avdović E.H. Milenković D.A. Živanović M.N. Potočňák I. Samoľová E. Dimitrijević M.S. Saso L. Marković Z.S. Dimitrić Marković J.M. Synthesis, Crystallographic, quantum chemical, antitumor, and molecular docking/dynamic studies of 4-hydroxycoumarin-neurotransmitter derivatives. Int. J. Mol. Sci. 2022 23 2 1001 10.3390/ijms23021001 35055194
    [Google Scholar]
  165. Hashemi S.M. Hosseini-khah Z. Mahmoudi F. Emami S. Synthesis of 4‐hydroxycoumarin‐based triazoles/oxadiazoles as novel anticancer agents. Chem. Biodivers. 2022 19 10 202200043 10.1002/cbdv.202200043 36181443
    [Google Scholar]
  166. Shrestha R.M. Mahiya K. Shrestha A. Mohanty S.R. Yadav S.K. Yadav P.N. Synthesis, characterization, anticancer, pharmacokinetics and molecular docking investigation of N (3)-alkyl incorporated-3-acetyl-4-hydroxycoumarin thiosemicarbazo-nes and their copper(II) complexes. J. Mol. Struct. 2024 1299 136945 10.1016/j.molstruc.2023.136945
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575412635251009051729
Loading
/content/journals/mrmc/10.2174/0113895575412635251009051729
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test