Skip to content
2000
image of Unlocking the Immune System: Advances in Next-generation Immunotherapy for Lung Cancer

Abstract

Lung cancer remains a significant contributor to cancer mortality for several reasons. First, lung cancer is a molecularly heterogeneous disease. When combined with the dramatic resistance to treatment mediated by a tumor microenvironment (TME) that is inherently immunosuppressive, this explains the continued high mortality associated with lung cancer. The new era of treating non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), as well as achieving long-lasting treatment responses, is driven by immune checkpoint inhibitors (ICIs) targeting PD-1, PD-L1, and CTLA-4. This treatment revolution may, in the future, be applied to isolated cases of relapse and recurrent disease, resulting in sustained therapeutic responses.

In this review, we outline recent advances, including novel agent combinations and combination regimens tested in clinical trials that have become milestones, such as Nivolumab, Pembrolizumab, Durvalumab, and emerging bispecific combinations. Targeted therapeutic delivery is now possible through nanotechnology and biomaterials, such as polymer nanoparticles and smart hydrogels, which allow high local drug concentration at the tumor site while reducing systemic toxicity.

Predictive biomarkers, including PD-L1 expression, tumor mutational burden (TMB), circulating tumor DNA (ctDNA), and radiomic features, are increasingly used to select patients and assess treatment responses in real time. Despite these advances, resistance to immunotherapy and immune-related adverse events (irAEs) remain major challenges, emphasizing the need for ongoing innovation in personalized management, toxicity mitigation, and treatment strategies.

Industry leaders are now exploring artificial intelligence to optimize treatment selection and predict adverse events and outcomes early. Ultimately, improved survival rates and enhanced patient experiences may be achieved through the integration of novel biomarkers, precision technologies, and more effective immunotherapies for lung cancer patients. Significant research is still required to overcome resistance mechanisms, optimize combination therapies, and enable individualized care in this rapidly advancing field.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575415429251007093531
2025-10-30
2025-12-28
Loading full text...

Full text loading...

References

  1. Cheng W. Kang K. Zhao A. Wu Y. Dual blockade immunotherapy targeting PD-1/PD-L1 and CTLA-4 in lung cancer. J. Hematol. Oncol. 2024 17 1 54 10.1186/s13045‑024‑01581‑2 39068460
    [Google Scholar]
  2. Hanna N. Bunn P.A. Langer C. Einhorn L. Guthrie T. Beck T. Ansari R. Ellis P. Byrne M. Morrison M. Hariharan S. Wang B. Sandler A. Randomized phase III trial comparing irinotecan/cisplatin with etoposide/cisplatin in patients with previously untreated extensive-stage disease small-cell lung cancer. J. Clin. Oncol. 2006 24 13 2038 2043 10.1200/JCO.2005.04.8595 16648503
    [Google Scholar]
  3. Novello S. Barlesi F. Califano R. Cufer T. Ekman S. Levra M.G. Kerr K. Popat S. Reck M. Senan S. Simo G.V. Vansteenkiste J. Peters S. Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016 27 Suppl. 5 v1 v27 10.1093/annonc/mdw326 27664245
    [Google Scholar]
  4. Lemjabbar-Alaoui H. Hassan O.U.I. Yang Y.W. Buchanan P. Lung cancer: Biology and treatment options. Biochim. Biophys. Acta Rev. Cancer 2015 1856 2 189 210 10.1016/j.bbcan.2015.08.002 26297204
    [Google Scholar]
  5. Sun J.Y. Zhang D. Wu S. Xu M. Zhou X. Lu X.J. Ji J. Resistance to PD-1/PD-L1 blockade cancer immunotherapy: Mechanisms, predictive factors, and future perspectives. Biomark. Res. 2020 8 1 35 10.1186/s40364‑020‑00212‑5 32864132
    [Google Scholar]
  6. Seegobin K. Majeed U. Wiest N. Manochakian R. Lou Y. Zhao Y. Immunotherapy in non-small cell lung cancer with actionable mutations other than EGFR. Front. Oncol. 2021 11 750657 10.3389/fonc.2021.750657 34926258
    [Google Scholar]
  7. Forde P.M. Kelly R.J. Brahmer J.R. New strategies in lung cancer: Translating immunotherapy into clinical practice. Clin. Cancer Res. 2014 20 5 1067 1073 10.1158/1078‑0432.CCR‑13‑0731 24470514
    [Google Scholar]
  8. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012 12 4 252 264 10.1038/nrc3239 22437870
    [Google Scholar]
  9. Ribas A. Wolchok J.D. Cancer immunotherapy using checkpoint blockade. Science 2018 359 6382 1350 1355 10.1126/science.aar4060
    [Google Scholar]
  10. Buchbinder E.I. Desai A. CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 2016 39 1 98 106 10.1097/COC.0000000000000239 26558876
    [Google Scholar]
  11. Valk E. Rudd C.E. Schneider H. CTLA-4 trafficking and surface expression. Trends Immunol. 2008 29 6 272 279 10.1016/j.it.2008.02.011 18468488
    [Google Scholar]
  12. Aden D. Sureka N. Zaheer S. Chaurasia J.K. Zaheer S. Metabolic reprogramming in cancer: Implications for immunosuppressive microenvironment. Immunology 2025 174 1 30 72 10.1111/imm.13871 39462179
    [Google Scholar]
  13. Kim G.R. Choi J.M. Current understanding of cytotoxic T Lymphocyte Antigen-4 (CTLA-4) signaling in T-cell biology and disease therapy. Mol. Cells 2022 45 8 513 521 10.14348/molcells.2022.2056 35950451
    [Google Scholar]
  14. Walunas T.L. Lenschow D.J. Bakker C.Y. Linsley P.S. Freeman G.J. Green J.M. Thompson C.B. Bluestone J.A. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994 1 5 405 413 10.1016/1074‑7613(94)90071‑X 7882171
    [Google Scholar]
  15. Wing K. Onishi Y. Prieto-Martin P. Yamaguchi T. Miyara M. Fehervari Z. Nomura T. Sakaguchi S. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008 322 5899 271 275 10.1126/science.1160062 18845758
    [Google Scholar]
  16. Linsley P.S. Greene J.L. Brady W. Bajorath J. Ledbetter J.A. Peach R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1994 1 9 793 801 10.1016/S1074‑7613(94)80021‑9 7534620
    [Google Scholar]
  17. Linsley P.S. Brady W. Urnes M. Grosmaire L.S. Damle N.K. Ledbetter J.A. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 1991 174 3 561 569 10.1084/jem.174.3.561 1714933
    [Google Scholar]
  18. Linsley P.S. Clark E.A. Ledbetter J.A. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc. Natl. Acad. Sci. USA 1990 87 13 5031 5035 10.1073/pnas.87.13.5031 2164219
    [Google Scholar]
  19. Krummel M.F. Allison J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 1995 182 2 459 465 10.1084/jem.182.2.459 7543139
    [Google Scholar]
  20. Cornel A.M. Mimpen I.L. Nierkens S. MHC class I downregulation in cancer: Underlying mechanisms and potential targets for cancer immunotherapy. Cancers 2020 12 7 1760 10.3390/cancers12071760 32630675
    [Google Scholar]
  21. Dhatchinamoorthy K. Colbert J.D. Rock K.L. Cancer immune evasion through loss of MHC class I antigen presentation. Front. Immunol. 2021 12 636568 10.3389/fimmu.2021.636568 33767702
    [Google Scholar]
  22. Schmidt A. Oberle N. Krammer P.H. Molecular mechanisms oftreg-mediatedt cell suppression. Front. Immunol. 2012 3 MAR 21442 10.3389/FIMMU.2012.00051/BIBTEX
    [Google Scholar]
  23. Shevach E.M. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 2009 30 5 636 645 10.1016/j.immuni.2009.04.010 19464986
    [Google Scholar]
  24. Nishikawa H. Sakaguchi S. Regulatory T cells in cancer immunotherapy. Curr. Opin. Immunol. 2014 27 1 1 7 10.1016/j.coi.2013.12.005 24413387
    [Google Scholar]
  25. Chaudhary B. Elkord E. Regulatory T cells in the tumor microenvironment and cancer progression: Role and therapeutic targeting. Vaccines 2016 4 3 28 10.3390/vaccines4030028 27509527
    [Google Scholar]
  26. Elkord E. Alcantar-Orozco E.M. Dovedi S.J. Tran D.Q. Hawkins R.E. Gilham D.E. T regulatory cells in cancer: Recent advances and therapeutic potential. Expert Opin. Biol. Ther. 2010 10 11 1573 1586 10.1517/14712598.2010.529126 20955112
    [Google Scholar]
  27. Tekguc M. Wing J.B. Osaki M. Long J. Sakaguchi S. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc. Natl. Acad. Sci. USA 2021 118 30 2023739118 10.1073/pnas.2023739118 34301886
    [Google Scholar]
  28. Paluskievicz C.M. Cao X. Abdi R. Zheng P. Liu Y. Bromberg J.S. T regulatory cells and priming the suppressive tumor microenvironment. Front. Immunol. 2019 10 OCT 2453 10.3389/fimmu.2019.02453 31681327
    [Google Scholar]
  29. Zhang A. Fan T. Liu Y. Yu G. Li C. Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol. Cancer 2024 23 1 251 10.1186/s12943‑024‑02156‑y 39516941
    [Google Scholar]
  30. Abdelrahman D.I. Elhasadi I. Anbaig A. Bakry A. Mandour D. Wasefy T. Yehia A.M. Alorini M. Shalaby A.M. Yahia A.I.O. Alabiad M.A. Immunohistochemical expression of immune checkpoints; CTLA-4, LAG3, and TIM-3 in cancer cells and tumor-infiltrating Lymphocytes (TILs) in colorectal carcinoma. Appl. Immunohistochem. Mol. Morphol. 2024 32 2 71 83 10.1097/PAI.0000000000001181 38108390
    [Google Scholar]
  31. Savoia P. Astrua C. Fava P. Ipilimumab (Anti-Ctla-4 Mab) in the treatment of metastatic melanoma: Effectiveness and toxicity management. Hum. Vaccin. Immunother. 2016 12 5 1092 1101 10.1080/21645515.2015.1129478 26889818
    [Google Scholar]
  32. Camacho L.H. CTLA‐4 blockade with ipilimumab: Biology, safety, efficacy, and future considerations. Cancer Med. 2015 4 5 661 672 10.1002/cam4.371 25619164
    [Google Scholar]
  33. Sharma A. Subudhi S.K. Blando J. Scutti J. Vence L. Wargo J. Allison J.P. Ribas A. Sharma P. Anti-CTLA-4 immunotherapy does not deplete Foxp3 þ regulatory T cells (Tregs) in human cancers. Clin. Cancer Res. 2019 25 4 1233 1238 10.1158/1078‑0432.CCR‑18‑0762 30054281
    [Google Scholar]
  34. Wolchok J.D. Kluger H. Callahan M.K. Postow M.A. Rizvi N.A. Lesokhin A.M. Segal N.H. Ariyan C.E. Gordon R.A. Reed K. Burke M.M. Caldwell A. Kronenberg S.A. Agunwamba B.U. Zhang X. Lowy I. Inzunza H.D. Feely W. Horak C.E. Hong Q. Korman A.J. Wigginton J.M. Gupta A. Sznol M. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 2013 369 2 122 133 10.1056/NEJMoa1302369 23724867
    [Google Scholar]
  35. Selby M. Engelhardt J. Lu L-S. Quigley M. Wang C. Chen B. Korman A.J. Antitumor activity of concurrent blockade of immune checkpoint molecules CTLA-4 and PD-1 in preclinical models. J. Clin. Oncol. 2013 31 15-suppl 3061 3061 10.1200/jco.2013.31.15_suppl.3061
    [Google Scholar]
  36. Postow M.A. Chesney J. Pavlick A.C. Robert C. Grossmann K. McDermott D. Linette G.P. Meyer N. Giguere J.K. Agarwala S.S. Shaheen M. Ernstoff M.S. Minor D. Salama A.K. Taylor M. Ott P.A. Rollin L.M. Horak C. Gagnier P. Wolchok J.D. Hodi F.S. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 2015 372 21 2006 2017 10.1056/NEJMoa1414428 25891304
    [Google Scholar]
  37. Curran M.A. Montalvo W. Yagita H. Allison J.P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl. Acad. Sci. USA 2010 107 9 4275 4280 10.1073/pnas.0915174107 20160101
    [Google Scholar]
  38. Ai L. Chen J. Yan H. He Q. Luo P. Xu Z. Yang X. Research status and outlook of pd-1/pd-l1 inhibitors for cancer therapy. Drug Des. Devel. Ther. 2020 14 3625 3649 10.2147/DDDT.S267433 32982171
    [Google Scholar]
  39. Ghosh C. Luong G. Sun Y. A snapshot of the PD-1/PD-L1 pathway. J. Cancer 2021 12 9 2735 2746 10.7150/jca.57334 33854633
    [Google Scholar]
  40. Munari E. Mariotti F.R. Quatrini L. Bertoglio P. Tumino N. Vacca P. Eccher A. Ciompi F. Brunelli M. Martignoni G. Bogina G. Moretta L. PD-1/PD-L1 in Cancer: Pathophysiological, diagnostic and therapeutic aspects. Int. J. Mol. Sci. 2021 22 10 5123 10.3390/ijms22105123 34066087
    [Google Scholar]
  41. Han Y. Liu D. Li L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 2020 10 3 727 742 32266087
    [Google Scholar]
  42. Singh V. Khurana A. Allawadhi P. Banothu A.K. Bharani K.K. Weiskirchen R. Emerging role of PD-1/PD-L1 inhibitors in chronic liver diseases. Front. Pharmacol. 2021 12 790963 10.3389/fphar.2021.790963 35002724
    [Google Scholar]
  43. Barrueto L. Caminero F. Cash L. Makris C. Lamichhane P. Deshmukh R.R. Resistance to checkpoint inhibition in cancer immunotherapy. Transl. Oncol. 2020 13 3 100738 10.1016/j.tranon.2019.12.010 32114384
    [Google Scholar]
  44. Yu X. Gao R. Li Y. Zeng C. Regulation of PD-1 in T cells for cancer immunotherapy. Eur. J. Pharmacol. 2020 881 173240 10.1016/j.ejphar.2020.173240 32497624
    [Google Scholar]
  45. Parvez A. Choudhary F. Mudgal P. Khan R. Qureshi K.A. Farooqi H. Aspatwar A. PD-1 and PD-L1: Architects of immune symphony and immunotherapy breakthroughs in cancer treatment. Front. Immunol. 2023 14 1296341 10.3389/fimmu.2023.1296341 38106415
    [Google Scholar]
  46. Liu X. Yang L. Tan X. PD-1/PD-L1 pathway: A double-edged sword in periodontitis. Biomed. Pharmacother. 2023 159 114215 10.1016/j.biopha.2023.114215 36630848
    [Google Scholar]
  47. Ai L. Xu A. Xu J. Roles of PD-1/PD-L1 pathway: Signaling, cancer, and beyond. Adv. Exp. Med. Biol. 2020 1248 33 59 10.1007/978‑981‑15‑3266‑5_3 32185706
    [Google Scholar]
  48. Yi M. Niu M. Xu L. Luo S. Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J. Hematol. Oncol. 2021 14 1 10 10.1186/s13045‑020‑01027‑5 33413496
    [Google Scholar]
  49. Abdin S.M. Zaher D.M. Arafa E.S.A. Omar H.A. Tackling cancer resistance by immunotherapy: Updated clinical impact and safety of PD-1/PD-L1 inhibitors. Cancers 2018 10 2 32 10.3390/cancers10020032 29370105
    [Google Scholar]
  50. Wong A.C.Y. Ma B. An update on the pharmacodynamics, pharmacokinetics, safety and clinical efficacy of nivolumab in the treatment of solid cancers. Expert Opin. Drug Metab. Toxicol. 2016 12 10 1255 1261 10.1080/17425255.2016.1223047 27548326
    [Google Scholar]
  51. Guo L. Zhang H. Chen B. Nivolumab as programmed death-1 (PD-1) inhibitor for targeted immunotherapy in tumor. J. Cancer 2017 8 3 410 416 10.7150/jca.17144 28261342
    [Google Scholar]
  52. Carvajal R.D. Asmar R. Yang J. Clinical utility of nivolumab in the treatment of advanced melanoma. Ther. Clin. Risk Manag. 2016 12 313 325 10.2147/TCRM.S78039 27013881
    [Google Scholar]
  53. Force J. Salama A. First-line treatment of metastatic melanoma: Role of nivolumab. ImmunoTargets Ther. 2017 6 1 10 10.2147/ITT.S110479 28243579
    [Google Scholar]
  54. Spain L. Larkin J. Combination immune checkpoint blockade with ipilimumab and nivolumab in the management of advanced melanoma. Expert Opin. Biol. Ther. 2016 16 3 389 396 10.1517/14712598.2016.1141195 26750801
    [Google Scholar]
  55. Yamamoto N. Nokihara H. Yamada Y. Shibata T. Tamura Y. Seki Y. Honda K. Tanabe Y. Wakui H. Tamura T. Phase I study of Nivolumab, an anti-PD-1 antibody, in patients with malignant solid tumors. Invest. New Drugs 2017 35 2 207 216 10.1007/s10637‑016‑0411‑2 27928714
    [Google Scholar]
  56. Brahmer J.R. Drake C.G. Wollner I. Powderly J.D. Picus J. Sharfman W.H. Stankevich E. Pons A. Salay T.M. McMiller T.L. Gilson M.M. Wang C. Selby M. Taube J.M. Anders R. Chen L. Korman A.J. Pardoll D.M. Lowy I. Topalian S.L. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 2010 28 19 3167 3175 10.1200/JCO.2009.26.7609 20516446
    [Google Scholar]
  57. Zarrabi K. Wu S. An evaluation of nivolumab for the treatment of metastatic renal cell carcinoma. Expert Opin. Biol. Ther. 2018 18 6 695 705 10.1080/14712598.2018.1478962 29782188
    [Google Scholar]
  58. Fatahzadeh M. Kaposi sarcoma: Review and medical management update. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012 113 1 2 16 10.1016/j.tripleo.2011.05.011 22677687
    [Google Scholar]
  59. Topalian S.L. Sznol M. McDermott D.F. Kluger H.M. Carvajal R.D. Sharfman W.H. Brahmer J.R. Lawrence D.P. Atkins M.B. Powderly J.D. Leming P.D. Lipson E.J. Puzanov I. Smith D.C. Taube J.M. Wigginton J.M. Kollia G.D. Gupta A. Pardoll D.M. Sosman J.A. Hodi F.S. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J. Clin. Oncol. 2014 32 10 1020 1030 10.1200/JCO.2013.53.0105 24590637
    [Google Scholar]
  60. Topalian S.L. Hodi F.S. Brahmer J.R. Gettinger S.N. Smith D.C. McDermott D.F. Powderly J.D. Sosman J.A. Atkins M.B. Leming P.D. Spigel D.R. Antonia S.J. Drilon A. Wolchok J.D. Carvajal R.D. McHenry M.B. Hosein F. Harbison C.T. Grosso J.F. Sznol M. Five-year survival and correlates among patients with advanced melanoma, renal cell carcinoma, or non–small cell lung cancer treated With Nivolumab. JAMA Oncol. 2019 5 10 1411 1420 10.1001/jamaoncol.2019.2187 31343665
    [Google Scholar]
  61. Topalian S.L. Hodi F.S. Brahmer J.R. Gettinger S.N. Smith D.C. McDermott D.F. Powderly J.D. Carvajal R.D. Sosman J.A. Atkins M.B. Leming P.D. Spigel D.R. Antonia S.J. Horn L. Drake C.G. Pardoll D.M. Chen L. Sharfman W.H. Anders R.A. Taube J.M. McMiller T.L. Xu H. Korman A.J. Jure-Kunkel M. Agrawal S. McDonald D. Kollia G.D. Gupta A. Wigginton J.M. Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012 366 26 2443 2454 10.1056/NEJMoa1200690 22658127
    [Google Scholar]
  62. Dang T.O. Ogunniyi A. Barbee M.S. Drilon A. Pembrolizumab for the treatment of PD-L1 positive advanced or metastatic non-small cell lung cancer. Expert Rev. Anticancer Ther. 2016 16 1 13 20 10.1586/14737140.2016.1123626 26588948
    [Google Scholar]
  63. Garon E.B. Rizvi N.A. Hui R. Leighl N. Balmanoukian A.S. Eder J.P. Patnaik A. Aggarwal C. Gubens M. Horn L. Carcereny E. Ahn M.J. Felip E. Lee J.S. Hellmann M.D. Hamid O. Goldman J.W. Soria J.C. Dolled-Filhart M. Rutledge R.Z. Zhang J. Lunceford J.K. Rangwala R. Lubiniecki G.M. Roach C. Emancipator K. Gandhi L. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015 372 21 2018 2028 10.1056/NEJMoa1501824 25891174
    [Google Scholar]
  64. Kwok G. Yau T.C.C. Chiu J.W. Tse E. Kwong Y.L. Pembrolizumab (Keytruda). Hum. Vaccin. Immunother. 2016 12 11 2777 2789 10.1080/21645515.2016.1199310 27398650
    [Google Scholar]
  65. Lim S.H. Sun J.M. Lee S.H. Ahn J.S. Park K. Ahn M.J. Pembrolizumab for the treatment of non-small cell lung cancer. Expert Opin. Biol. Ther. 2016 16 3 397 406 10.1517/14712598.2016.1145652 26800463
    [Google Scholar]
  66. Ninomiya K. Hotta K. Pembrolizumab for the first-line treatment of non-small cell lung cancer. Expert Opin. Biol. Ther. 2018 18 10 1015 1021 10.1080/14712598.2018.1522300 30207786
    [Google Scholar]
  67. Reck M. Rodríguez-Abreu D. Robinson A.G. Hui R. Csőszi T. Fülöp A. Gottfried M. Peled N. Tafreshi A. Cuffe S. O’Brien M. Rao S. Hotta K. Leiby M.A. Lubiniecki G.M. Shentu Y. Rangwala R. Brahmer J.R. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N. Engl. J. Med. 2016 375 19 1823 1833 10.1056/NEJMoa1606774 27718847
    [Google Scholar]
  68. Pai-Scherf L. Blumenthal G.M. Li H. Subramaniam S. Mishra-Kalyani P.S. He K. Zhao H. Yu J. Paciga M. Goldberg K.B. McKee A.E. Keegan P. Pazdur R. FDA approval summary: Pembrolizumab for treatment of metastatic non-small cell lung cancer: First-line therapy and beyond. Oncologist 2017 22 11 1392 1399 10.1634/theoncologist.2017‑0078 28835513
    [Google Scholar]
  69. Aguilar E.J. Ricciuti B. Gainor J.F. Kehl K.L. Kravets S. Dahlberg S. Nishino M. Sholl L.M. Adeni A. Subegdjo S. Khosrowjerdi S. Peterson R.M. Digumarthy S. Liu C. Sauter J. Rizvi H. Arbour K.C. Carter B.W. Heymach J.V. Altan M. Hellmann M.D. Awad M.M. Outcomes to first-line pembrolizumab in patients with non-small-cell lung cancer and very high PD-L1 expression. Ann. Oncol. 2019 30 10 1653 1659 10.1093/annonc/mdz288 31435660
    [Google Scholar]
  70. Feliciano J.L. McLoone D. Xu Y. Quek R.G.W. Kuznik A. Pouliot J.F. Gullo G. Rietschel P. Guyot P. Konidaris G. Chan K. Keeping S. Wilson F.R. Freemantle N. Impact of the treatment crossover design on comparative efficacy in EMPOWER-Lung 1: Cemiplimab monotherapy as first-line treatment of advanced non-small cell lung cancer. Front. Oncol. 2023 12 1081729 10.3389/fonc.2022.1081729 37082098
    [Google Scholar]
  71. Mizuno T. Katsuya Y. Sato J. Koyama T. Shimizu T. Yamamoto N. Emerging PD-1/PD-L1 targeting immunotherapy in non-small cell lung cancer: Current status and future perspective in Japan, US, EU, and China. Front. Oncol. 2022 12 925938 10.3389/fonc.2022.925938 36091105
    [Google Scholar]
  72. Sezer A. Kilickap S. Gümüş M. Bondarenko I. Özgüroğlu M. Gogishvili M. Turk H.M. Cicin I. Bentsion D. Gladkov O. Clingan P. Sriuranpong V. Rizvi N. Gao B. Li S. Lee S. McGuire K. Chen C.I. Makharadze T. Paydas S. Nechaeva M. Seebach F. Weinreich D.M. Yancopoulos G.D. Gullo G. Lowy I. Rietschel P. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: A multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 2021 397 10274 592 604 10.1016/S0140‑6736(21)00228‑2 33581821
    [Google Scholar]
  73. Markham A. Duggan S. Cemiplimab: First global approval. Drugs 2018 78 17 1841 1846 10.1007/s40265‑018‑1012‑5 30456447
    [Google Scholar]
  74. Paccaly A.J. Migden M.R. Papadopoulos K.P. Yang F. Davis J.D. Rippley R.K. Lowy I. Fury M.G. Stankevich E. Rischin D. Fixed dose of cemiplimab in patients with advanced malignancies based on population pharmacokinetic analysis. Adv. Ther. 2021 38 5 2365 2378 10.1007/s12325‑021‑01638‑5 33768419
    [Google Scholar]
  75. Huang Y. Khan F. Saraiya N.V. Punjabi O.S. Gulati V. Erickson A.R. Yeh S. Vogt-Koyanagi-harada-like syndrome induced by checkpoint inhibitor cemiplimab. J. Immunother. 2023 46 8 295 298 10.1097/CJI.0000000000000476 37315200
    [Google Scholar]
  76. Gogishvili M. Melkadze T. Makharadze T. Giorgadze D. Dvorkin M. Penkov K. Laktionov K. Nemsadze G. Nechaeva M. Rozhkova I. Kalinka E. Gessner C. Moreno-Jaime B. Passalacqua R. Li S. McGuire K. Kaul M. Paccaly A. Quek R.G.W. Gao B. Seebach F. Weinreich D.M. Yancopoulos G.D. Lowy I. Gullo G. Rietschel P. Cemiplimab plus chemotherapy versus chemotherapy alone in non-small cell lung cancer: A randomized, controlled, double-blind phase 3 trial. Nat. Med. 2022 28 11 2374 2380 10.1038/s41591‑022‑01977‑y 36008722
    [Google Scholar]
  77. Jeong T.J. Lee H.T. Gu N. Jang Y.J. Choi S.B. Park U.B. Lee S.H. Heo Y.S. The high-resolution structure reveals remarkable similarity in PD-1 binding of cemiplimab and dostarlimab, the FDA-approved antibodies for cancer immunotherapy. Biomedicines 2022 10 12 3154 10.3390/biomedicines10123154 36551910
    [Google Scholar]
  78. Zhang L. Hao B. Geng Z. Geng Q. Toripalimab: The first domestic anti-tumor PD-1 antibody in China. Front. Immunol. 2022 12 730666 10.3389/fimmu.2021.730666 35095833
    [Google Scholar]
  79. Yang J. Dong L. Yang S. Han X. Han Y. Jiang S. Yao J. Zhang Z. Zhang S. Liu P. Qin Y. Wu H. Feng H. Yao S. Sun Y. Song H. Shi Y. Safety and clinical efficacy of toripalimab, a PD-1 mAb, in patients with advanced or recurrent malignancies in a phase I study. Eur. J. Cancer 2020 130 182 192 10.1016/j.ejca.2020.01.028 32224416
    [Google Scholar]
  80. Zeng L. Yan H. Jiang W. Qin H. Dai J. Zhang Y. Wei S. Chen S. Liu L. Xiong Y. Yang H. Li Y. Wang Z. Deng L. Xu Q. Peng L. Zhang R. Fang C. Chen X. Deng J. Wang J. Li T. Liu H. Zhang G. Yang N. Zhang Y. Toripalimab plus platinum-doublet chemotherapy as perioperative therapy for initially unresectable NSCLC: An open-label, phase 2 trial. Med. 2025 6 6 100574 10.1016/j.medj.2025.100574 39892382
    [Google Scholar]
  81. Ren X. Zhang W. A single-arm phase Ib study of multiple target cytotoxic T-lymphocyte (MCTL) in combination with toripalimab as second-line therapy in advanced non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2021 39 15-suppl 2535 2535 10.1200/JCO.2021.39.15_suppl.2535
    [Google Scholar]
  82. Jiang T. Wang P. Zhang J. Zhao Y. Zhou J. Fan Y. Shu Y. Liu X. Zhang H. He J. Gao G. Mu X. Bao Z. Xu Y. Guo R. Wang H. Deng L. Ma N. Zhang Y. Feng H. Yao S. Wu J. Chen L. Zhou C. Ren S. Toripalimab plus chemotherapy as second-line treatment in previously EGFR-TKI treated patients with EGFR-mutant-advanced NSCLC: A multicenter phase-II trial. Signal Transduct. Target. Ther. 2021 6 1 355 10.1038/s41392‑021‑00751‑9 34650034
    [Google Scholar]
  83. Jiang M. Wang Y. Zhang X. 1310P Toripalimab combined with chemotherapy as second-line treatment of advanced non-small cell lung cancer (NSCLC): A single center retrospective study. Ann. Oncol. 2021 32 S1010 10.1016/j.annonc.2021.08.1912
    [Google Scholar]
  84. Zhao J. Li J. Chen H. Yang X. Zhong J. Zhuo M. Jia B. An T. Wu M. Wang Z. Ding L. Mao L. A phase II study of vorolanib in combination with toripalimab in patients with non-small cell lung cancer. J. Clin. Oncol. 2021 39 15-suppl e21053 e21053 10.1200/JCO.2021.39.15_suppl.e21053
    [Google Scholar]
  85. Xiang G. Gu L. Chen X. Wang F. Chen B. Zhao J. Lu Y. Chang F. Zhu Y. Economic evaluation of first-line camrelizumab for advanced non-small-cell lung cancer in China. Front. Public Health 2021 9 743558 10.3389/fpubh.2021.743558 34957008
    [Google Scholar]
  86. Zhang L. Mai W. Jiang W. Geng Q. Sintilimab: A promising anti-Tumor PD-1 antibody. Front. Oncol. 2020 10 594558 10.3389/fonc.2020.594558 33324564
    [Google Scholar]
  87. Gong J. Su D. Shang J. Xu S. Tang L. Sun Z. Liu G. Cost-effectiveness of tislelizumab versus docetaxel for previously treated advanced non-small-cell lung cancer in China. Front. Pharmacol. 2022 13 830380 10.3389/fphar.2022.830380 35614942
    [Google Scholar]
  88. Qiao L. Zhou Z. Zeng X. Tan C. Cost-effectiveness of domestic PD-1 inhibitor camrelizumab combined with chemotherapy in the first-line treatment of advanced nonsquamous non–small-cell lung cancer in China. Front. Pharmacol. 2021 12 728440 10.3389/fphar.2021.728440 34795580
    [Google Scholar]
  89. Yang Y. Wang Z. Fang J. Yu Q. Han B. Cang S. Chen G. Mei X. Yang Z. Ma R. Bi M. Ren X. Zhou J. Li B. Song Y. Feng J. Li J. He Z. Zhou R. Li W. Lu Y. Wang Y. Wang L. Yang N. Zhang Y. Yu Z. Zhao Y. Xie C. Cheng Y. Zhou H. Wang S. Zhu D. Zhang W. Zhang L. Efficacy and safety of sintilimab plus pemetrexed and platinum as first-line treatment for locally advanced or metastatic Nonsquamous NSCLC: A randomized, double-blind, phase 3 study (Oncology pRogram by InnovENT anti-PD-1-11). J. Thorac. Oncol. 2020 15 10 1636 1646 10.1016/j.jtho.2020.07.014 32781263
    [Google Scholar]
  90. Yang Y. Sun J. Wang Z. Fang J. Yu Q. Han B. Cang S. Chen G. Mei X. Yang Z. Ma R. Bi M. Ren X. Zhou J. Li B. Song Y. Feng J. Li J. He Z. Zhou R. Li W. Lu Y. Zhou H. Wang S. Sun L. Puig O. Mancao C. Peng B. Fang W. Xu W. Zhang L. Updated overall survival data and predictive biomarkers of sintilimab plus pemetrexed and platinum as first-line treatment for locally advanced or metastatic nonsquamous NSCLC in the phase 3 ORIENT-11 study. J. Thorac. Oncol. 2021 16 12 2109 2120 10.1016/j.jtho.2021.07.015 34358724
    [Google Scholar]
  91. Zhou C. Wu L. Fan Y. Wang Z. Liu L. Chen G. Zhang L. Huang D. Cang S. Yang Z. Zhou J. Zhou C. Li B. Li J. Fan M. Cui J. Li Y. Zhao H. Fang J. Xue J. Hu C. Sun P. Du Y. Zhou H. Wang S. Zhang W. Sintilimab plus platinum and gemcitabine as first-line treatment for advanced or metastatic squamous NSCLC: Results from a randomized, double-blind, phase 3 trial (ORIENT-12). J. Thorac. Oncol. 2021 16 9 1501 1511 10.1016/j.jtho.2021.04.011 34048947
    [Google Scholar]
  92. Markham A. Keam S.J. Camrelizumab: First Global Approval. Drugs 2019 79 12 1355 1361 10.1007/s40265‑019‑01167‑0 31313098
    [Google Scholar]
  93. Alsaab H.O. Sau S. Alzhrani R. Tatiparti K. Bhise K. Kashaw S.K. Iyer A.K. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front. Pharmacol. 2017 8 AUG 561 10.3389/fphar.2017.00561 28878676
    [Google Scholar]
  94. Gao G. Zhao J. Ren S. Wang Y. Chen G. Chen J. Gu K. Guo R. Pan Y. Wang Q. Li W. Yang X. Zhou C. Efficacy and safety of camrelizumab plus apatinib as second-line treatment for advanced squamous non-small cell lung cancer. Ann. Transl. Med. 2022 10 8 441 441 10.21037/atm‑21‑4792 35571422
    [Google Scholar]
  95. Yang J.J. Huang C. Fan Y. Pan H. Feng J. Jiang L. Li X.Y. Liu X.Q. Xiong J.P. Zhao Y.Q. Cheng Y. Ma R. Wang J. Wang Y. Liu Y.H. Lin D.M. Wang T. Shi W. Zou J. Wu Y.L. Camrelizumab in different PD-L1 expression cohorts of pre-treated advanced or metastatic non-small cell lung cancer: A phase II study. Cancer Immunol. Immunother. 2022 71 6 1393 1402 10.1007/s00262‑021‑03091‑3 34668977
    [Google Scholar]
  96. Zhou C. Chen G. Huang Y. Zhou J. Lin L. Feng J. Wang Z. Shu Y. Shi J. Hu Y. Wang Q. Cheng Y. Wu F. Chen J. Lin X. Wang Y. Huang J. Cui J. Cao L. Liu Y. Zhang Y. Pan Y. Zhao J. Wang L. Chang J. Chen Q. Ren X. Zhang W. Fan Y. He Z. Fang J. Gu K. Dong X. Jin F. Gao H. An G. Ding C. Jiang X. Xiong J. Zhou X. Hu S. Lu P. Liu A. Guo S. Huang J. Zhu C. Zhao J. Gao B. Chen Y. Hu C. Zhang J. Zhang H. Zhao H. Wang Z. Ma X. Shi W. Camrelizumab plus carboplatin and pemetrexed as first-line therapy for advanced non-squamous non-small-cell lung cancer: 5-year outcomes of the CameL randomized phase 3 study. J. Immunother. Cancer 2024 12 11 009240 10.1136/jitc‑2024‑009240 39608979
    [Google Scholar]
  97. Wang R. Shi M. Ji M. Han Z. Chen L. Liu Y. Lu K. Liu L. Chen B. Zhang X. Miao L. Shu Y. Real world experience with camrelizumab in patients with advanced non-small cell lung cancer: A prospective multicenter cohort study (NOAH-LC-101). Transl. Lung Cancer Res. 2023 12 4 786 796 10.21037/tlcr‑23‑121 37197631
    [Google Scholar]
  98. Zhao D. Bi M. Cheng X. Wang S. Cheng H. Xia X. Chen H. Zhang Y. Hu Z. Cao Q. Liang H. Wang F. Min X. Xu L. Feng K. Zhou J. Li X. Wang R. Xie H. Chen X. Gu K. Camrelizumab-based therapies for the treatment of advanced lung cancer: A prospective, open-label, multicenter, observational, real-world study. Front. Immunol. 2025 16 1494708 10.3389/fimmu.2025.1494708 40124372
    [Google Scholar]
  99. Liu S.Y. Wu Y.L. Tislelizumab: An investigational anti-PD-1 antibody for the treatment of advanced non-small cell lung cancer (NSCLC). Expert Opin. Investig. Drugs 2020 29 12 1355 1364 10.1080/13543784.2020.1833857 33044117
    [Google Scholar]
  100. Wang J. Lu S. Yu X. Hu Y. Zhao J. Sun M. Yu Y. Hu C. Yang K. Song Y. Lin X. Liang L. Leaw S. Zheng W. Tislelizumab plus chemotherapy versus chemotherapy alone as first-line treatment for advanced squamous non-small-cell lung cancer: Final analysis of the randomized, phase III RATIONALE-307 trial. ESMO Open 2024 9 10 103727 10.1016/j.esmoop.2024.103727 39461775
    [Google Scholar]
  101. Wang Z. Zhao J. Ma Z. Cui J. Shu Y. Liu Z. Cheng Y. Leaw S.J. Wu Y. Ma Y. Tan W. Ma X. Zhang Y. Wang J. A phase 2 study of tislelizumab in combination with platinum-based chemotherapy as first-line treatment for advanced lung cancer in Chinese patients. Lung Cancer 2020 147 259 268 10.1016/j.lungcan.2020.06.007 32769013
    [Google Scholar]
  102. Chen H. Zhang J. Chen C. Zheng W. Zheng B. Efficacy and safety of neoadjuvant tislelizumab combined with chemotherapy in locally advanced non-small cell lung cancer—A retrospective cohort study. J. Thorac. Dis. 2024 16 1 498 506 10.21037/jtd‑23‑1103 38410557
    [Google Scholar]
  103. Chen X. Zhang H. Li W. Qu Y. Qu X. Zhou R. Hong H. Zhu Y. Chai X. Liu L. Li Y. MA17.09 Efficacy and safety of tislelizumab plus anlotinib and 2-cycle irinotecan as second-line treatment for ES-small cell lung cancer(ESTAIL). J. Thorac. Oncol. 2024 19 10 S126 S127 10.1016/j.jtho.2024.09.227
    [Google Scholar]
  104. Fan Y. Li H. Chen K. Gong L. Huang Z. Xu Y. Yu X. Lou G. Lu H. Hong W. Zhao J. Wang W. Gu C. Xie F. Xu X. Han N. 85P Phase II trial of tislelizumab plus sitravatinib as maintenance therapy in extensive-stage small-cell lung cancer (ES-SCLC). Immuno-Oncology and Technology 2023 20 100557 10.1016/j.iotech.2023.100557
    [Google Scholar]
  105. Huang X. Zhu L. Liu J. Wang Y. Wang Y. Xia P. Lv W. Hu J. Tislelizumab synergizes with surgery to augment the survival benefit in stage II-III non-small cell lung cancer. Discover Oncology 2024 15 1 390 10.1007/s12672‑024‑01278‑5 39215876
    [Google Scholar]
  106. Redman J.M. Madan R.A. Spotlight on atezolizumab and its potential as an oncology agent. Expert Rev. Anticancer Ther. 2018 18 8 719 722 10.1080/14737140.2018.1483241 29877103
    [Google Scholar]
  107. Akamine T. Toyokawa G. Tagawa T. Seto T. Atezolizumab in non-squamous non-small cell lung cancer. J. Thorac. Dis. 2018 10 S26 S3155 S3159 10.21037/jtd.2018.07.92 30370103
    [Google Scholar]
  108. Liu C. Zeng L. Deng C. Jiang W. Wang Y. Zhou Y. Liu L. Wang S. Zhou C. Qiu Z. Zeng F. Wu F. Weng J. Liu X. Yang N. Ma F. Hypofractionated radiotherapy with immunochemotherapy for extensive-stage small-cell lung cancer. Front. Immunol. 2023 14 1175960 10.3389/fimmu.2023.1175960 37350968
    [Google Scholar]
  109. Faiena I. Cummings A.L. Crosetti A.M. Pantuck A.J. Chamie K. Drakaki A. Durvalumab: An investigational anti-PD-L1 monoclonal antibody for the treatment of urothelial carcinoma. Drug Des. Devel. Ther. 2018 12 209 215 10.2147/DDDT.S141491 29416316
    [Google Scholar]
  110. Al-Salama Z.T. Durvalumab: A review in extensive-stage SCLC. Target. Oncol. 2021 16 6 857 864 10.1007/s11523‑021‑00843‑0 34731446
    [Google Scholar]
  111. Antonia S.J. Villegas A. Daniel D. Vicente D. Murakami S. Hui R. Kurata T. Chiappori A. Lee K.H. de Wit M. Cho B.C. Bourhaba M. Quantin X. Tokito T. Mekhail T. Planchard D. Kim Y.C. Karapetis C.S. Hiret S. Ostoros G. Kubota K. Gray J.E. Paz-Ares L. de Castro Carpeño J. Faivre-Finn C. Reck M. Vansteenkiste J. Spigel D.R. Wadsworth C. Melillo G. Taboada M. Dennis P.A. Özgüroğlu M. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 2018 379 24 2342 2350 10.1056/NEJMoa1809697 30280658
    [Google Scholar]
  112. Botticella A. Mezquita L. Le Pechoux C. Planchard D. Durvalumab for stage III non-small-cell lung cancer patients: Clinical evidence and real-world experience. Ther. Adv. Respir. Dis. 2019 13 1753466619885530 10.1177/1753466619885530 31686616
    [Google Scholar]
  113. Zhao B. Li H. Ma W. Durvalumab after chemoradiotherapy for patients with unresectable stage III NSCLC: The PACIFIC-R study. J. Thorac. Oncol. 2023 18 4 e38 e39 10.1016/j.jtho.2022.11.002 36990576
    [Google Scholar]
  114. Paz-Ares L. Chen Y. Reinmuth N. Hotta K. Trukhin D. Statsenko G. Hochmair M.J. Özgüroğlu M. Ji J.H. Garassino M.C. Voitko O. Poltoratskiy A. Musso E. Havel L. Bondarenko I. Losonczy G. Conev N. Mann H. Dalvi T.B. Jiang H. Goldman J.W. Durvalumab, with or without tremelimumab, plus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer: 3-year overall survival update from CASPIAN. ESMO Open 2022 7 2 100408 10.1016/j.esmoop.2022.100408 35279527
    [Google Scholar]
  115. Capdevila J. Hernando J. Teule A. Lopez C. Garcia-Carbonero R. Benavent M. Custodio A. Garcia-Alvarez A. Cubillo A. Alonso V. Carmona-Bayonas A. Alonso-Gordoa T. Crespo G. Jimenez-Fonseca P. Blanco M. Viudez A. La Casta A. Sevilla I. Segura A. Llanos M. Landolfi S. Nuciforo P. Manzano J.L. Durvalumab plus tremelimumab for the treatment of advanced neuroendocrine neoplasms of gastroenteropancreatic and lung origin. Nat. Commun. 2023 14 1 2973 10.1038/s41467‑023‑38611‑5 37221181
    [Google Scholar]
  116. Shirley M. Avelumab: A review in metastatic merkel cell carcinoma. Target. Oncol. 2018 13 3 409 416 10.1007/s11523‑018‑0571‑4 29799096
    [Google Scholar]
  117. Gaiser M.R. Bongiorno M. Brownell I. PD-L1 inhibition with avelumab for metastatic Merkel cell carcinoma. Expert Rev. Clin. Pharmacol. 2018 11 4 345 359 10.1080/17512433.2018.1445966 29478343
    [Google Scholar]
  118. Neumann M. Murphy N. Seetharamu N. The evolving role of PD-L1 inhibition in non-small cell lung cancer: A review of durvalumab and avelumab. Cancer Med. J. 2022 5 1 31 45 35253011
    [Google Scholar]
  119. Reck M. Barlesi F. Yang J.C.H. Westeel V. Felip E. Özgüroğlu M. Dols M.C. Sullivan R. Kowalski D.M. Andric Z. Lee D.H. Sezer A. Hu P. Wang X. von Heydebreck A. Jacob N. Mehr K.T. Park K. Avelumab versus platinum-based doublet chemotherapy as first-line treatment for patients with high-expression programmed death-ligand 1–Positive Metastatic NSCLC: Primary analysis from the phase 3 JAVELIN lung 100 trial. J. Thorac. Oncol. 2024 19 2 297 313 10.1016/j.jtho.2023.09.1445 37748693
    [Google Scholar]
  120. Solomon B.J. Dagogo-Jack I. Lee S.H. Boyer M.J. Ramalingam S.S. Carcereny E. Felip E. Han J.Y. Hida T. Hughes B.G.M. Kim S.W. Nishio M. Seto T. Okamoto T. Zhang X. Martini J.F. Wang E. De Beukelaer S. Bauer T.M. Avelumab in combination with lorlatinib or crizotinib in patients with previously treated advanced NSCLC: Phase 1b/2 results from the JAVELIN lung 101 trial. JTO Clinical and Research Reports 2024 5 7 100685 10.1016/j.jtocrr.2024.100685 39034968
    [Google Scholar]
  121. Sebastian N. T. Xu-Welliver M. Williams T. M. Stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC): Contemporary insights and advances J. Thorac Dis 2018 10 S21 S2451 S2464 (Suppl. 21) 10.21037/jtd.2018.04.52 30206491
    [Google Scholar]
  122. Solomon B. Callejo A. Bar J. Berchem G. Bazhenova L. Saintigny P. Raymond E. Girard N. Sulaiman R. Bresson C. Wunder F. Lee J.J. Raynaud J. Rubin E. Young B. Lazar V. Felip E. Onn A. Leyland-Jones B. Kurzrock R. Survival prolongation by rationale innovative genomics (SPRING): An international WIN consortium phase I study exploring safety and efficacy of avelumab, palbociclib, and axitinib in advanced non-small cell lung cancer (NSCLC) with integrated genomic and transcriptomic correlates. Ann. Oncol. 2019 30 v648 10.1093/annonc/mdz260.096
    [Google Scholar]
  123. Hrinczenko B. Iannotti N. Goel S. Spigel D. Safran H. Taylor M.H. Bennouna J. Wong D.J. Kelly K. Verschraegen C. Bajars M. Manitz J. Ruisi M. Gulley J.L. Long-term avelumab in advanced non-small-cell lung cancer: Summaries and post hoc analyses from JAVELIN Solid Tumor. Future Oncol. 2022 18 11 1333 1342 10.2217/fon‑2021‑0930 35144482
    [Google Scholar]
  124. Verschraegen C.F. Jerusalem G. McClay E.F. Iannotti N. Redfern C.H. Bennouna J. Chen F.L. Kelly K. Mehnert J. Morris J.C. Taylor M. Spigel D. Wang D. Grote H.J. Zhou D. Munshi N. Bajars M. Gulley J.L. Efficacy and safety of first-line avelumab in patients with advanced non-small cell lung cancer: Results from a phase Ib cohort of the JAVELIN Solid Tumor study. J. Immunother. Cancer 2020 8 2 001064 10.1136/jitc‑2020‑001064 32907924
    [Google Scholar]
  125. Joseph J. Zobniw C. Davis J. Anderson J. Trinh V.A. Avelumab: A review of its application in metastatic merkel cell carcinoma. Ann. Pharmacother. 2018 52 9 928 935 10.1177/1060028018768809 29616562
    [Google Scholar]
  126. Shimizu T. Nakajima T.E. Yamamoto N. Yonemori K. Koyama T. Kondo S. Sunakawa Y. Izawa N. Horie Y. Xiang S. Xu S. Qin L. Gong J. Liu D. Phase I study of envafolimab (KN035), a novel subcutaneous single-domain anti-PD-L1 monoclonal antibody, in Japanese patients with advanced solid tumors. Invest. New Drugs 2022 40 5 1021 1031 10.1007/s10637‑022‑01287‑7 35932387
    [Google Scholar]
  127. Wu S. Dong C. Hu C. Hui K. Jiang X. Case report: Combination therapy of envafolimab with endostar for advanced non-small cell lung cancer with low PD-L1 expression. Front. Oncol. 2024 14 1437260 10.3389/fonc.2024.1437260 39575420
    [Google Scholar]
  128. Papadopoulos K.P. Harb W. Peer C.J. Hua Q. Xu S. Lu H. Lu N. He Y. Xu T. Dong R. Gong J. Liu D. First-in-human phase I study of envafolimab, a novel subcutaneous single-domain Anti-PD-L1 antibody, in patients with advanced solid tumors. Oncologist 2021 26 9 e1514 e1525 10.1002/onco.13817 33973293
    [Google Scholar]
  129. Li J. Deng Y. Zhang W. Zhou A.P. Guo W. Yang J. Yuan Y. Zhu L. Qin S. Xiang S. Lu H. Gong J. Xu T. Liu D. Shen L. Subcutaneous envafolimab monotherapy in patients with advanced defective mismatch repair/microsatellite instability high solid tumors. J. Hematol. Oncol. 2021 14 1 95 10.1186/s13045‑021‑01095‑1 34154614
    [Google Scholar]
  130. Zhang Y. Chen Z. Liu Y. Han L. Jiang W. Wang Q. Shi J. Lu L. Li J. Zhang M. Huang Y. Yang Y. Hou X. Zhang L. Li J. Fang W. Chen G. Chidamide plus envafolimab as subsequent treatment in advanced non‐small cell lung cancer patients resistant to anti‐PD‐1 therapy: A multicohort, open‐label, phase II trial with biomarker analysis. Cancer Med. 2024 13 7 7175 10.1002/cam4.7175 38597130
    [Google Scholar]
  131. Dong C. Hu C. Jiang Y. Hui K. Jiang X. Case report: Envafolimab combined with Endostar in the treatment of advanced non-small cell lung cancer with malignant pleural effusion. Front. Oncol. 2024 14 1368059 10.3389/fonc.2024.1368059 38638859
    [Google Scholar]
  132. Geng Q. Lu Y. Li D. Qin L. Qi C. Pu X. Zhuang Y. Zhu Y. Zha Q. Wang G. Jiang H. β-glucan combined with Envafolimab and Endostar as immune rechallenge for metastatic non-small cell lung cancer. BMC Immunol. 2024 25 1 60 10.1186/s12865‑024‑00651‑x 39271997
    [Google Scholar]
  133. Kaplon H. Reichert J.M. Antibodies to watch in 2021. MAbs 2021 13 1 1860476 10.1080/19420862.2020.1860476 33459118
    [Google Scholar]
  134. Kaplon H. Crescioli S. Chenoweth A. Visweswaraiah J. Reichert J.M. Antibodies to watch in 2023. MAbs 2023 15 1 2153410 10.1080/19420862.2022.2153410 36472472
    [Google Scholar]
  135. Lee A. Cosibelimab: First Approval. Drugs 2025 85 5 695 698 10.1007/s40265‑025‑02164‑2 40167969
    [Google Scholar]
  136. Harris D. Brungs D. Ladwah R. Mant A. McGrath M. Tazbirkova A. 399 Cosibelimab, an anti-PD-L1 antibody: Preliminary safety and efficacy results from a global, multicohort phase 1 clinical trial. J. Immunother. Cancer 2020 8 3 2422 243 10.1136/jitc‑2020‑SITC2020.0399
    [Google Scholar]
  137. Langer C.J. Emerging immunotherapies in the treatment of non-small cell lung cancer (NSCLC): The role of immune checkpoint inhibitors. Am. J. Clin. Oncol. 2015 38 4 422 430 10.1097/COC.0000000000000059 24685885
    [Google Scholar]
  138. Yi J.S. Ready N. Healy P. Dumbauld C. Osborne R. Berry M. Shoemaker D. Clarke J. Crawford J. Tong B. Harpole D. D’Amico T.A. McSherry F. Dunphy F. McCall S.J. Christensen J.D. Wang X. Weinhold K.J. Immune activation in early-stage non–small cell lung cancer patients receiving neoadjuvant chemotherapy plus ipilimumab. Clin. Cancer Res. 2017 23 24 7474 7482 10.1158/1078‑0432.CCR‑17‑2005 28951518
    [Google Scholar]
  139. Wojtukiewicz M.Z. Rek M.M. Karpowicz K. Górska M. Polityńska B. Wojtukiewicz A.M. Moniuszko M. Radziwon P. Tucker S.C. Honn K.V. Inhibitors of immune checkpoints—PD-1, PD-L1, CTLA-4—new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021 40 3 949 982 10.1007/s10555‑021‑09976‑0 34236546
    [Google Scholar]
  140. Reck M. Bondarenko I. Luft A. Serwatowski P. Barlesi F. Chacko R. Sebastian M. Lu H. Cuillerot J.M. Lynch T.J. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: Results from a randomized, double-blind, multicenter phase 2 trial. Ann. Oncol. 2013 24 1 75 83 10.1093/annonc/mds213 22858559
    [Google Scholar]
  141. Reck M. Luft A. Szczesna A. Havel L. Kim S.W. Akerley W. Pietanza M.C. Wu Y. Zielinski C. Thomas M. Felip E. Gold K. Horn L. Aerts J. Nakagawa K. Lorigan P. Pieters A. Kong Sanchez T. Fairchild J. Spigel D. Phase III randomized trial of ipilimumab plus etoposide and platinum versus placebo plus etoposide and platinum in extensive-stage small-cell lung cancer. J. Clin. Oncol. 2016 34 31 3740 3748 10.1200/JCO.2016.67.6601 27458307
    [Google Scholar]
  142. Riess J.W. Lara P.N. Gandara D.R. Theory meets practice for immune checkpoint blockade in small-cell lung cancer. J. Clin. Oncol. 2016 34 31 3717 3718 10.1200/JCO.2016.69.0040 27601544
    [Google Scholar]
  143. Kooshkaki O. Derakhshani A. Hosseinkhani N. Torabi M. Safaei S. Brunetti O. Racanelli V. Silvestris N. Baradaran B. Combination of ipilimumab and nivolumab in cancers: From clinical practice to ongoing clinical trials. Int. J. Mol. Sci. 2020 21 12 4427 10.3390/ijms21124427 32580338
    [Google Scholar]
  144. Keam S.J. Tremelimumab: First Approval. Drugs 2023 83 1 93 102 10.1007/s40265‑022‑01827‑8 36571670
    [Google Scholar]
  145. Arru C. De Miglio M.R. Cossu A. Muroni M.R. Carru C. Zinellu A. Paliogiannis P. Durvalumab plus tremelimumab in solid tumors: A systematic review. Adv. Ther. 2021 38 7 3674 3693 10.1007/s12325‑021‑01796‑6 34105088
    [Google Scholar]
  146. Johnson M.L. Cho B.C. Luft A. Alatorre-Alexander J. Geater S.L. Laktionov K. Kim S.W. Ursol G. Hussein M. Lim F.L. Yang C.T. Araujo L.H. Saito H. Reinmuth N. Shi X. Poole L. Peters S. Garon E.B. Mok T. Durvalumab with or without tremelimumab in combination with chemotherapy as first-line therapy for metastatic non–small-cell lung cancer: The phase III POSEIDON study. J. Clin. Oncol. 2023 41 6 1213 1227 10.1200/JCO.22.00975 36327426
    [Google Scholar]
  147. Antonia S.J. Goldberg S.B. Balmanoukian A.S. Sanborn R.E. Steele K. Narwal R. Robbins P.B. Gu Y. Karakunnel J.J. Rizvi N.A. Phase Ib study of MEDI4736, a programmed cell death ligand-1 (PD-L1) antibody, in combination with tremelimumab, a cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) antibody, in patients (pts) with advanced NSCLC. J. Clin. Oncol. 2015 33 15-suppl. 3014 3014 10.1200/jco.2015.33.15_suppl.3014
    [Google Scholar]
  148. Kim M. Keam B. Ock C.Y. Kim S.H. Kim Y.J. Lim S.M. Kim J.S. Kim T.M. Hong S.H. Ahn M.S. Shin S.H. Kang E.J. Kim D.W. Im, S.W.; Kim, J.I.; Lee, J.S.; Kim, J.H.; Heo, D.S. Phase II study of durvalumab and tremelimumab in pulmonary sarcomatoid carcinoma: KCSG‐LU16 ‐07. Thorac. Cancer 2020 11 12 3482 3489 10.1111/1759‑7714.13684 33026712
    [Google Scholar]
  149. Pakkala S. Higgins K. Chen Z. Sica G. Steuer C. Zhang C. Zhang G. Wang S. Hossain M.S. Nazha B. Beardslee T. Khuri F.R. Curran W. Lonial S. Waller E.K. Ramalingam S. Owonikoko T.K. Durvalumab and tremelimumab with or without stereotactic body radiation therapy in relapsed small cell lung cancer: A randomized phase II study. J. Immunother. Cancer 2020 8 2 001302 10.1136/jitc‑2020‑001302 33428583
    [Google Scholar]
  150. Morgan C. Kurland J. Patel M. O’Brien C. Concepcion P. Doherty G.J. Hois S. Negro A. Pavlovic D. Robbins K.A. Differential safety profiles of durvalumab monotherapy and durvalumab in combination with tremelimumab in adult patients with advanced cancers. J. Immunother. Cancer 2025 13 5 011140 10.1136/jitc‑2024‑011140 40447320
    [Google Scholar]
  151. Nisonoff A. Wissler F.C. Lipman L.N. Properties of the major component of a peptic digest of rabbit antibody. In: Science 1960 132 1770 1771 10.1126/science.132.3441.1770 13729245
    [Google Scholar]
  152. Pang X. Huang Z. Zhong T. Zhang P. Wang Z.M. Xia M. Li B. Cadonilimab, a tetravalent PD-1/CTLA-4 bispecific antibody with trans-binding and enhanced target binding avidity. MAbs 2023 15 1 2180794 10.1080/19420862.2023.2180794 36872527
    [Google Scholar]
  153. Chen B. Yao W. Li X. Lin G. Chu Q. Liu H. Du Y. Lin J. Duan H. Wang H. Xiao Z. Sun H. Liu L. Xu L. Xu Y. Xu F. Kong Y. Pu X. Li K. Wang Q. Li J. Li B. Xia Y. Wu L. A phase Ib/II study of cadonilimab (PD-1/CTLA-4 bispecific antibody) plus anlotinib as first-line treatment in patients with advanced non-small cell lung cancer. Br. J. Cancer 2024 130 3 450 456 10.1038/s41416‑023‑02519‑0 38110665
    [Google Scholar]
  154. Huang Z. Pang X. Zhong T. Chen N. He X. Xia D. Jin X. Wang Z. Xia X. Li B. 289 Cadonilimab, an anti-PD1/CTLA4 bi-specific antibody with Fc effector null backbone J. Immunother. Cancer 2021 9 2 A313 A314 (Suppl. 2) 10.1136/jitc‑2021‑SITC2021.289
    [Google Scholar]
  155. Zhao Y. Ma Y. Fan Y. Zhou J. Yang N. Yu Q. Zhuang W. Song W. Wang Z.M. Li B. Xia Y. Zhao H. Zhang L. A multicenter, open-label phase Ib/II study of cadonilimab (anti PD-1 and CTLA-4 bispecific antibody) monotherapy in previously treated advanced non–small-cell lung cancer (AK104-202 study). Lung Cancer 2023 184 107355 10.1016/j.lungcan.2023.107355 37677918
    [Google Scholar]
  156. Chen C. Chen M. Bai Y. Li Y. Peng J. Yao B. Feng J. Zhou J.G. Ma H. A single-arm multi-center phase II clinical trial of Cadonilimab (anti-PD-1/CTLA-4) in combination with or without conventional second-line treatment for patients with extensive stage small cell lung cancer. Technol. Cancer Res. Treat. 2024 23 15330338241249690 10.1177/15330338241249690 38706247
    [Google Scholar]
  157. Li Q. Liu J. Zhang Q. Ouyang Q. Zhang Y. Liu Q. Sun T. Ye F. Zhang B. Xia S. Zhang B. Xu B. The anti-PD-L1/CTLA-4 bispecific antibody KN046 in combination with nab-paclitaxel in first-line treatment of metastatic triple-negative breast cancer: A multicenter phase II trial. Nat. Commun. 2024 15 1 1015 10.1038/s41467‑024‑45160‑y 38310192
    [Google Scholar]
  158. Ma Y. Xue J. Zhao Y. Zhang Y. Huang Y. Yang Y. Fang W. Guo Y. Li Q. Ge X. Sun J. Zhang B. Zhang Y. Xiao J. Zhang L. Zhao H. Phase I trial of KN046, a novel bispecific antibody targeting PD-L1 and CTLA-4 in patients with advanced solid tumors. J. Immunother. Cancer 2023 11 6 006654 10.1136/jitc‑2022‑006654 37263673
    [Google Scholar]
  159. Xiong A. Li W. Li X. Fan Y. Ma Z. Fang J. Xie Q. Zhuang W. Kang M. Wang J. Xu T. Xu M. Zhi L. Liu Q. Wang N. Zhou C. Efficacy and safety of KN046, a novel bispecific antibody against PD-L1 and CTLA-4, in patients with non-small cell lung cancer who failed platinum-based chemotherapy: A phase II study. Eur. J. Cancer 2023 190 112936 10.1016/j.ejca.2023.05.024 37393762
    [Google Scholar]
  160. Zhao Y. Chen G. Li X. Wu J. Chang B. Hu S. Yang S. Xu T. Liu Y. Wang N. Zhang L. Huang Y. KN046, a bispecific antibody against PD-L1 and CTLA-4, plus chemotherapy as first-line treatment for metastatic NSCLC: A multicenter phase 2 trial. Cell Rep. Med. 2024 5 3 101470 10.1016/j.xcrm.2024.101470 38508135
    [Google Scholar]
  161. Berezhnoy A. Sumrow B.J. Stahl K. Shah K. Liu D. Li J. Hao S.S. De Costa A. Kaul S. Bendell J. Cote G.M. Luke J.J. Sanborn R.E. Sharma M.R. Chen F. Li H. Diedrich G. Bonvini E. Moore P.A. Development and preliminary clinical activity of PD-1-guided CTLA-4 blocking bispecific DART molecule. Cell Rep. Med. 2020 1 9 100163 10.1016/j.xcrm.2020.100163 33377134
    [Google Scholar]
  162. Ansah E.O. Ansong B. Kyei F. Current advances in bispecific T cell–engaging therapies. Adv. Med. Pharm. Dent. Res. 2025 5 1 67 81 10.21622/AMPDR.2025.05.1.1222
    [Google Scholar]
  163. Sharma M. Sanborn R.E. Cote G.M. Bendell J.C. Kaul S. Chen F. Berezhnoy A. Moore P. Bonvini E. Sumrow B.J. Luke J.J. 1020O A phase I, first-in-human, open-label, dose escalation study of MGD019, an investigational bispecific PD-1 x CTLA-4 DART® molecule in patients with advanced solid tumours. Ann. Oncol. 2020 31 S704 S705 10.1016/j.annonc.2020.08.1140
    [Google Scholar]
  164. Almawash S. Revolutionary cancer therapy for personalization and improved efficacy: Strategies to overcome resistance to immune checkpoint inhibitor therapy. Cancers 2025 17 5 880 10.3390/cancers17050880
    [Google Scholar]
  165. Krzyżanowska N. Wojas-Krawczyk K. Milanowski J. Krawczyk P. Future prospects of immunotherapy in non-small-cell lung cancer patients: Is there hope in other immune checkpoints targeting molecules? Int. J. Mol. Sci. 2022 23 6 3087 10.3390/ijms23063087
    [Google Scholar]
  166. Farhangnia P. Ghomi S.M. Akbarpour M. Delbandi A.A. Bispecific antibodies targeting CTLA-4: Game-changer troopers in cancer immunotherapy. Front. Immunol. 2023 14 1155778 10.3389/fimmu.2023.1155778 37441075
    [Google Scholar]
  167. Jin S. Sun Y. Liang X. Gu X. Ning J. Xu Y. Chen S. Pan L. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduct. Target. Ther. 2022 7 1 39 10.1038/s41392‑021‑00868‑x 35132063
    [Google Scholar]
  168. Belli C. Antonarelli G. Repetto M. Boscolo Bielo L. Crimini E. Curigliano G. Targeting cellular components of the tumor microenvironment in solid malignancies. Cancers 2022 14 17 4278 10.3390/cancers14174278 36077813
    [Google Scholar]
  169. Zhong T. 521 AK112, a tetravalent bispecific antibody targeting PD-1 and VEGF, enhances binding avidity and functional activities and elicits potent anti-tumor efficacy in pre-clinical studies. J. Immunother. Cancer 2022 10 2 546 547 10.1136/jitc‑2022‑SITC2022.0521
    [Google Scholar]
  170. Zhang L. Fang W. Zhao Y. Yang Y. Zhou N. Chen L. Huang Y. Chen J. Zhuang L. Du Y. Zhuang W. Yu Q. Zhao Y. Zhou M. Zhang W. Zhang Y. Wan Y. Song W. Xia Y. Phase II results of ivonescimab (AK112/SMT112), a novel PD-1/VEGF bispecific, in combination with chemotherapy for first line treatment of advanced or metastatic non-small cell lung cancer (NSCLC) without actionable genomic alterations (AGA) in EGFR/ALK. J. Clin. Oncol. 2023 41 16-suppl 9087 9087 10.1200/JCO.2023.41.16_suppl.9087
    [Google Scholar]
  171. Wang W. Qiu T. Li F. Ren S. Current status and future perspectives of bispecific antibodies in the treatment of lung cancer. Chin. Med. J. 2023 136 4 379 393 10.1097/CM9.0000000000002460 36848213
    [Google Scholar]
  172. Zhou C. Ren S. Luo Y. Wang L. Xiong A. Su C. Zhang Z. A phase Ib/II study of AK112, a PD-1/VEGF bispecific antibody, as first or second-line therapy for advanced non-small cell lung cancer (NSCLC). Hypertension 2022 1 1 10.1200/JCO.2022.40.16_suppl.9040
    [Google Scholar]
  173. Khosla A.A. Jatwani K. Singh R. Reddy A. Jaiyesimi I. Desai A. Bispecific antibodies in lung cancer: A state-of-the-art review. Pharmaceuticals 2023 16 10 1461 10.3390/ph16101461 37895932
    [Google Scholar]
  174. Cui X. Jia H. Xin H. Zhang L. Chen S. Xia S. Li X. Xu W. Chen X. Feng Y. Wei X. Yu H. Wang Y. Zhan Y. Zhu X. Zhang X. A novel bispecific antibody targeting PD-L1 and VEGF with combined anti-tumor activities. Front. Immunol. 2021 12 778978 10.3389/fimmu.2021.778978 34925354
    [Google Scholar]
  175. Guo Y. Guo J. Cheng Y. Wang Z. Li Y. Lv D. Yin Y. Li G. Wu L. Huang Y. Wei S. Shen L. Duan H. Cui J. Luo H. Li X. Nan K. Wang C. Luo S. Liu R. Phase Ib/IIa safety and efficacy of PM8002, a bispecific antibody targeting PD-L1 and VEGF-A, as a monotherapy in patients with advanced solid tumors. J. Clin. Oncol. 2023 41 16-suppl 2536 2536 10.1200/JCO.2023.41.16_suppl.2536
    [Google Scholar]
  176. Drilon A. Cappuzzo F. Ou S.H.I. Camidge D.R. Targeting MET in lung cancer: Will expectations finally be met? J. Thorac. Oncol. 2017 12 1 15 26 10.1016/j.jtho.2016.10.014 27794501
    [Google Scholar]
  177. Shigematsu H. Lin L. Takahashi T. Nomura M. Suzuki M. Wistuba I.I. Fong K.M. Lee H. Toyooka S. Shimizu N. Fujisawa T. Feng Z. Roth J.A. Herz J. Minna J.D. Gazdar A.F. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J. Natl. Cancer Inst. 2005 97 5 339 346 10.1093/jnci/dji055 15741570
    [Google Scholar]
  178. Engelman J.A. Zejnullahu K. Mitsudomi T. Song Y. Hyland C. Park J.O. Lindeman N. Gale C.M. Zhao X. Christensen J. Kosaka T. Holmes A.J. Rogers A.M. Cappuzzo F. Mok T. Lee C. Johnson B.E. Cantley L.C. Jänne P.A. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007 316 5827 1039 1043 10.1126/science.1141478 17463250
    [Google Scholar]
  179. Yun J. Lee S.H. Kim S.Y. Jeong S.Y. Kim J.H. Pyo K.H. Park C.W. Heo S.G. Yun M.R. Lim S. Lim S.M. Hong M.H. Kim H.R. Thayu M. Curtin J.C. Knoblauch R.E. Lorenzi M.V. Roshak A. Cho B.C. Antitumor activity of amivantamab (Jnj-61186372), an egfr–met bispecific antibody, in diverse models of egfr exon 20 insertion–driven nsclc. Cancer Discov. 2020 10 8 1194 1209 10.1158/2159‑8290.CD‑20‑0116 32414908
    [Google Scholar]
  180. Park K. Haura E.B. Leighl N.B. Mitchell P. Shu C.A. Girard N. Viteri S. Han J.Y. Kim S.W. Lee C.K. Sabari J.K. Spira A.I. Yang T.Y. Kim D.W. Lee K.H. Sanborn R.E. Trigo J. Goto K. Lee J.S. Yang J.C.H. Govindan R. Bauml J.M. Garrido P. Krebs M.G. Reckamp K.L. Xie J. Curtin J.C. Haddish-Berhane N. Roshak A. Millington D. Lorenzini P. Thayu M. Knoblauch R.E. Cho B.C. Amivantamab in egfr exon 20 insertion- mutated non-small-cell lung cancer progressing on platinum chemotherapy: Initial results from the chrysalis phase i study. J. Clin. Oncol. 2021 39 30 3391 3402 10.1200/JCO.21.00662 34339292
    [Google Scholar]
  181. Owonikoko T.K. Champiat S. Johnson M.L. Govindan R. Izumi H. Lai W.V.V. Borghaei H. Boyer M.J. Boosman R.J. Hummel H-D. Blackhall F.H. Reguart N. Dowlati A. Zhang Y. Mukherjee S. Minocha M. Zhou Y. Shetty A. Hashemi Sadraei N. Paz-Ares L.G. Updated results from a phase 1 study of AMG 757, a half-life extended bispecific T-cell engager (BiTE) immuno-oncology therapy against delta-like ligand 3 (DLL3), in small cell lung cancer (SCLC). J. Clin. Oncol. 2021 39 15-suppl 8510 8510 10.1200/JCO.2021.39.15_suppl.8510
    [Google Scholar]
  182. Ramalingam S.S. Ahn M-J. Akamatsu H. Blackhall F.H. Borghaei H. Hummel H-D. Johnson M.L. Reck M. Zhang Y. Jandial D. Cheng S. Paz-Ares L.G. Phase 2 study of tarlatamab, a DLL3-targeting, half life–extended, bispecific T-cell engager (HLE BiTE)immuno-oncology therapy, in relapsed/refractory small cell lung cancer (SCLC). J. Clin. Oncol. 2022 40 16-suppl. TPS8603 TPS8603 10.1200/JCO.2022.40.16_suppl.TPS8603
    [Google Scholar]
  183. Hellmann M.D. Paz-Ares L. Bernabe Caro R. Zurawski B. Kim S.W. Carcereny Costa E. Park K. Alexandru A. Lupinacci L. de la Mora Jimenez E. Sakai H. Albert I. Vergnenegre A. Peters S. Syrigos K. Barlesi F. Reck M. Borghaei H. Brahmer J.R. O’Byrne K.J. Geese W.J. Bhagavatheeswaran P. Rabindran S.K. Kasinathan R.S. Nathan F.E. Ramalingam S.S. Nivolumab plus Ipilimumab in advanced non–small-cell lung cancer. N. Engl. J. Med. 2019 381 21 2020 2031 10.1056/NEJMoa1910231 31562796
    [Google Scholar]
  184. Brahmer J.R. Lee J.S. Ciuleanu T.E. Bernabe Caro R. Nishio M. Urban L. Audigier-Valette C. Lupinacci L. Sangha R. Pluzanski A. Burgers J. Mahave M. Ahmed S. Schoenfeld A.J. Paz-Ares L.G. Reck M. Borghaei H. O’Byrne K.J. Gupta R.G. Bushong J. Li L. Blum S.I. Eccles L.J. Ramalingam S.S. Five-year survival outcomes with nivolumab plus ipilimumab versus chemotherapy as first-line treatment for metastatic non–small-cell lung cancer in checkmate 227. J. Clin. Oncol. 2023 41 6 1200 1212 10.1200/JCO.22.01503 36223558
    [Google Scholar]
  185. Hellmann M.D. Rizvi N.A. Goldman J.W. Gettinger S.N. Borghaei H. Brahmer J.R. Ready N.E. Gerber D.E. Chow L.Q. Juergens R.A. Shepherd F.A. Laurie S.A. Geese W.J. Agrawal S. Young T.C. Li X. Antonia S.J. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): Results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017 18 1 31 41 10.1016/S1470‑2045(16)30624‑6 27932067
    [Google Scholar]
  186. Peters S. Pujol J.L. Dafni U. Dómine M. Popat S. Reck M. Andrade J. Becker A. Moro-Sibilot D. Curioni-Fontecedro A. Molinier O. Nackaerts K. Insa Mollá A. Gervais R. López Vivanco G. Madelaine J. Mazieres J. Faehling M. Griesinger F. Majem M. González Larriba J.L. Provencio Pulla M. Vervita K. Roschitzki-Voser H. Ruepp B. Mitchell P. Stahel R.A. Le Pechoux C. De Ruysscher D. Stahel R. Hiltbrunner A. Pardo-Contreras M. Gasca-Ruchti A. Giacomelli N. Kammler R. Marti N. Pfister R. Piguet A.C. Roux S. Troesch S. Schneider M. Schweri R. Zigomo I. Tsourti Z. Zygoura P. Tsouprou S. Kassapian M. Vervita K. Dimopoulou G. Andriakopoulou C. Morin F. Amour E. Mariaule G. Archirel N. Fernandez M. Pereira E. Benito L. Lopez K. Hernández A. Chinchen S. Jurkovic H. Livingstone A. Mitchell J. Walker M. Mitchell P. Ng S. Steer C. Briscoe K. Saqib A. Abdi E. Houghton B. O’Byrne K. Chittajallu B.R. Hughes B.G. Black A. Nackaerts K. Werner H. Gervais R. Zalcman G. Vaylet F. Merle P. Monnet I. Moro-Sibilot D. Molinier O. Girard N. Souquet P-J. Barlesi F. Debieuvre D. Senellart H. Poudenx M. Dixmier A. Pouessel D. Cadranel J. Lena H. Quoix E. Friard S. Audigier-Valette C. Mazieres J. Pichon E. Faehling M. Kokowski K. Kirchen H. Griesinger F. Tufman A. De-Colle C. de Langen J. González Larriba J.L. Insa A. Majem M. Massutí B. Pulla M.P. Aix S.P. Villanueva N. Vivanco G.L. Andrade J. Curioni-Fontecedro A. Franks K. Califano R. Consolidation nivolumab and ipilimumab versus observation in limited-disease small-cell lung cancer after chemo-radiotherapy – Results from the randomised phase II ETOP/IFCT 4-12 STIMULI trial. Ann. Oncol. 2022 33 1 67 79 10.1016/j.annonc.2021.09.011 34562610
    [Google Scholar]
  187. Ready N. Hellmann M.D. Awad M.M. Otterson G.A. Gutierrez M. Gainor J.F. Borghaei H. Jolivet J. Horn L. Mates M. Brahmer J. Rabinowitz I. Reddy P.S. Chesney J. Orcutt J. Spigel D.R. Reck M. O’Byrne K.J. Paz-Ares L. Hu W. Zerba K. Li X. Lestini B. Geese W.J. Szustakowski J.D. Green G. Chang H. Ramalingam S.S. First-line nivolumab plus ipilimumab in advanced non-small-cell lung cancer (CheckMate 568): Outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers. J. Clin. Oncol. 2019 37 12 992 1000 10.1200/JCO.18.01042 30785829
    [Google Scholar]
  188. Antonia S. Goldberg S.B. Balmanoukian A. Chaft J.E. Sanborn R.E. Gupta A. Narwal R. Steele K. Gu Y. Karakunnel J.J. Rizvi N.A. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: A multicentre, phase 1b study. Lancet Oncol. 2016 17 3 299 308 10.1016/S1470‑2045(15)00544‑6 26858122
    [Google Scholar]
  189. Rizvi N.A. Cho B.C. Reinmuth N. Lee K.H. Luft A. Ahn M.J. van den Heuvel M.M. Cobo M. Vicente D. Smolin A. Moiseyenko V. Antonia S.J. Le Moulec S. Robinet G. Natale R. Schneider J. Shepherd F.A. Geater S.L. Garon E.B. Kim E.S. Goldberg S.B. Nakagawa K. Raja R. Higgs B.W. Boothman A.M. Zhao L. Scheuring U. Stockman P.K. Chand V.K. Peters S. Durvalumab with or without tremelimumab vs standard chemotherapy in first-line treatment of metastatic non–small cell lung cancer. JAMA Oncol. 2020 6 5 661 674 10.1001/jamaoncol.2020.0237 32271377
    [Google Scholar]
  190. Arandhara A. Bhuyan P. Das B.K. Exploring lung cancer microenvironment: Pathways and nanoparticle-based therapies. Discover Oncology 2025 16 1 159 10.1007/s12672‑025‑01902‑y 39934547
    [Google Scholar]
  191. Chi A. He X. Hou L. Nguyen N.P. Zhu G. Cameron R.B. Lee J.M. Classification of non-small cell lung cancer’s tumor immune micro-environment and strategies to augment its response to immune checkpoint blockade. Cancers 2021 13 12 2924 10.3390/cancers13122924 34208113
    [Google Scholar]
  192. Altorki N.K. Markowitz G.J. Gao D. Port J.L. Saxena A. Stiles B. McGraw T. Mittal V. The lung microenvironment: An important regulator of tumour growth and metastasis. Nat. Rev. Cancer 2019 19 1 9 31 10.1038/s41568‑018‑0081‑9 30532012
    [Google Scholar]
  193. Fan Q. Chen Z. Wang C. Liu Z. Toward biomaterials for enhancing immune checkpoint blockade therapy. Adv. Funct. Mater. 2018 28 37 1802540 10.1002/adfm.201802540
    [Google Scholar]
  194. Feng Y. Tang Q. Wang B. Yang Q. Zhang Y. Lei L. Li S. Targeting the tumor microenvironment with biomaterials for enhanced immunotherapeutic efficacy. J. Nanobiotechnology 2024 22 1 737 10.1186/s12951‑024‑03005‑2 39605063
    [Google Scholar]
  195. Ge Y. Zhou Q. Pan F. Wang R. Utilizing nanoparticles to overcome anti-PD-1/PD-L1 immunotherapy resistance in non-small cell lung cancer: A potential strategy. Int. J. Nanomedicine 2025 20 2371 2394 10.2147/IJN.S505539 40027868
    [Google Scholar]
  196. Wang W. Zhang L. Sun Z. Eliciting pyroptosis to fuel cancer immunotherapy: Mechanisms and strategies. Cancer Biol. Med. 2022 19 7 948 964 10.20892/j.issn.2095‑3941.2022.0049 35856558
    [Google Scholar]
  197. Gao W. Wang X. Zhou Y. Wang X. Yu Y. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct. Target. Ther. 2022 7 1 196 10.1038/s41392‑022‑01046‑3 35725836
    [Google Scholar]
  198. Tang R. Xu J. Zhang B. Liu J. Liang C. Hua J. Meng Q. Yu X. Shi S. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J. Hematol. Oncol. 2020 13 1 110 10.1186/s13045‑020‑00946‑7 32778143
    [Google Scholar]
  199. Arora S. Velichinskii R. Lesh R.W. Ali U. Kubiak M. Bansal P. Borghaei H. Edelman M.J. Boumber Y. Existing and emerging biomarkers for immune checkpoint immunotherapy in solid tumors. Adv. Ther. 2019 36 10 2638 2678 10.1007/s12325‑019‑01051‑z 31410780
    [Google Scholar]
  200. Liu S.Y. Wu Y.L. Biomarker for personalized immunotherapy. Transl. Lung Cancer Res. 2019 8 S3 S308 S317 10.21037/tlcr.2019.08.02 31857954
    [Google Scholar]
  201. Camidge D.R. Doebele R.C. Kerr K.M. Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat. Rev. Clin. Oncol. 2019 16 6 341 355 10.1038/s41571‑019‑0173‑9 30718843
    [Google Scholar]
  202. Lahiri A. Maji A. Potdar P.D. Singh N. Parikh P. Bisht B. Mukherjee A. Paul M.K. Lung cancer immunotherapy: Progress, pitfalls, and promises. Mol. Cancer 2023 22 1 40 10.1186/s12943‑023‑01740‑y 36810079
    [Google Scholar]
  203. C. Guven D.; Sahin, T.K.; Dizdar, O.; Kilickap, S. Predictive biomarkers for immunotherapy efficacy in non-small-cell lung cancer: Current status and future perspectives. Biomarkers Med. 2020 14 14 1383 1392 10.2217/bmm‑2020‑0310 33064030
    [Google Scholar]
  204. Cai L.L. Wang J. Liquid biopsy for lung cancer immunotherapy. Oncol. Lett. 2019 17 6 4751 4760 10.3892/OL.2019.10166/DOWNLOAD 31186680
    [Google Scholar]
  205. Indini A. Rijavec E. Grossi F. Circulating biomarkers of response and toxicity of immunotherapy in advanced non-small cell lung cancer (NSCLC): A comprehensive review. Cancers 2021 13 8 1794 10.3390/cancers13081794 33918661
    [Google Scholar]
  206. Liang S. Wang H. Tian H. Xu Z. Wu M. Hua D. Li C. The prognostic biological markers of immunotherapy for non-small cell lung cancer: Current landscape and future perspective. Front. Immunol. 2023 14 1249980 10.3389/fimmu.2023.1249980 37753089
    [Google Scholar]
  207. Han S. Shuen W.H. Wang W.W. Nazim E. Toh H.C. Tailoring precision immunotherapy: Coming to a clinic soon? ESMO Open 2020 5 Suppl. 1 000631 10.1136/esmoopen‑2019‑000631 33558033
    [Google Scholar]
  208. Horne A. Crawford H. Dempsey C. Faivre-Finn C. 162TiP An update on the VIGILANCE study: Developing circulating and imaging biomarkers towards personalised radiotherapy in lung cancer. ESMO Open 2024 9 102917 10.1016/j.esmoop.2024.102917
    [Google Scholar]
  209. Casagrande S. Sopetto GB. Bertalot G. Bortolotti R. Racanelli V. Caffo O. Giometto B. Berti A. Veccia A. Immune-related adverse events due to cancer immunotherapy: Immune mechanisms and clinical manifestations. Cancers 2024 16 7 1440 10.3390/cancers16071440
    [Google Scholar]
  210. Gettinger S.N. Horn L. Gandhi L. Spigel D.R. Antonia S.J. Rizvi N.A. Powderly J.D. Heist R.S. Carvajal R.D. Jackman D.M. Sequist L.V. Smith D.C. Leming P. Carbone D.P. Pinder-Schenck M.C. Topalian S.L. Hodi F.S. Sosman J.A. Sznol M. McDermott D.F. Pardoll D.M. Sankar V. Ahlers C.M. Salvati M. Wigginton J.M. Hellmann M.D. Kollia G.D. Gupta A.K. Brahmer J.R. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J. Clin. Oncol. 2015 33 18 2004 2012 10.1200/JCO.2014.58.3708 25897158
    [Google Scholar]
  211. Pillai R.N. Behera M. Owonikoko T.K. Kamphorst A.O. Pakkala S. Belani C.P. Khuri F.R. Ahmed R. Ramalingam S.S. Comparison of the toxicity profile of PD‐1 versus PD‐L1 inhibitors in non–small cell lung cancer: A systematic analysis of the literature. Cancer 2018 124 2 271 277 10.1002/cncr.31043 28960263
    [Google Scholar]
  212. de La Rochefoucauld J. Noël N. Lambotte O. Management of immune-related adverse events associated with immune checkpoint inhibitors in cancer patients: A patient-centred approach. Intern. Emerg. Med. 2020 15 4 587 598 10.1007/s11739‑020‑02295‑2 32144552
    [Google Scholar]
  213. Burke M. Rashdan S. Management of immune-related adverse events in patients with non-small cell lung cancer. Front. Oncol. 2021 11 720759 10.3389/fonc.2021.720759 34660286
    [Google Scholar]
  214. Boucheron T. Chiche L. Penaranda G. Souquet M. Pegliasco H. Deturmeny J. Brunel V. Barrière N. Arbault-Bitton C. Coquet E. Diaz L. Escoda T. Risk of serious immune-related adverse events with various PD1 and PD-L1 inhibitors: A single-institution, real-life, comparative study. Ther. Clin. Risk Manag. 2025 21 273 282 10.2147/TCRM.S479686 40060169
    [Google Scholar]
  215. Remon J. Mezquita L. Corral J. Vilariño N. Reguart N. Immune-related adverse events with immune checkpoint inhibitors in thoracic malignancies: Focusing on non-small cell lung cancer patients. J. Thorac. Dis. 2018 10 Suppl. 13 S1516 S1533 10.21037/jtd.2017.12.52 29951303
    [Google Scholar]
  216. Daniello L. Elshiaty M. Bozorgmehr F. Kuon J. Kazdal D. Schindler H. Shah R. Volckmar A.L. Lusky F. Diekmann L. Liersch S. Faehling M. Muley T. Kriegsmann M. Benesova K. Stenzinger A. Thomas M. Christopoulos P. Therapeutic and prognostic implications of immune-related adverse events in advanced non-small-cell lung cancer. Front. Oncol. 2021 11 703893 10.3389/fonc.2021.703893 34268127
    [Google Scholar]
  217. Vaddepally R. Doddamani R. Sodavarapu S. Madam N.R. Katkar R. Kutadi A.P. Mathew N. Garje R. Chandra A.B. Review of immune-related adverse events (irAEs) in non-small-cell lung cancer (NSCLC)—Their incidence, management, Multiorgan irAEs, and Rechallenge. Biomedicines 2022 10 4 790 10.3390/biomedicines10040790 35453540
    [Google Scholar]
  218. Russano M. Cortellini A. Giusti R. Russo A. Zoratto F. Rastelli F. Gelibter A. Chiari R. Nigro O. De Tursi M. Bracarda S. Gori S. Grossi F. Bersanelli M. Calvetti L. Di Noia V. Scartozzi M. Di Maio M. Bossi P. Falcone A. Citarella F. Pantano F. Ficorella C. Filetti M. Adamo V. Veltri E. Pergolesi F. Occhipinti M.A. Nicolardi L. Tuzi A. Di Marino P. Macrini S. Inno A. Ghidini M. Buti S. Aprile G. Lai E. Audisio M. Intagliata S. Marconcini R. Brocco D. Porzio G. Piras M. Rijavec E. Simionato F. Natoli C. Tiseo M. Vincenzi B. Tonini G. Santini D. Clinical outcomes of NSCLC patients experiencing early immune-related adverse events to PD-1/PD-L1 checkpoint inhibitors leading to treatment discontinuation. Cancer Immunol. Immunother. 2022 71 4 865 874 10.1007/s00262‑021‑03045‑9 34462870
    [Google Scholar]
  219. Cook S. Samuel V. Meyers D.E. Stukalin I. Litt I. Sangha R. Morris D.G. Heng D.Y.C. Pabani A. Dean M. Navani V. Immune-related adverse events and survival among patients with metastatic NSCLC treated with immune checkpoint inhibitors. JAMA Netw. Open 2024 7 1 e2352302 e2352302 10.1001/jamanetworkopen.2023.52302 38236598
    [Google Scholar]
  220. Guezour N. Soussi G. Brosseau S. Abbar B. Naltet C. Vauchier C. Poté N. Hachon L. Namour C. Khalil A. Trédaniel J. Zalcman G. Gounant V. Grade 3–4 immune-related adverse events induced by immune checkpoint inhibitors in non-small-cell lung cancer (NSCLC) patients are correlated with better outcome: A real-life observational study. Cancers 2022 14 16 3878 10.3390/cancers14163878 36010872
    [Google Scholar]
  221. Shankar B. Zhang J. Naqash A.R. Forde P.M. Feliciano J.L. Marrone K.A. Ettinger D.S. Hann C.L. Brahmer J.R. Ricciuti B. Owen D. Toi Y. Walker P. Otterson G.A. Patel S.H. Sugawara S. Naidoo J. Multisystem immune-related adverse events associated with immune checkpoint inhibitors for treatment of non–small cell lung cancer. JAMA Oncol. 2020 6 12 1952 1956 10.1001/jamaoncol.2020.5012 33119034
    [Google Scholar]
  222. Yan T. Long M. Liu C. Zhang J. Wei X. Li F. Liao D. Immune-related adverse events with PD-1/PD-L1 inhibitors: Insights from a real-world cohort of 2523 patients. Front. Pharmacol. 2025 16 1519082 10.3389/fphar.2025.1519082 39959424
    [Google Scholar]
  223. Benzekry S. Grangeon M. Karlsen M. Alexa M. Bicalho-Frazeto I. Chaleat S. Tomasini P. Barbolosi D. Barlesi F. Greillier L. Machine learning for prediction of immunotherapy efficacy in non-small cell lung cancer from simple clinical and biological data. medRxiv 2021 10.1101/2021.11.30.21267064
    [Google Scholar]
  224. Gao Q. Yang L. Lu M. Jin R. Ye H. Ma T. The artificial intelligence and machine learning in lung cancer immunotherapy. J. Hematol. Oncol. 2023 16 1 55 10.1186/s13045‑023‑01456‑y 37226190
    [Google Scholar]
  225. Bao R. Hutson A. Madabhushi A. Jonsson V.D. Rosario S.R. Barnholtz-Sloan J.S. Fertig E.J. Marathe H. Harris L. Altreuter J. Chen Q. Dignam J. Gentles A.J. Gonzalez-Kozlova E. Gnjatic S. Kim E. Long M. Morgan M. Ruppin E. Valen D.V. Zhang H. Vokes N. Meerzaman D. Liu S. Van Allen E.M. Xing Y. Ten challenges and opportunities in computational immuno-oncology. J. Immunother. Cancer 2024 12 10 009721 10.1136/jitc‑2024‑009721 39461879
    [Google Scholar]
  226. Cheng G. Zhang F. Xing Y. Hu X. Zhang H. Chen S. Li M. Peng C. Ding G. Zhang D. Chen P. Xia Q. Wu M. Artificial Intelligence-assisted score analysis for predicting the expression of the immunotherapy biomarker PD-L1 in lung cancer. Front. Immunol. 2022 13 893198 10.3389/fimmu.2022.893198 35844508
    [Google Scholar]
  227. Liu J. Sun D. Xu S. Shen J. Ma W. Zhou H. Ma Y. Zhang Y. Fang W. Zhao Y. Hong S. Zhan J. Hou X. Zhao H. Huang Y. He B. Yang Y. Zhang L. Association of artificial intelligence-based immunoscore with the efficacy of chemoimmunotherapy in patients with advanced non-squamous non-small cell lung cancer: A multicentre retrospective study. Front. Immunol. 2024 15 1485703 10.3389/fimmu.2024.1485703 39569187
    [Google Scholar]
  228. Li S. Li W. Ma T. Fu S. Gao X. Qin N. Wu Y. Zhang X. Wang J. Pan Y. Liu Z. Assessing the efficacy of immunotherapy in lung squamous carcinoma using artificial intelligence neural network. Front. Immunol. 2022 13 1024707 10.3389/fimmu.2022.1024707 36518765
    [Google Scholar]
  229. Yang Y. Yang J. Shen L. Chen J. Xia L. Ni B. Ge L. Wang Y. Lu S. A multi-omics-based serial deep learning approach to predict clinical outcomes of single-agent anti-PD-1/PD-L1 immunotherapy in advanced stage non-small-cell lung cancer. Am. J. Transl. Res. 2021 13 2 743 756 33594323
    [Google Scholar]
  230. Bottomly D. McWeeney S. Just how transformative will AI/ML be for immuno-oncology? J. Immunother. Cancer 2024 12 3 007841 10.1136/jitc‑2023‑007841 38531545
    [Google Scholar]
  231. Mao Y. Shangguan D. Huang Q. Xiao L. Cao D. Zhou H. Wang Y.K. Emerging artificial intelligence-driven precision therapies in tumor drug resistance: Recent advances, opportunities, and challenges. Mol. Cancer 2025 24 1 123 10.1186/s12943‑025‑02321‑x 40269930
    [Google Scholar]
  232. Olawade D.B. Clement David-Olawade A. Adereni T. Egbon E. Teke J. Boussios S. Integrating AI into cancer immunotherapy—A narrative review of current applications and future directions. Diseases 2025 13 1 24 10.3390/diseases13010024 39851488
    [Google Scholar]
  233. Qiao Y. Xie D. Li Z. Cao S. Zhao D. Global research trends on biomarkers for cancer immunotherapy: Visualization and bibliometric analysis. Hum. Vaccin. Immunother. 2025 21 1 2435598 10.1080/21645515.2024.2435598 39773010
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575415429251007093531
Loading
/content/journals/mrmc/10.2174/0113895575415429251007093531
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test