Skip to content
2000
image of Chalcones as Emerging Antibacterial Scaffolds: A Mini Review

Abstract

The mounting threat of antimicrobial resistance has intensified the global search for novel antibacterial agents, and chalcones - the aromatic ketones characterized by an α, β-unsaturated carbonyl system has emerged as promising scaffolds against the threat of antimicrobial resistance. This review presents a detailed exploration of chalcones as potent antibacterial agents, emphasizing their structural versatility, mechanisms of action, and therapeutic potential. With a modular backbone that supports diverse substitutions and heterocyclic extensions, chalcones can be easily synthesized and chemically optimized to target a broad spectrum of bacterial pathogens, including multidrug-resistant strains such as MRSA and VRE. Mechanistically, chalcones exert antibacterial effects through multiple pathways, like disrupting bacterial membranes, inhibiting cell wall biosynthesis, interfering with DNA replication DNA gyrase and topoisomerase IV, and suppressing protein synthesis. Their amphipathic nature and ability to bind critical bacterial enzymes offer an advantage in circumventing classical resistance mechanisms. Structure-activity relationships and computational studies have further elucidated the influence of electron-donating and electron-withdrawing groups, positional isomerism, and heterocyclic integration on antibacterial potency. A review of recent literature underlines the efficacy of chalcone derivatives against Gram-positive and Gram-negative strains, with many compounds demonstrating promising activity, such as compound 85 with MIC 3.4 nM against Ciprofloxacin with MIC 4.7 nM. The review also highlights advancements in green synthesis, QSAR modeling, and molecular docking, which collectively facilitate the rational design of next-generation chalcone-based antibacterials. Altogether, chalcones represent a structurally simple yet biologically robust class of compounds, offering significant promise as adaptable and effective agents in the evolving landscape of antimicrobial therapy.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575414987250918162246
2025-10-06
2025-10-18
Loading full text...

Full text loading...

References

  1. Ferri M. Ranucci E. Romagnoli P. Giaccone V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2017 57 13 2857 2876 10.1080/10408398.2015.1077192 26464037
    [Google Scholar]
  2. Kuarm B.S. Reddy Y.T. Madhav J.V. Crooks P.A. Rajitha B. 3-[Benzimidazo- and 3-[benzothiadiazoleimidazo-(1,2-c)quinazolin-5-yl]-2H-chromene-2-ones as potent antimicrobial agents. Bioorg. Med. Chem. Lett. 2011 21 1 524 527 10.1016/j.bmcl.2010.10.082 21134751
    [Google Scholar]
  3. Vijaya Laxmi S. Suresh Kuarm B. Rajitha B. Synthesis and antimicrobial activity of coumarin pyrazole pyrimidine 2,4,6(1H,3H,5H)triones and thioxopyrimidine4,6(1H,5H)diones. Med. Chem. Res. 2013 22 2 768 774 10.1007/s00044‑012‑0078‑y
    [Google Scholar]
  4. Spellberg B. Guidos R. Gilbert D. Bradley J. Boucher H.W. Scheld W.M. Bartlett J.G. Edwards J. The epidemic of antibiotic-resistant infections: A call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis. 2008 46 2 155 164 10.1086/524891 18171244
    [Google Scholar]
  5. Ávila H.P. Smânia E.F.A. Monache F.D. Smânia A. Structure–activity relationship of antibacterial chalcones. Bioorg. Med. Chem. 2008 16 22 9790 9794 10.1016/j.bmc.2008.09.064 18951808
    [Google Scholar]
  6. Mulula A. B. Bouzina A. D. Mambu H. B. Ntumba J. K. Nsomue J. M. Tshingamb M. N. Taba K. M. Synthesis, in-vitro antibacterial and antioxidant activity of chalcone derivatives. GSC Biol. Pharm. Sci. 2022 21 3 021 030 10.30574/gscbps.2022.21.3.0413
    [Google Scholar]
  7. Kenari F. Molnár S. Perjési P. Reaction of chalcones with cellular thiols. The effect of the 4-substitution of chalcones and protonation state of the thiols on the addition process. Diastereoselective thiol addition. Molecules 2021 26 14 4332 10.3390/molecules26144332 34299607
    [Google Scholar]
  8. Thapa P. Upadhyay S.P. Suo W.Z. Singh V. Gurung P. Lee E.S. Sharma R. Sharma M. Chalcone and its analogs: Therapeutic and diagnostic applications in Alzheimer’s disease. Bioorg. Chem. 2021 108 104681 10.1016/j.bioorg.2021.104681 33571811
    [Google Scholar]
  9. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  10. Dassault Syst Discovery Studio. San Diego Dassault Systèmes 2024
    [Google Scholar]
  11. Liu C.I. Liu G.Y. Song Y. Yin F. Hensler M.E. Jeng W.Y. Nizet V. Wang A.H.J. Oldfield E. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 2008 319 5868 1391 1394 10.1126/science.1153018 18276850
    [Google Scholar]
  12. Drew H.R. Wing R.M. Takano T. Broka C. Tanaka S. Itakura K. Dickerson R.E. Structure of a B-DNA dodecamer: Conformation and dynamics. Proc. Natl. Acad. Sci. USA 1981 78 4 2179 2183 10.1073/pnas.78.4.2179 6941276
    [Google Scholar]
  13. Bibow S. Polyhach Y. Eichmann C. Chi C.N. Kowal J. Albiez S. McLeod R.A. Stahlberg H. Jeschke G. Güntert P. Riek R. Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I. Nat. Struct. Mol. Biol. 2017 24 2 187 193 10.1038/nsmb.3345 28024148
    [Google Scholar]
  14. Shivani R. T.; Bhavesh R, S. A review: Chemical and biological activity of chalcones with their metal complex. Asian J. Biomed. Pharm. Sci. 2020 10 70 6 13 10.35841/2249‑622X.70.13713
    [Google Scholar]
  15. Rozmer Z. Perjési P. Naturally occurring chalcones and their biological activities. Phytochem. Rev. 2016 15 1 87 120 10.1007/s11101‑014‑9387‑8
    [Google Scholar]
  16. Baramaki I. Altıntop M.D. Arslan R. Alyu Altınok F. Özdemir A. Dallali I. Hasan A. Bektaş Türkmen N. Design, synthesis, and in vivo evaluation of a new series of indole-chalcone hybrids as analgesic and anti-inflammatory agents. ACS Omega 2024 9 10 12175 12183 10.1021/acsomega.4c00026 38497028
    [Google Scholar]
  17. Lahsasni S.A. Al Korbi F.H. Aljaber N.A.A. Synthesis, characterization and evaluation of antioxidant activities of some novel chalcones analogues. Chem. Cent. J. 2014 8 1 32 10.1186/1752‑153X‑8‑32 24883080
    [Google Scholar]
  18. Ahn S. Truong V.N.P. Kim B. Yoo M. Lim Y. Cho S.K. Koh D. Design, synthesis, and biological evaluation of chalcones for anticancer properties targeting glycogen synthase kinase 3 beta. Appl. Biol. Chem. 2022 65 1 17 10.1186/s13765‑022‑00686‑x
    [Google Scholar]
  19. Sinha S. Medhi B. Radotra B.D. Batovska D.I. Markova N. Bhalla A. Sehgal R. Antimalarial and immunomodulatory potential of chalcone derivatives in experimental model of malaria. BMC Complement. Med. Ther. 2022 22 1 330 10.1186/s12906‑022‑03777‑w 36510199
    [Google Scholar]
  20. dos Santos A.T.L. de Araújo-Neto J.B. Costa da Silva M.M. Paulino da Silva M.E. Carneiro J.N.P. Fonseca V.J.A. Coutinho H.D.M. Bandeira P.N. dos Santos H.S. da Silva Mendes F.R. Sales D.L. Morais-Braga M.F.B. Synthesis of chalcones and their antimicrobial and drug potentiating activities. Microb. Pathog. 2023 180 106129 10.1016/j.micpath.2023.106129 37119940
    [Google Scholar]
  21. Liu Y.C. Hsieh C.W. Wu C.C. Wung B.S. Chalcone inhibits the activation of NF-κB and STAT3 in endothelial cells via endogenous electrophile. Life Sci. 2007 80 15 1420 1430 10.1016/j.lfs.2006.12.040 17320913
    [Google Scholar]
  22. Gazdova M. Michalkova R. Kello M. Vilkova M. Kudlickova Z. Baloghova J. Mirossay L. Mojzis J. Chalcone-acridine hybrid suppresses melanoma cell progression via G2/M cell cycle arrest, DNA damage, apoptosis, and modulation of MAP kinases activity. Int. J. Mol. Sci. 2022 23 20 12266 10.3390/ijms232012266 36293123
    [Google Scholar]
  23. Noser A.A. Shehadi I.A. Abdelmonsef A.H. Salem M.M. Newly synthesized pyrazolinone chalcones as anticancer agents via inhibiting the PI3K/Akt/ERK1/2 signaling pathway. ACS Omega 2022 7 29 25265 25277 10.1021/acsomega.2c02181 35910116
    [Google Scholar]
  24. Wang S. Li C. Zhang L. Sun B. Cui Y. Sang F. Isolation and biological activity of natural chalcones based on antibacterial mechanism classification. Bioorg. Med. Chem. 2023 93 117454 10.1016/j.bmc.2023.117454 37659218
    [Google Scholar]
  25. Sivakumar P.M. Priya S. Doble M. Synthesis, biological evaluation, mechanism of action and quantitative structure-activity relationship studies of chalcones as antibacterial agents. Chem. Biol. Drug Des. 2009 73 4 403 415 10.1111/j.1747‑0285.2009.00793.x 19291103
    [Google Scholar]
  26. Yang S. Miao G. Wang X. Zhou F. Yuan Z. Wei F. Ji L. Wang X. Dong G. Wang Y. Development of membrane-targeting chalcone derivatives as antibacterial agents against multidrug-resistant bacteria. Eur. J. Med. Chem. 2024 280 116969 10.1016/j.ejmech.2024.116969 39427516
    [Google Scholar]
  27. Nawaz T. Tajammal A. Qurashi A.W. Chalcones as broad‐spectrum antimicrobial agents: A comprehensive review and analysis of their antimicrobial activities. ChemistrySelect 2023 8 45 202302798 10.1002/slct.202302798
    [Google Scholar]
  28. Chu W.C. Bai P.Y. Yang Z.Q. Cui D.Y. Hua Y.G. Yang Y. Yang Q.Q. Zhang E. Qin S. Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity. Eur. J. Med. Chem. 2018 143 905 921 10.1016/j.ejmech.2017.12.009 29227931
    [Google Scholar]
  29. Moreira J. Loureiro J.B. Correia D. Palmeira A. Pinto M.M. Saraiva L. Cidade H. Structure–activity relationship studies of chalcones and diarylpentanoids with antitumor activity: Potency and selectivity optimization. Pharmaceuticals 2023 16 10 1354 10.3390/ph16101354 37895825
    [Google Scholar]
  30. George G. Koyiparambath V.P. Sukumaran S. Nair A.S. Pappachan L.K. Al-Sehemi A.G. Kim H. Mathew B. Structural modifications on chalcone framework for developing new class of cholinesterase inhibitors. Int. J. Mol. Sci. 2022 23 6 3121 10.3390/ijms23063121 35328542
    [Google Scholar]
  31. de Oliveira A.S. Cenci A.R. Gonçalves L. Thedy M.E.C. Justino A. Braga A.L. Meier L. Chalcone derivatives as antibacterial agents: An updated overview. Curr. Med. Chem. 2024 31 17 2314 2329 10.2174/0929867330666230220140819 36803761
    [Google Scholar]
  32. Nawaz T. Tajammal A. Qurashi A.W. Nisa M. Binjawhar D.N. Iqbal M. Synthesis, antibacterial, antibiofilm, and docking studies of chalcones against multidrug resistance pathogens. Heliyon 2024 10 13 30618 10.1016/j.heliyon.2024.e30618 39044977
    [Google Scholar]
  33. Božić D.D. Milenković M. Ivković B. Ćirković I. Antibacterial activity of three newly-synthesized chalcones & synergism with antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus. Indian J. Med. Res. 2014 140 1 130 137 25222788
    [Google Scholar]
  34. Amin M.M. Shaykoon M.S.A. Marzouk A.A. Beshr E.A. Aburahama G. Recent updates on synthetic strategies of chalcone scaffold and their heterocyclic derivatives. J. Adv. Biomed. Pharm. Sci. 2023 6 3 124 132 10.21608/jabps.2023.198509.1184
    [Google Scholar]
  35. Leitão E.P.T. Chalcones: Retrospective synthetic approaches and mechanistic aspects of a privileged scaffold. Curr. Pharm. Des. 2020 26 24 2843 2858 10.2174/1381612826666200403124259 32242778
    [Google Scholar]
  36. Revathi R. Sree C.R. Jayakumar R. Visagaperumal D. Anbalagan N. Microwave assisted synthesis and biological activity of certain 4-hydroxy chalcones. Pharmacophore 2013 4 2 59
    [Google Scholar]
  37. Polo E. Ibarra-Arellano N. Prent-Peñaloza L. Morales-Bayuelo A. Henao J. Galdámez A. Gutiérrez M. Ultrasound-assisted synthesis of novel chalcone, heterochalcone and bis-chalcone derivatives and the evaluation of their antioxidant properties and as acetylcholinesterase inhibitors. Bioorg. Chem. 2019 90 103034 10.1016/j.bioorg.2019.103034 31280015
    [Google Scholar]
  38. Marotta L. Rossi S. Ibba R. Brogi S. Calderone V. Butini S. Campiani G. Gemma S. The green chemistry of chalcones: Valuable sources of privileged core structures for drug discovery. Front Chem. 2022 10 988376 10.3389/fchem.2022.988376 36172001
    [Google Scholar]
  39. Safaei-Ghomi J. Ghasemzadeh A. Ultrasound-assisted synthesis of dihydropyrimidine-2-thiones. J. Serb. Chem. Soc. 2011 76 5 679 684 10.2298/JSC100212057S
    [Google Scholar]
  40. Mulugeta D. A review of synthesis methods of chalcones, flavonoids, and coumarins. Science J. Chem. 2022 10 41 52
    [Google Scholar]
  41. Pereira R. Silva A.M.S. Ribeiro D. Silva V.L.M. Fernandes E. Bis-chalcones: A review of synthetic methodologies and anti-inflammatory effects. Eur. J. Med. Chem. 2023 252 115280 10.1016/j.ejmech.2023.115280 36966653
    [Google Scholar]
  42. Tok F. Koçyiğit-Kaymakçıoğlu B. Recent advances in the microwave and ultrasound-assisted synthesis of pyrazole scaffolds. Curr. Org. Chem. 2023 27 12 1053 1071 10.2174/1385272827666230816105258
    [Google Scholar]
  43. Bukhari S.N. Jasamai M. Jantan I. Synthesis and biological evaluation of chalcone derivatives (mini review). Mini Rev. Med. Chem. 2012 12 13 1394 1403 10.2174/13895575112091394 22876958
    [Google Scholar]
  44. Bajaj S. Gupta A. Nema P. Rawal R. Kashaw V. Kashaw S.K. Comprehensive insight into green synthesis approaches, structural activity relationship, and therapeutic potential of pyrazolic chalcone derivative. Mini Rev. Med. Chem. 2025 25 7 539 577 10.2174/0113895575327555241024111038 39513315
    [Google Scholar]
  45. Sahu U. Panda N.C. Kumar A. Activity of chalcone and its derivatives-A review. PharmaTutor 2014 2 1 62 75
    [Google Scholar]
  46. Hofmann E. Webster J. Do T. Kline R. Snider L. Hauser Q. Higginbottom G. Campbell A. Ma L. Paula S. Hydroxylated chalcones with dual properties: Xanthine oxidase inhibitors and radical scavengers. Bioorg. Med. Chem. 2016 24 4 578 587 10.1016/j.bmc.2015.12.024 26762836
    [Google Scholar]
  47. Nasir Abbas Bukhari S. Jasamai M. Jantan I. Ahmad W. Review of methods and various catalysts used for chalcone synthesis. Mini Rev. Org. Chem. 2013 10 1 73 83 10.2174/1570193X11310010006
    [Google Scholar]
  48. Borik R.M. Novel chalcone derivatives containing pyridone and thiazole moieties: Design, synthesis, molecular docking, antibacterial, and antioxidant activities. Curr. Org. Chem. 2023 27 22 1960 1977 10.2174/0113852728278212231215045922
    [Google Scholar]
  49. Abdullah M.I. Mahmood A. Madni M. Masood S. Kashif M. Synthesis, characterization, theoretical, anti-bacterial and molecular docking studies of quinoline based chalcones as a DNA gyrase inhibitor. Bioorg. Chem. 2014 54 31 37 10.1016/j.bioorg.2014.03.006 24747187
    [Google Scholar]
  50. Ali D.M.E. Aziz H.A. Bräse S. Al Bahir A. Alkhammash A. Abuo-Rahma G.E.D.A. Elshamsy A.M. Hashem H. Abdelmagid W.M. Unveiling the anticancer potential of a new ciprofloxacin-chalcone hybrid as an inhibitor of topoisomerases I & II and apoptotic inducer. Molecules 2024 29 22 5382 10.3390/molecules29225382 39598770
    [Google Scholar]
  51. Kostopoulou I. Tzani A. Polyzos N.I. Karadendrou M.A. Kritsi E. Pontiki E. Liargkova T. Hadjipavlou-Litina D. Zoumpoulakis P. Detsi A. Exploring the 2′-hydroxy-chalcone framework for the development of dual antioxidant and soybean lipoxygenase inhibitory agents. Molecules 2021 26 9 2777 10.3390/molecules26092777 34066803
    [Google Scholar]
  52. Xie C. Zhang S. Zhang W. Wu C. Yong C. Sun Y. Zeng Z. Zhang Q. Huang Z. Chen T. Zhang Y. Synthesis, biological activities, and docking study of novel chalcone-pleuromutilin derivatives. Chem. Biol. Drug Des. 2020 96 2 836 849 10.1111/cbdd.13692 32271987
    [Google Scholar]
  53. Arif R. Rana M. Yasmeen S. Amaduddin; Khan, M.S.; Abid, M.; Khan, M.S.; Rahisuddin Facile synthesis of chalcone derivatives as antibacterial agents: Synthesis, DNA binding, molecular docking, DFT and antioxidant studies. J. Mol. Struct. 2020 1208 127905 10.1016/j.molstruc.2020.127905
    [Google Scholar]
  54. Zhai J. Li S. Fu L. Li C. Sun B. Sang F. Liu H. Structural modification and antibacterial property studies of natural chalcone sanjuanolide. Front Chem. 2022 10 959250 10.3389/fchem.2022.959250 35991609
    [Google Scholar]
  55. Aziz H.A. El-Saghier A.M. badr, M.; Elsadek, B.E.M.; Abuo-Rahma, G.E.D.A.; Shoman, M.E. Design, synthesis and mechanistic study of N-4-Piperazinyl Butyryl Thiazolidinedione derivatives of ciprofloxacin with Anticancer Activity via Topoisomerase I/II inhibition. Sci. Rep. 2024 14 1 24101 10.1038/s41598‑024‑73793‑y 39406816
    [Google Scholar]
  56. Bhale P.S. Dongare S.B. Chanshetti U.B. Synthesis and antimicrobial screening of chalcones containing imidazo [1, 2-a] pyridine nucleus. Res. J. Chem. Sci. 2013 2231 606X
    [Google Scholar]
  57. Jin X. Zheng C.J. Song M.X. Wu Y. Sun L.P. Li Y.J. Yu L.J. Piao H.R. Synthesis and antimicrobial evaluation of l-phenylalanine-derived C5-substituted rhodanine and chalcone derivatives containing thiobarbituric acid or 2-thioxo-4-thiazolidinone. Eur. J. Med. Chem. 2012 56 203 209 10.1016/j.ejmech.2012.08.026 22982124
    [Google Scholar]
  58. Prasath R. Bhavana P. Ng S.W. Tiekink E.R.T. The facile and efficient ultrasound-assisted synthesis of new quinoline-appended ferrocenyl chalcones and their properties. J. Organomet. Chem. 2013 726 62 70 10.1016/j.jorganchem.2012.12.022
    [Google Scholar]
  59. Yin B.T. Yan C.Y. Peng X.M. Zhang S.L. Rasheed S. Geng R.X. Zhou C.H. Synthesis and biological evaluation of α-triazolyl chalcones as a new type of potential antimicrobial agents and their interaction with calf thymus DNA and human serum albumin. Eur. J. Med. Chem. 2014 71 148 159 10.1016/j.ejmech.2013.11.003 24291568
    [Google Scholar]
  60. Subramanian M. Vanangamudi G. Thirunarayanan G. Hydroxyapatite catalyzed aldol condensation: Synthesis, spectral linearity, antimicrobial and insect antifeedant activities of some 2,5-dimethyl-3-furyl chalcones. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013 110 116 123 10.1016/j.saa.2013.03.023 23562741
    [Google Scholar]
  61. Siddiqui Z.N. Mohammed Musthafa T.N. Ahmad A. Khan A.U. Thermal solvent-free synthesis of novel pyrazolyl chalcones and pyrazolines as potential antimicrobial agents. Bioorg. Med. Chem. Lett. 2011 21 10 2860 2865 10.1016/j.bmcl.2011.03.080 21507638
    [Google Scholar]
  62. Bandgar B.P. Patil S.A. Korbad B.L. Nile S.H. Khobragade C.N. Synthesis and biological evaluation of β-chloro vinyl chalcones as inhibitors of TNF-α and IL-6 with antimicrobial activity. Eur. J. Med. Chem. 2010 45 6 2629 2633 10.1016/j.ejmech.2010.01.050 20171758
    [Google Scholar]
  63. Feldman M. Tanabe S. Epifano F. Genovese S. Curini M. Grenier D. Antibacterial and anti-inflammatory activities of 4-hydroxycordoin: Potential therapeutic benefits. J. Nat. Prod. 2011 74 1 26 31 10.1021/np100547b 21158427
    [Google Scholar]
  64. Shelke S.N. Mhaske G.R. Bonifácio V.D.B. Gawande M.B. Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives. Bioorg. Med. Chem. Lett. 2012 22 17 5727 5730 10.1016/j.bmcl.2012.06.072 22832312
    [Google Scholar]
  65. Tran T.D. Nguyen T.T.N. Do T.H. Huynh T.N.P. Tran C.D. Thai K.M. Synthesis and antibacterial activity of some heterocyclic chalcone analogues alone and in combination with antibiotics. Molecules 2012 17 6 6684 6696 10.3390/molecules17066684 22728362
    [Google Scholar]
  66. Sharma V. Singh G. Kaur H. Saxena A.K. Ishar M.P.S. Synthesis of β-ionone derived chalcones as potent antimicrobial agents. Bioorg. Med. Chem. Lett. 2012 22 20 6343 6346 10.1016/j.bmcl.2012.08.084 22999415
    [Google Scholar]
  67. Vazquez-Rodriguez S. Lama López R. Matos M.J. Armesto-Quintas G. Serra S. Uriarte E. Santana L. Borges F. Muñoz Crego A. Santos Y. Design, synthesis and antibacterial study of new potent and selective coumarin–chalcone derivatives for the treatment of tenacibaculosis. Bioorg. Med. Chem. 2015 23 21 7045 7052 10.1016/j.bmc.2015.09.028 26433630
    [Google Scholar]
  68. Gaur R. Gupta V.K. Pal A. Darokar M.P. Bhakuni R.S. Kumar B. In vitro and in vivo synergistic interaction of substituted chalcone derivatives with norfloxacin against methicillin resistant Staphylococcus aureus. RSC Advances 2015 5 8 5830 5845 10.1039/C4RA10842F
    [Google Scholar]
  69. Yadav P. Lal K. Kumar L. Kumar A. Kumar A. Paul A.K. Kumar R. Synthesis, crystal structure and antimicrobial potential of some fluorinated chalcone-1,2,3-triazole conjugates. Eur. J. Med. Chem. 2018 155 263 274 10.1016/j.ejmech.2018.05.055 29890388
    [Google Scholar]
  70. Zhang M. Prior A.M. Maddox M.M. Shen W.J. Hevener K.E. Bruhn D.F. Lee R.B. Singh A.P. Reinicke J. Simmons C.J. Hurdle J.G. Lee R.E. Sun D. Pharmacophore modeling, synthesis, and antibacterial evaluation of chalcones and derivatives. ACS Omega 2018 3 12 18343 18360 10.1021/acsomega.8b03174 30613820
    [Google Scholar]
  71. Ayman M. El-Messery S.M. Habib E.E. Al-Rashood S.T. Almehizia A.A. Alkahtani H.M. Hassan G.S. Targeting microbial resistance: Synthesis, antibacterial evaluation, DNA binding and modeling study of new chalcone-based dithiocarbamate derivatives. Bioorg. Chem. 2019 85 282 292 10.1016/j.bioorg.2019.01.001 30641322
    [Google Scholar]
  72. Barreca D. Bellocco E. Laganà G. Ginestra G. Bisignano C. Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat. Food Chem. 2014 160 292 297 10.1016/j.foodchem.2014.03.118 24799241
    [Google Scholar]
  73. Konduru N.K. Dey S. Sajid M. Owais M. Ahmed N. Synthesis and antibacterial and antifungal evaluation of some chalcone based sulfones and bisulfones. Eur. J. Med. Chem. 2013 59 23 30 10.1016/j.ejmech.2012.09.004 23202847
    [Google Scholar]
  74. Bondock S. Naser T. Ammar Y.A. Synthesis of some new 2-(3-pyridyl)-4,5-disubstituted thiazoles as potent antimicrobial agents. Eur. J. Med. Chem. 2013 62 270 279 10.1016/j.ejmech.2012.12.050 23357308
    [Google Scholar]
  75. Kant R. Kumar D. Agarwal D. Gupta R.D. Tilak R. Awasthi S.K. Agarwal A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem. 2016 113 34 49 10.1016/j.ejmech.2016.02.041 26922227
    [Google Scholar]
  76. Venkataramana Reddy P.O. Hridhay M. Nikhil K. Khan S. Jha P.N. Shah K. Kumar D. Synthesis and investigations into the anticancer and antibacterial activity studies of β-carboline chalcones and their bromide salts. Bioorg. Med. Chem. Lett. 2018 28 8 1278 1282 10.1016/j.bmcl.2018.03.033 29573910
    [Google Scholar]
  77. Deshpande H.A. Chopde H.N. Pandhurnekar C.P. Batra R.J. Synthesis, characterization and testing of biological activity of some novel chalcones derivatives of coumarin. Chem. Sci. Trans. 2013 2 2 621 627 10.7598/cst2013.317
    [Google Scholar]
  78. Kakati D. Sarma R.K. Saikia R. Barua N.C. Sarma J.C. Rapid microwave assisted synthesis and antimicrobial bioevaluation of novel steroidal chalcones. Steroids 2013 78 3 321 326 10.1016/j.steroids.2012.12.003 23287649
    [Google Scholar]
  79. Abood N.K. Ibraheem H.H. Synthesis, characterize and antimicrobial study of new chalcones and pyrazole derivatives from progesterone. Int. J. Sci. Res. 2016 5 2319 7064
    [Google Scholar]
  80. Lone I.H. Khan K.Z. Fozdar B.I. Hussain F. Synthesis antimicrobial and antioxidant studies of new oximes of steroidal chalcones. Steroids 2013 78 9 945 950 10.1016/j.steroids.2013.05.015 23748133
    [Google Scholar]
  81. Banday A.H. Iqbal Zargar M. Ganaie B.A. Synthesis and antimicrobial studies of chalconyl pregnenolones. Steroids 2011 76 12 1358 1362 10.1016/j.steroids.2011.07.001 21771607
    [Google Scholar]
  82. Nielsen S.F. Larsen M. Boesen T. Schønning K. Kromann H. Cationic chalcone antibiotics. Design, synthesis, and mechanism of action. J. Med. Chem. 2005 48 7 2667 2677 10.1021/jm049424k 15801857
    [Google Scholar]
  83. Muškinja J. Burmudžija A. Ratković Z. Ranković B. Kosanić M. Bogdanović G.A. Novaković S.B. Ferrocenyl chalcones with O-alkylated vanillins: Synthesis, spectral characterization, microbiological evaluation, and single-crystal X-ray analysis. Med. Chem. Res. 2016 25 9 1744 1753 10.1007/s00044‑016‑1609‑8
    [Google Scholar]
  84. Keshk R.M. Salama Z.A. Elsaedany S.K. ElRehim E.M.A. Beltagy D.M. Synthesis, antimicrobial, anti-inflammatory, antioxidant and cytotoxicity of new pyrimidine and pyrimidopyrimidine derivatives. Sci. Rep. 2025 15 1 9328 10.1038/s41598‑025‑92066‑w 40102434
    [Google Scholar]
  85. Chandra Sekhar D. Tejeswara Rao A. Venkata Rao D. V. Lav Kumar U. Anjali J. Synthesis and anticancer/antibacterial activity of compounds containing thiophene ring linked to a chalcone derivatives. Chem. Biol. Interface 2018 8 2
    [Google Scholar]
  86. Aganagowda G. Thamyongkit P. Petsom A. Synthesis and antimicrobial activities of benzothiophene derivatives. J. Chil. Chem. Soc. 2012 57 1 1043 1047 10.4067/S0717‑97072012000100019
    [Google Scholar]
  87. Ajani O.O. Nwinyi O.C. Microwave-assisted synthesis and evaluation of antimicrobial activity of 3-3-(saryl and s-heteroaromatic)acryloyl-2 H -chromen-2-one derivatives. J. Heterocycl. Chem. 2010 47 1 179 187 10.1002/jhet.298
    [Google Scholar]
  88. Ceylan M. Kocyigit U.M. Usta N.C. Gürbüzlü B. Temel Y. Alwasel S.H. Gülçin İ. Synthesis, carbonic anhydrase I and II isoenzymes inhibition properties, and antibacterial activities of novel tetralone-based 1,4-benzothiazepine derivatives. J. Biochem. Mol. Toxicol. 2017 31 4 21872 10.1002/jbt.21872 27780313
    [Google Scholar]
  89. Prakash G. Boopathy M. Selvam R. Johnsanthosh Kumar S. Subramanian K. The effect of anthracene-based chalcone derivatives in the resazurin dye reduction assay mechanisms for the investigation of Gram-positive and Gram-negative bacterial and fungal infection. New J. Chem. 2018 42 2 1037 1045 10.1039/C7NJ04125J
    [Google Scholar]
  90. Kitawat B.S. Singh M. Kathalupant Kale R. Solvent free synthesis, characterization, anticancer, antibacterial, antifungal, antioxidant and SAR studies of novel (E)-3-aryl-1-(3-alkyl-2-pyrazinyl)-2-propenone. New J. Chem. 2013 37 8 2541 2550 10.1039/c3nj00308f
    [Google Scholar]
  91. Hamdi N. Fischmeister C. Puerta M.C. Valerga P. A rapid access to new coumarinyl chalcone and substituted chromeno[4,3-c]pyrazol-4(1H)-ones and their antibacterial and DPPH radical scavenging activities. Med. Chem. Res. 2011 20 4 522 530 10.1007/s00044‑010‑9326‑1
    [Google Scholar]
  92. Sribalan R. Banuppriya G. Kirubavathi M. Jayachitra A. Padmini V. Multiple biological activities and molecular docking studies of newly synthesized 3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide chalcone hybrids. Bioorg. Med. Chem. Lett. 2016 26 23 5624 5630 10.1016/j.bmcl.2016.10.075 27825544
    [Google Scholar]
  93. Lal K. Yadav P. Kumar A. Kumar A. Paul A.K. Design, synthesis, characterization, antimicrobial evaluation and molecular modeling studies of some dehydroacetic acid-chalcone-1,2,3-triazole hybrids. Bioorg. Chem. 2018 77 236 244 10.1016/j.bioorg.2018.01.016 29421698
    [Google Scholar]
  94. Ivanova A.B. Batovska D.I. Todorova I.T. Stamboliyska B.A. Serly J. Molnar J. Comparative study on the MDR reversal effects of selected chalcones. Int. J. Med. Chem. 2011 2011 1 1 7 10.1155/2011/530780 27516904
    [Google Scholar]
  95. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 2003 67 4 593 656 10.1128/MMBR.67.4.593‑656.2003 14665678
    [Google Scholar]
  96. Shamsudin N.F. Ahmed Q.U. Mahmood S. Ali Shah S.A. Khatib A. Mukhtar S. Alsharif M.A. Parveen H. Zakaria Z.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules 2022 27 4 1149 10.3390/molecules27041149 35208939
    [Google Scholar]
  97. Valencia J. Rubio V. Puerto G. Vasquez L. Bernal A. Mora J.R. Cuesta S.A. Paz J.L. Insuasty B. Abonia R. Quiroga J. Insuasty A. Coneo A. Vidal O. Márquez E. Insuasty D. QSAR studies, molecular docking, molecular dynamics, synthesis, and biological evaluation of novel quinolinone-based thiosemicarbazones against Mycobacterium tuberculosis. Antibiotics 2022 12 1 61 10.3390/antibiotics12010061 36671262
    [Google Scholar]
  98. Clayden J. Greeves N. Warren S. Organic chemistry. Oxford university press 2012 10.1093/hesc/9780199270293.001.0001
    [Google Scholar]
  99. Yadav P. Lal K. Kumar A. Antimicrobial screening, in silico studies and QSAR of Chalcone-based 1,4-disubstituted 1,2,3-triazole hybrids. Drug Res. 2021 71 3 149 156 10.1055/a‑1296‑7751 33285581
    [Google Scholar]
  100. Assirey E. Alsaggaf A. Naqvi A. Moussa Z. Okasha R.M. Afifi T.H. Abd-El-Aziz A.S. Synthesis, biological assessment, and structure activity relationship studies of new flavanones embodying chromene moieties. Molecules 2020 25 3 544 10.3390/molecules25030544 32012737
    [Google Scholar]
  101. Filarowski A. Koll A. Kochel A. Kalenik J. Hansen P.E. The intramolecular hydrogen bond in ortho-hydroxy acetophenones. J. Mol. Struct. 2004 700 1-3 67 72 10.1016/j.molstruc.2004.01.033
    [Google Scholar]
  102. Qin H.L. Zhang Z.W. Ravindar L. Rakesh K.P. Antibacterial activities with the structure-activity relationship of coumarin derivatives. Eur. J. Med. Chem. 2020 207 112832 10.1016/j.ejmech.2020.112832 32971428
    [Google Scholar]
  103. Anwer K.E. Hamza Z.K. Ramadan R.M. Synthesis, spectroscopic, DFT calculations, biological activity, SAR, and molecular docking studies of novel bioactive pyridine derivatives. Sci. Rep. 2023 13 1 15598 10.1038/s41598‑023‑42714‑w 37730837
    [Google Scholar]
  104. Liu H. Long S. Rakesh K.P. Zha G.F. Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents. Eur. J. Med. Chem. 2020 185 111804 10.1016/j.ejmech.2019.111804 31675510
    [Google Scholar]
  105. Gomes M.N. Braga R.C. Grzelak E.M. Neves B.J. Muratov E. Ma R. Klein L.L. Cho S. Oliveira G.R. Franzblau S.G. Andrade C.H. QSAR-driven design, synthesis and discovery of potent chalcone derivatives with antitubercular activity. Eur. J. Med. Chem. 2017 137 126 138 10.1016/j.ejmech.2017.05.026 28582669
    [Google Scholar]
  106. Alam M.S. Rahman S.M.M. Lee D.U. Synthesis, biological evaluation, quantitative-SAR and docking studies of novel chalcone derivatives as antibacterial and antioxidant agents. Chem. Pap. 2015 69 8 1118 1129 10.1515/chempap‑2015‑0113
    [Google Scholar]
  107. Lucas M. Freitas M. Silva A.M.S. Fernandes E. Ribeiro D. Styrylchromones: Biological activities and structure-activity relationship. ChemMedChem 2025 20 4 202400782 10.1002/cmdc.202400782 39480961
    [Google Scholar]
  108. Ubaid A. Shakir M. Ali A. Khan S. Alrehaili J. Anwer R. Abid M. Synthesis and structure–activity relationship (SAR) studies on new 4-aminoquinoline-hydrazones and isatin hybrids as promising antibacterial agents. Molecules 2024 29 23 5777 10.3390/molecules29235777 39683935
    [Google Scholar]
  109. Dhaliwal J.S. Moshawih S. Goh K.W. Loy M.J. Hossain M.S. Hermansyah A. Kotra V. Kifli N. Goh H.P. Dhaliwal S.K.S. Yassin H. Ming L.C. Pharmacotherapeutics applications and chemistry of chalcone derivatives. Molecules 2022 27 20 7062 10.3390/molecules27207062 36296655
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575414987250918162246
Loading
/content/journals/mrmc/10.2174/0113895575414987250918162246
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test