Skip to content
2000
Volume 25, Issue 19
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

The mounting threat of antimicrobial resistance has intensified the global search for novel antibacterial agents, and chalcones - the aromatic ketones characterized by an α, β-unsaturated carbonyl system has emerged as promising scaffolds against the threat of antimicrobial resistance. This review presents a detailed exploration of chalcones as potent antibacterial agents, emphasizing their structural versatility, mechanisms of action, and therapeutic potential. With a modular backbone that supports diverse substitutions and heterocyclic extensions, chalcones can be easily synthesized and chemically optimized to target a broad spectrum of bacterial pathogens, including multidrug-resistant strains such as MRSA and VRE. Mechanistically, chalcones exert antibacterial effects through multiple pathways, like disrupting bacterial membranes, inhibiting cell wall biosynthesis, interfering with DNA replication DNA gyrase and topoisomerase IV, and suppressing protein synthesis. Their amphipathic nature and ability to bind critical bacterial enzymes offer an advantage in circumventing classical resistance mechanisms. Structure-activity relationships and computational studies have further elucidated the influence of electron-donating and electron-withdrawing groups, positional isomerism, and heterocyclic integration on antibacterial potency. A review of recent literature underlines the efficacy of chalcone derivatives against Gram-positive and Gram-negative strains, with many compounds demonstrating promising activity, such as compound 85 with MIC 3.4 nM against Ciprofloxacin with MIC 4.7 nM. The review also highlights advancements in green synthesis, QSAR modeling, and molecular docking, which collectively facilitate the rational design of next-generation chalcone-based antibacterials. Altogether, chalcones represent a structurally simple yet biologically robust class of compounds, offering significant promise as adaptable and effective agents in the evolving landscape of antimicrobial therapy.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575414987250918162246
2025-10-06
2026-01-01
Loading full text...

Full text loading...

References

  1. FerriM. RanucciE. RomagnoliP. GiacconeV. Antimicrobial resistance: A global emerging threat to public health systems.Crit. Rev. Food Sci. Nutr.201757132857287610.1080/10408398.2015.1077192 26464037
    [Google Scholar]
  2. KuarmB.S. ReddyY.T. MadhavJ.V. CrooksP.A. RajithaB. 3-[Benzimidazo- and 3-[benzothiadiazoleimidazo-(1,2-c)quinazol-in-5-yl]-2H-chromene-2-ones as potent antimicrobial agents.Bioorg. Med. Chem. Lett.201121152452710.1016/j.bmcl.2010.10.082 21134751
    [Google Scholar]
  3. Vijaya LaxmiS. Suresh KuarmB. RajithaB. Synthesis and antimicrobial activity of coumarin pyrazole pyrimidine 2,4,6(1H,3H,5H)triones and thioxopyrimidine4,6(1H,5H)diones.Med. Chem. Res.201322276877410.1007/s00044‑012‑0078‑y
    [Google Scholar]
  4. SpellbergB. GuidosR. GilbertD. BradleyJ. BoucherH.W. ScheldW.M. BartlettJ.G. EdwardsJ. The epidemic of antibiotic-resistant infections: A call to action for the medical community from the Infectious Diseases Society of America.Clin. Infect. Dis.200846215516410.1086/524891 18171244
    [Google Scholar]
  5. ÁvilaH.P. SmâniaE.F.A. MonacheF.D. SmâniaA. Structure–activity relationship of antibacterial chalcones.Bioorg. Med. Chem.200816229790979410.1016/j.bmc.2008.09.064 18951808
    [Google Scholar]
  6. MululaA. B. BouzinaA. D. MambuH. B. NtumbaJ. K. NsomueJ. M. TshingambM. N. TabaK. M. Synthesis, in-vitro antibacterial and antioxidant activity of chalcone derivatives.GSC Biol. Pharm. Sci.202221302103010.30574/gscbps.2022.21.3.0413
    [Google Scholar]
  7. KenariF. MolnárS. PerjésiP. Reaction of chalcones with cellular thiols. The effect of the 4-substitution of chalcones and protonation state of the thiols on the addition process. Diastereoselective thiol addition.Molecules20212614433210.3390/molecules26144332 34299607
    [Google Scholar]
  8. ThapaP. UpadhyayS.P. SuoW.Z. SinghV. GurungP. LeeE.S. SharmaR. SharmaM. Chalcone and its analogs: Therapeutic and diagnostic applications in Alzheimer’s disease.Bioorg. Chem.202110810468110.1016/j.bioorg.2021.104681 33571811
    [Google Scholar]
  9. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  10. Dassault SystBIOVITA Discovery Studio.San DiegoDassault Systèmes2024
    [Google Scholar]
  11. LiuC.I. LiuG.Y. SongY. YinF. HenslerM.E. JengW.Y. NizetV. WangA.H.J. OldfieldE. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence.Science200831958681391139410.1126/science.1153018 18276850
    [Google Scholar]
  12. DrewH.R. WingR.M. TakanoT. BrokaC. TanakaS. ItakuraK. DickersonR.E. Structure of a B-DNA dodecamer: Conformation and dynamics.Proc. Natl. Acad. Sci. USA19817842179218310.1073/pnas.78.4.2179 6941276
    [Google Scholar]
  13. BibowS. PolyhachY. EichmannC. ChiC.N. KowalJ. AlbiezS. McLeodR.A. StahlbergH. JeschkeG. GüntertP. RiekR. Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I.Nat. Struct. Mol. Biol.201724218719310.1038/nsmb.3345 28024148
    [Google Scholar]
  14. ShivaniR. T.; Bhavesh R, S. A review: Chemical and biological activity of chalcones with their metal complex.Asian J. Biomed. Pharm. Sci.2020107061310.35841/2249‑622X.70.13713
    [Google Scholar]
  15. RozmerZ. PerjésiP. Naturally occurring chalcones and their biological activities.Phytochem. Rev.20161518712010.1007/s11101‑014‑9387‑8
    [Google Scholar]
  16. BaramakiI. AltıntopM.D. ArslanR. Alyu AltınokF. ÖzdemirA. DallaliI. HasanA. Bektaş TürkmenN. Design, synthesis, and in vivo evaluation of a new series of indole-chalcone hybrids as analgesic and anti-inflammatory agents.ACS Omega2024910121751218310.1021/acsomega.4c00026 38497028
    [Google Scholar]
  17. LahsasniS.A. Al KorbiF.H. AljaberN.A.A. Synthesis, characterization and evaluation of antioxidant activities of some novel chalcones analogues.Chem. Cent. J.2014813210.1186/1752‑153X‑8‑32 24883080
    [Google Scholar]
  18. AhnS. TruongV.N.P. KimB. YooM. LimY. ChoS.K. KohD. Design, synthesis, and biological evaluation of chalcones for anticancer properties targeting glycogen synthase kinase 3 beta.Appl. Biol. Chem.20226511710.1186/s13765‑022‑00686‑x
    [Google Scholar]
  19. SinhaS. MedhiB. RadotraB.D. BatovskaD.I. MarkovaN. BhallaA. SehgalR. Antimalarial and immunomodulatory potential of chalcone derivatives in experimental model of malaria.BMC Complement. Med. Ther.202222133010.1186/s12906‑022‑03777‑w 36510199
    [Google Scholar]
  20. dos SantosA.T.L. de Araújo-NetoJ.B. Costa da SilvaM.M. Paulino da SilvaM.E. CarneiroJ.N.P. FonsecaV.J.A. CoutinhoH.D.M. BandeiraP.N. dos SantosH.S. da Silva MendesF.R. SalesD.L. Morais-BragaM.F.B. Synthesis of chalcones and their antimicrobial and drug potentiating activities.Microb. Pathog.202318010612910.1016/j.micpath.2023.106129 37119940
    [Google Scholar]
  21. LiuY.C. HsiehC.W. WuC.C. WungB.S. Chalcone inhibits the activation of NF-κB and STAT3 in endothelial cells via endogenous electrophile.Life Sci.200780151420143010.1016/j.lfs.2006.12.040 17320913
    [Google Scholar]
  22. GazdovaM. MichalkovaR. KelloM. VilkovaM. KudlickovaZ. BaloghovaJ. MirossayL. MojzisJ. Chalcone-acridine hybrid suppresses melanoma cell progression via G2/M cell cycle arrest, DNA damage, apoptosis, and modulation of MAP kinases activity.Int. J. Mol. Sci.202223201226610.3390/ijms232012266 36293123
    [Google Scholar]
  23. NoserA.A. ShehadiI.A. AbdelmonsefA.H. SalemM.M. Newly synthesized pyrazolinone chalcones as anticancer agents via inhibiting the PI3K/Akt/ERK1/2 signaling pathway.ACS Omega2022729252652527710.1021/acsomega.2c02181 35910116
    [Google Scholar]
  24. WangS. LiC. ZhangL. SunB. CuiY. SangF. Isolation and biological activity of natural chalcones based on antibacterial mechanism classification.Bioorg. Med. Chem.20239311745410.1016/j.bmc.2023.117454 37659218
    [Google Scholar]
  25. SivakumarP.M. PriyaS. DobleM. Synthesis, biological evaluation, mechanism of action and quantitative structure-activity relationship studies of chalcones as antibacterial agents.Chem. Biol. Drug Des.200973440341510.1111/j.1747‑0285.2009.00793.x 19291103
    [Google Scholar]
  26. YangS. MiaoG. WangX. ZhouF. YuanZ. WeiF. JiL. WangX. DongG. WangY. Development of membrane-targeting chalcone derivatives as antibacterial agents against multidrug-resistant bacteria.Eur. J. Med. Chem.202428011696910.1016/j.ejmech.2024.116969 39427516
    [Google Scholar]
  27. NawazT. TajammalA. QurashiA.W. Chalcones as broad-spectrum antimicrobial agents: A comprehensive review and analysis of their antimicrobial activities.ChemistrySelect202384520230279810.1002/slct.202302798
    [Google Scholar]
  28. ChuW.C. BaiP.Y. YangZ.Q. CuiD.Y. HuaY.G. YangY. YangQ.Q. ZhangE. QinS. Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity.Eur. J. Med. Chem.201814390592110.1016/j.ejmech.2017.12.009 29227931
    [Google Scholar]
  29. MoreiraJ. LoureiroJ.B. CorreiaD. PalmeiraA. PintoM.M. SaraivaL. CidadeH. Structure–activity relationship studies of chalcones and diarylpentanoids with antitumor activity: Potency and selectivity optimization.Pharmaceuticals20231610135410.3390/ph16101354 37895825
    [Google Scholar]
  30. GeorgeG. KoyiparambathV.P. SukumaranS. NairA.S. PappachanL.K. Al-SehemiA.G. KimH. MathewB. Structural modifications on chalcone framework for developing new class of cholinesterase inhibitors.Int. J. Mol. Sci.2022236312110.3390/ijms23063121 35328542
    [Google Scholar]
  31. de OliveiraA.S. CenciA.R. GonçalvesL. ThedyM.E.C. JustinoA. BragaA.L. MeierL. Chalcone derivatives as antibacterial agents: An updated overview.Curr. Med. Chem.202431172314232910.2174/0929867330666230220140819 36803761
    [Google Scholar]
  32. NawazT. TajammalA. QurashiA.W. NisaM. BinjawharD.N. IqbalM. Synthesis, antibacterial, antibiofilm, and docking studies of chalcones against multidrug resistance pathogens.Heliyon202410133061810.1016/j.heliyon.2024.e30618 39044977
    [Google Scholar]
  33. BožićD.D. MilenkovićM. IvkovićB. ĆirkovićI. Antibacterial activity of three newly-synthesized chalcones & synergism with antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus.Indian J. Med. Res.20141401130137 25222788
    [Google Scholar]
  34. AminM.M. ShaykoonM.S.A. MarzoukA.A. BeshrE.A. AburahamaG. Recent updates on synthetic strategies of chalcone scaffold and their heterocyclic derivatives.J. Adv. Biomed. Pharm. Sci.20236312413210.21608/jabps.2023.198509.1184
    [Google Scholar]
  35. LeitãoE.P.T. Chalcones: Retrospective synthetic approaches and mechanistic aspects of a privileged scaffold.Curr. Pharm. Des.202026242843285810.2174/1381612826666200403124259 32242778
    [Google Scholar]
  36. RevathiR. SreeC.R. JayakumarR. VisagaperumalD. AnbalaganN. Microwave assisted synthesis and biological activity of certain 4-hydroxy chalcones.Pharmacophore20134259
    [Google Scholar]
  37. PoloE. Ibarra-ArellanoN. Prent-PeñalozaL. Morales-BayueloA. HenaoJ. GaldámezA. GutiérrezM. Ultrasound-assisted synthesis of novel chalcone, heterochalcone and bis-chalcone derivatives and the evaluation of their antioxidant properties and as acetylcholinesterase inhibitors.Bioorg. Chem.20199010303410.1016/j.bioorg.2019.103034 31280015
    [Google Scholar]
  38. MarottaL. RossiS. IbbaR. BrogiS. CalderoneV. ButiniS. CampianiG. GemmaS. The green chemistry of chalcones: Valuable sources of privileged core structures for drug discovery.Front Chem.20221098837610.3389/fchem.2022.988376 36172001
    [Google Scholar]
  39. Safaei-GhomiJ. GhasemzadehA. Ultrasound-assisted synthesis of dihydropyrimidine-2-thiones.J. Serb. Chem. Soc.201176567968410.2298/JSC100212057S
    [Google Scholar]
  40. MulugetaD. A review of synthesis methods of chalcones, flavonoids, and coumarins.Science J. Chem.2022104152
    [Google Scholar]
  41. PereiraR. SilvaA.M.S. RibeiroD. SilvaV.L.M. FernandesE. Bis-chalcones: A review of synthetic methodologies and anti-inflammatory effects.Eur. J. Med. Chem.202325211528010.1016/j.ejmech.2023.115280 36966653
    [Google Scholar]
  42. TokF. Koçyiğit-KaymakçıoğluB. Recent advances in the microwave and ultrasound-assisted synthesis of pyrazole scaffolds.Curr. Org. Chem.202327121053107110.2174/1385272827666230816105258
    [Google Scholar]
  43. BukhariS.N. JasamaiM. JantanI. Synthesis and biological evaluation of chalcone derivatives (mini review).Mini Rev. Med. Chem.201212131394140310.2174/13895575112091394 22876958
    [Google Scholar]
  44. BajajS. GuptaA. NemaP. RawalR. KashawV. KashawS.K. Comprehensive insight into green synthesis approaches, structural activity relationship, and therapeutic potential of pyrazolic chalcone derivative.Mini Rev. Med. Chem.202525753957710.2174/0113895575327555241024111038 39513315
    [Google Scholar]
  45. SahuU. PandaN.C. KumarA. Activity of chalcone and its derivatives-A review.PharmaTutor2014216275
    [Google Scholar]
  46. HofmannE. WebsterJ. DoT. KlineR. SniderL. HauserQ. HigginbottomG. CampbellA. MaL. PaulaS. Hydroxylated chalcones with dual properties: Xanthine oxidase inhibitors and radical scavengers.Bioorg. Med. Chem.201624457858710.1016/j.bmc.2015.12.024 26762836
    [Google Scholar]
  47. Nasir Abbas BukhariS. JasamaiM. JantanI. AhmadW. Review of methods and various catalysts used for chalcone synthesis.Mini Rev. Org. Chem.2013101738310.2174/1570193X11310010006
    [Google Scholar]
  48. BorikR.M. Novel chalcone derivatives containing pyridone and thiazole moieties: Design, synthesis, molecular docking, antibacterial, and antioxidant activities.Curr. Org. Chem.202327221960197710.2174/0113852728278212231215045922
    [Google Scholar]
  49. AbdullahM.I. MahmoodA. MadniM. MasoodS. KashifM. Synthesis, characterization, theoretical, anti-bacterial and molecular docking studies of quinoline based chalcones as a DNA gyrase inhibitor.Bioorg. Chem.201454313710.1016/j.bioorg.2014.03.006 24747187
    [Google Scholar]
  50. AliD.M.E. AzizH.A. BräseS. Al BahirA. AlkhammashA. Abuo-RahmaG.E.D.A. ElshamsyA.M. HashemH. AbdelmagidW.M. Unveiling the anticancer potential of a new ciprofloxacin-chalcone hybrid as an inhibitor of topoisomerases I & II and apoptotic inducer.Molecules20242922538210.3390/molecules29225382 39598770
    [Google Scholar]
  51. KostopoulouI. TzaniA. PolyzosN.I. KaradendrouM.A. KritsiE. PontikiE. LiargkovaT. Hadjipavlou-LitinaD. ZoumpoulakisP. DetsiA. Exploring the 2′-hydroxy-chalcone framework for the development of dual antioxidant and soybean lipoxygenase inhibitory agents.Molecules2021269277710.3390/molecules26092777 34066803
    [Google Scholar]
  52. XieC. ZhangS. ZhangW. WuC. YongC. SunY. ZengZ. ZhangQ. HuangZ. ChenT. ZhangY. Synthesis, biological activities, and docking study of novel chalcone-pleuromutilin derivatives.Chem. Biol. Drug Des.202096283684910.1111/cbdd.13692 32271987
    [Google Scholar]
  53. ArifR. RanaM. YasmeenS. Amaduddin; Khan, M.S.; Abid, M.; Khan, M.S.; Facile synthesis of chalcone derivatives as antibacterial agents: Synthesis, DNA binding, molecular docking, DFT and antioxidant studies.J. Mol. Struct.2020120812790510.1016/j.molstruc.2020.127905
    [Google Scholar]
  54. ZhaiJ. LiS. FuL. LiC. SunB. SangF. LiuH. Structural modification and antibacterial property studies of natural chalcone sanjuanolide.Front Chem.20221095925010.3389/fchem.2022.959250 35991609
    [Google Scholar]
  55. AzizH.A. El-SaghierA.M. badr, M.; Elsadek, B.E.M.; Abuo-Rahma, G.E.D.A.; Shoman, M.E. Design, synthesis and mechanistic study of N-4-Piperazinyl Butyryl Thiazolidinedione derivatives of ciprofloxacin with Anticancer Activity via Topoisomerase I/II inhibition.Sci. Rep.20241412410110.1038/s41598‑024‑73793‑y 39406816
    [Google Scholar]
  56. BhaleP.S. DongareS.B. ChanshettiU.B. Synthesis and antimicrobial screening of chalcones containing imidazo [1, 2-a] pyridine nucleus.Res. J. Chem. Sci.20132231606X
    [Google Scholar]
  57. JinX. ZhengC.J. SongM.X. WuY. SunL.P. LiY.J. YuL.J. PiaoH.R. Synthesis and antimicrobial evaluation of l-phenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone.Eur. J. Med. Chem.20125620320910.1016/j.ejmech.2012.08.026 22982124
    [Google Scholar]
  58. PrasathR. BhavanaP. NgS.W. TiekinkE.R.T. The facile and efficient ultrasound-assisted synthesis of new quinoline-appended ferrocenyl chalcones and their properties.J. Organomet. Chem.2013726627010.1016/j.jorganchem.2012.12.022
    [Google Scholar]
  59. YinB.T. YanC.Y. PengX.M. ZhangS.L. RasheedS. GengR.X. ZhouC.H. Synthesis and biological evaluation of α-triazolyl chalcones as a new type of potential antimicrobial agents and their interaction with calf thymus DNA and human serum albumin.Eur. J. Med. Chem.20147114815910.1016/j.ejmech.2013.11.003 24291568
    [Google Scholar]
  60. SubramanianM. VanangamudiG. ThirunarayananG. Hydroxyapatite catalyzed aldol condensation: Synthesis, spectral linearity, antimicrobial and insect antifeedant activities of some 2,5-dimethyl-3-furyl chalcones.Spectrochim. Acta A Mol. Biomol. Spectrosc.201311011612310.1016/j.saa.2013.03.023 23562741
    [Google Scholar]
  61. SiddiquiZ.N. Mohammed MusthafaT.N. AhmadA. KhanA.U. Thermal solvent-free synthesis of novel pyrazolyl chalcones and pyrazolines as potential antimicrobial agents.Bioorg. Med. Chem. Lett.201121102860286510.1016/j.bmcl.2011.03.080 21507638
    [Google Scholar]
  62. BandgarB.P. PatilS.A. KorbadB.L. NileS.H. KhobragadeC.N. Synthesis and biological evaluation of β-chloro vinyl chalcones as inhibitors of TNF-α and IL-6 with antimicrobial activity.Eur. J. Med. Chem.20104562629263310.1016/j.ejmech.2010.01.050 20171758
    [Google Scholar]
  63. FeldmanM. TanabeS. EpifanoF. GenoveseS. CuriniM. GrenierD. Antibacterial and anti-inflammatory activities of 4-hydroxycordoin: Potential therapeutic benefits.J. Nat. Prod.2011741263110.1021/np100547b 21158427
    [Google Scholar]
  64. ShelkeS.N. MhaskeG.R. BonifácioV.D.B. GawandeM.B. Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives.Bioorg. Med. Chem. Lett.201222175727573010.1016/j.bmcl.2012.06.072 22832312
    [Google Scholar]
  65. TranT.D. NguyenT.T.N. DoT.H. HuynhT.N.P. TranC.D. ThaiK.M. Synthesis and antibacterial activity of some heterocyclic chalcone analogues alone and in combination with antibiotics.Molecules20121766684669610.3390/molecules17066684 22728362
    [Google Scholar]
  66. SharmaV. SinghG. KaurH. SaxenaA.K. IsharM.P.S. Synthesis of β-ionone derived chalcones as potent antimicrobial agents.Bioorg. Med. Chem. Lett.201222206343634610.1016/j.bmcl.2012.08.084 22999415
    [Google Scholar]
  67. Vazquez-RodriguezS. Lama LópezR. MatosM.J. Armesto-QuintasG. SerraS. UriarteE. SantanaL. BorgesF. Muñoz CregoA. SantosY. Design, synthesis and antibacterial study of new potent and selective coumarin–chalcone derivatives for the treatment of tenacibaculosis.Bioorg. Med. Chem.201523217045705210.1016/j.bmc.2015.09.028 26433630
    [Google Scholar]
  68. GaurR. GuptaV.K. PalA. DarokarM.P. BhakuniR.S. KumarB. In vitro and in vivo synergistic interaction of substituted chalcone derivatives with norfloxacin against methicillin resistant Staphylococcus aureus.RSC Advances2015585830584510.1039/C4RA10842F
    [Google Scholar]
  69. YadavP. LalK. KumarL. KumarA. KumarA. PaulA.K. KumarR. Synthesis, crystal structure and antimicrobial potential of some fluorinated chalcone-1,2,3-triazole conjugates.Eur. J. Med. Chem.201815526327410.1016/j.ejmech.2018.05.055 29890388
    [Google Scholar]
  70. ZhangM. PriorA.M. MaddoxM.M. ShenW.J. HevenerK.E. BruhnD.F. LeeR.B. SinghA.P. ReinickeJ. SimmonsC.J. HurdleJ.G. LeeR.E. SunD. Pharmacophore modeling, synthesis, and antibacterial evaluation of chalcones and derivatives.ACS Omega2018312183431836010.1021/acsomega.8b03174 30613820
    [Google Scholar]
  71. AymanM. El-MesseryS.M. HabibE.E. Al-RashoodS.T. AlmehiziaA.A. AlkahtaniH.M. HassanG.S. Targeting microbial resistance: Synthesis, antibacterial evaluation, DNA binding and modeling study of new chalcone-based dithiocarbamate derivatives.Bioorg. Chem.20198528229210.1016/j.bioorg.2019.01.001 30641322
    [Google Scholar]
  72. BarrecaD. BelloccoE. LaganàG. GinestraG. BisignanoC. Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat.Food Chem.201416029229710.1016/j.foodchem.2014.03.118 24799241
    [Google Scholar]
  73. KonduruN.K. DeyS. SajidM. OwaisM. AhmedN. Synthesis and antibacterial and antifungal evaluation of some chalcone based sulfones and bisulfones.Eur. J. Med. Chem.201359233010.1016/j.ejmech.2012.09.004 23202847
    [Google Scholar]
  74. BondockS. NaserT. AmmarY.A. Synthesis of some new 2-(3-pyridyl)-4,5-disubstituted thiazoles as potent antimicrobial agents.Eur. J. Med. Chem.20136227027910.1016/j.ejmech.2012.12.050 23357308
    [Google Scholar]
  75. KantR. KumarD. AgarwalD. GuptaR.D. TilakR. AwasthiS.K. AgarwalA. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities.Eur. J. Med. Chem.2016113344910.1016/j.ejmech.2016.02.041 26922227
    [Google Scholar]
  76. Venkataramana ReddyP.O. HridhayM. NikhilK. KhanS. JhaP.N. ShahK. KumarD. Synthesis and investigations into the anticancer and antibacterial activity studies of β-carboline chalcones and their bromide salts.Bioorg. Med. Chem. Lett.20182881278128210.1016/j.bmcl.2018.03.033 29573910
    [Google Scholar]
  77. DeshpandeH.A. ChopdeH.N. PandhurnekarC.P. BatraR.J. Synthesis, characterization and testing of biological activity of some novel chalcones derivatives of coumarin.Chem. Sci. Trans.20132262162710.7598/cst2013.317
    [Google Scholar]
  78. KakatiD. SarmaR.K. SaikiaR. BaruaN.C. SarmaJ.C. Rapid microwave assisted synthesis and antimicrobial bioevaluation of novel steroidal chalcones.Steroids201378332132610.1016/j.steroids.2012.12.003 23287649
    [Google Scholar]
  79. AboodN.K. IbraheemH.H. Synthesis, characterize and antimicrobial study of new chalcones and pyrazole derivatives from progesterone.Int. J. Sci. Res.2016523197064
    [Google Scholar]
  80. LoneI.H. KhanK.Z. FozdarB.I. HussainF. Synthesis antimicrobial and antioxidant studies of new oximes of steroidal chalcones.Steroids201378994595010.1016/j.steroids.2013.05.015 23748133
    [Google Scholar]
  81. BandayA.H. Iqbal ZargarM. GanaieB.A. Synthesis and antimicrobial studies of chalconyl pregnenolones.Steroids201176121358136210.1016/j.steroids.2011.07.001 21771607
    [Google Scholar]
  82. NielsenS.F. LarsenM. BoesenT. SchønningK. KromannH. Cationic chalcone antibiotics. Design, synthesis, and mechanism of action.J. Med. Chem.20054872667267710.1021/jm049424k 15801857
    [Google Scholar]
  83. MuškinjaJ. BurmudžijaA. RatkovićZ. RankovićB. KosanićM. BogdanovićG.A. NovakovićS.B. Ferrocenyl chalcones with O-alkylated vanillins: Synthesis, spectral characterization, microbiological evaluation, and single-crystal X-ray analysis.Med. Chem. Res.20162591744175310.1007/s00044‑016‑1609‑8
    [Google Scholar]
  84. KeshkR.M. SalamaZ.A. ElsaedanyS.K. ElRehimE.M.A. BeltagyD.M. Synthesis, antimicrobial, anti-inflammatory, antioxidant and cytotoxicity of new pyrimidine and pyrimidopyrimidine derivatives.Sci. Rep.2025151932810.1038/s41598‑025‑92066‑w 40102434
    [Google Scholar]
  85. Chandra SekharD. Tejeswara RaoA. Venkata RaoD. V. Lav KumarU. AnjaliJ. Synthesis and anticancer/antibacterial activity of compounds containing thiophene ring linked to a chalcone derivatives.Chem. Biol. Interface201882
    [Google Scholar]
  86. AganagowdaG. ThamyongkitP. PetsomA. Synthesis and antimicrobial activities of benzothiophene derivatives.J. Chil. Chem. Soc.20125711043104710.4067/S0717‑97072012000100019
    [Google Scholar]
  87. AjaniO.O. NwinyiO.C. Microwave-assisted synthesis and evaluation of antimicrobial activity of 3-3-(saryl and s-heteroaromatic)acryloyl-2 H -chromen-2-one derivatives.J. Heterocycl. Chem.201047117918710.1002/jhet.298
    [Google Scholar]
  88. CeylanM. KocyigitU.M. UstaN.C. GürbüzlüB. TemelY. AlwaselS.H. Gülçinİ. Synthesis, carbonic anhydrase I and II isoenzymes inhibition properties, and antibacterial activities of novel tetralone-based 1,4-benzothiazepine derivatives.J. Biochem. Mol. Toxicol.20173142187210.1002/jbt.21872 27780313
    [Google Scholar]
  89. PrakashG. BoopathyM. SelvamR. Johnsanthosh KumarS. SubramanianK. The effect of anthracene-based chalcone derivatives in the resazurin dye reduction assay mechanisms for the investigation of Gram-positive and Gram-negative bacterial and fungal infection.New J. Chem.20184221037104510.1039/C7NJ04125J
    [Google Scholar]
  90. KitawatB.S. SinghM. Kathalupant KaleR. Solvent free synthesis, characterization, anticancer, antibacterial, antifungal, antioxidant and SAR studies of novel (E)-3-aryl-1-(3-alkyl-2-pyrazinyl)-2-propenone.New J. Chem.20133782541255010.1039/c3nj00308f
    [Google Scholar]
  91. HamdiN. FischmeisterC. PuertaM.C. ValergaP. A rapid access to new coumarinyl chalcone and substituted chromeno[4,3-c]pyrazol-4(1H)-ones and their antibacterial and DPPH radical scavenging activities.Med. Chem. Res.201120452253010.1007/s00044‑010‑9326‑1
    [Google Scholar]
  92. SribalanR. BanuppriyaG. KirubavathiM. JayachitraA. PadminiV. Multiple biological activities and molecular docking studies of newly synthesized 3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide chalcone hybrids.Bioorg. Med. Chem. Lett.201626235624563010.1016/j.bmcl.2016.10.075 27825544
    [Google Scholar]
  93. LalK. YadavP. KumarA. KumarA. PaulA.K. Design, synthesis, characterization, antimicrobial evaluation and molecular modeling studies of some dehydroacetic acid-chalcone-1,2,3-triazole hybrids.Bioorg. Chem.20187723624410.1016/j.bioorg.2018.01.016 29421698
    [Google Scholar]
  94. IvanovaA.B. BatovskaD.I. TodorovaI.T. StamboliyskaB.A. SerlyJ. MolnarJ. Comparative study on the MDR reversal effects of selected chalcones.Int. J. Med. Chem.2011201111710.1155/2011/530780 27516904
    [Google Scholar]
  95. NikaidoH. Molecular basis of bacterial outer membrane permeability revisited.Microbiol. Mol. Biol. Rev.200367459365610.1128/MMBR.67.4.593‑656.2003 14665678
    [Google Scholar]
  96. ShamsudinN.F. AhmedQ.U. MahmoodS. Ali ShahS.A. KhatibA. MukhtarS. AlsharifM.A. ParveenH. ZakariaZ.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation.Molecules2022274114910.3390/molecules27041149 35208939
    [Google Scholar]
  97. ValenciaJ. RubioV. PuertoG. VasquezL. BernalA. MoraJ.R. CuestaS.A. PazJ.L. InsuastyB. AboniaR. QuirogaJ. InsuastyA. ConeoA. VidalO. MárquezE. InsuastyD. QSAR studies, molecular docking, molecular dynamics, synthesis, and biological evaluation of novel quinolinone-based thiosemicarbazones against Mycobacterium tuberculosis.Antibiotics 20221216110.3390/antibiotics12010061 36671262
    [Google Scholar]
  98. ClaydenJ. GreevesN. WarrenS. Organic chemistry.Oxford university press201210.1093/hesc/9780199270293.001.0001
    [Google Scholar]
  99. YadavP. LalK. KumarA. Antimicrobial screening, in silico studies and QSAR of Chalcone-based 1,4-disubstituted 1,2,3-triazole hybrids.Drug Res.202171314915610.1055/a‑1296‑7751 33285581
    [Google Scholar]
  100. AssireyE. AlsaggafA. NaqviA. MoussaZ. OkashaR.M. AfifiT.H. Abd-El-AzizA.S. Synthesis, biological assessment, and structure activity relationship studies of new flavanones embodying chromene moieties.Molecules202025354410.3390/molecules25030544 32012737
    [Google Scholar]
  101. FilarowskiA. KollA. KochelA. KalenikJ. HansenP.E. The intramolecular hydrogen bond in ortho-hydroxy acetophenones.J. Mol. Struct.20047001-3677210.1016/j.molstruc.2004.01.033
    [Google Scholar]
  102. QinH.L. ZhangZ.W. RavindarL. RakeshK.P. Antibacterial activities with the structure-activity relationship of coumarin derivatives.Eur. J. Med. Chem.202020711283210.1016/j.ejmech.2020.112832 32971428
    [Google Scholar]
  103. AnwerK.E. HamzaZ.K. RamadanR.M. Synthesis, spectroscopic, DFT calculations, biological activity, SAR, and molecular docking studies of novel bioactive pyridine derivatives.Sci. Rep.20231311559810.1038/s41598‑023‑42714‑w 37730837
    [Google Scholar]
  104. LiuH. LongS. RakeshK.P. ZhaG.F. Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents.Eur. J. Med. Chem.202018511180410.1016/j.ejmech.2019.111804 31675510
    [Google Scholar]
  105. GomesM.N. BragaR.C. GrzelakE.M. NevesB.J. MuratovE. MaR. KleinL.L. ChoS. OliveiraG.R. FranzblauS.G. AndradeC.H. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity.Eur. J. Med. Chem.201713712613810.1016/j.ejmech.2017.05.026 28582669
    [Google Scholar]
  106. AlamM.S. RahmanS.M.M. LeeD.U. Synthesis, biological evaluation, quantitative-SAR and docking studies of novel chalcone derivatives as antibacterial and antioxidant agents.Chem. Pap.20156981118112910.1515/chempap‑2015‑0113
    [Google Scholar]
  107. LucasM. FreitasM. SilvaA.M.S. FernandesE. RibeiroD. Styrylchromones: Biological activities and structure-activity relationship.ChemMedChem202520420240078210.1002/cmdc.202400782 39480961
    [Google Scholar]
  108. UbaidA. ShakirM. AliA. KhanS. AlrehailiJ. AnwerR. AbidM. Synthesis and structure–activity relationship (SAR) studies on new 4-aminoquinoline-hydrazones and isatin hybrids as promising antibacterial agents.Molecules20242923577710.3390/molecules29235777 39683935
    [Google Scholar]
  109. DhaliwalJ.S. MoshawihS. GohK.W. LoyM.J. HossainM.S. HermansyahA. KotraV. KifliN. GohH.P. DhaliwalS.K.S. YassinH. MingL.C. Pharmacotherapeutics applications and chemistry of chalcone derivatives.Molecules20222720706210.3390/molecules27207062 36296655
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575414987250918162246
Loading
/content/journals/mrmc/10.2174/0113895575414987250918162246
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test