Skip to content
2000
image of Cardiovascular Effects of Ruthenium Complexes: A Potential Therapeutic Tool in Hypertension and Myocardial Injury

Abstract

Ruthenium complexes stand out as an excellent alternative in the field of organometallic chemistry with applications in various areas. Recently, in cardiovascular pharmacology, there has been a growing interest in investigating complexes that modulate the Nitric Oxide (NO) pathway without necessarily and directly donating NO. NO has a proven vasodilatory and cardioprotective effect, and it is known that reduced levels are associated with an increased risk of CardioVascular Diseases (CVD). Studies suggest that ruthenium complexes significantly contribute to the treatment of CVD pathophysiology through different pharmacological mechanisms, including the precise delivery of carbon monoxide (CO) to the molecular target, the release of nitric oxide species under visible and invisible (UV) light, the ability to stimulate the activation of soluble Guanylate Cyclase (sGC) enzyme, participation in the opening of potassium channels, and reduction of cytoplasmic calcium levels. This study aims to conduct a narrative review of the cardiovascular effects of ruthenium complexes, focusing on hypertension and myocardial injury, and demonstrate that metal complexes acting on the NO pathway may have promising targets for the development of therapeutic strategies in CVD treatment.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575400005250905072357
2025-09-29
2025-10-18
Loading full text...

Full text loading...

References

  1. Vallée A. Safar M.E. Blacher J. Permanent essential arterial hypertension: Definitions and hemodynamic, clinical and therapeutic review. Presse Med. 2019 48 1 19 28 10.1016/j.lpm.2018.11.017 30665781
    [Google Scholar]
  2. Touyz R.M. Alves-Lopes R. Rios F.J. Camargo L.L. Anagnostopoulou A. Arner A. Montezano A.C. Vascular smooth muscle contraction in hypertension. Cardiovasc. Res. 2018 114 4 529 539 10.1093/cvr/cvy023 29394331
    [Google Scholar]
  3. Soares R.O.S. Losada D.M. Jordani M.C. Évora P. Castro-E O. Castro-E-Silva, ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies. Int. J. Molecule Sci. 2019 20 5034 10.3390/ijms20205034
    [Google Scholar]
  4. Gasser G. Metzler-Nolte N. The potential of organometallic complexes in medicinal chemistry. Curr. Opin. Chem. Biol. 2012 16 1-2 84 91 10.1016/j.cbpa.2012.01.013 22366385
    [Google Scholar]
  5. Zhang P. Sadler P.J. Advances in the design of organometallic anticancer complexes. J. Organomet. Chem. 2017 839 5 14 10.1016/j.jorganchem.2017.03.038
    [Google Scholar]
  6. Dragutan I. Dragutan V. Demonceau A. Editorial of special issue Ruthenium complex: The expanding chemistry of the ruthenium complexes. Molecules 2015 20 17244 17274 10.3390/molecules200917244
    [Google Scholar]
  7. Clarke M.J. Ruthenium metallopharmaceuticals. Coord. Chem. Rev. 2002 232 1-2 69 93 10.1016/S0010‑8545(02)00025‑5
    [Google Scholar]
  8. Gandosio A. Purkait K. Gasser G. Recent approaches towards the development of Ru(II) polypyridyl complexes for anticancer photodynamic therapy. Chimia (Aarau) 2021 75 10 845 855 10.2533/chimia.2021.845 34728011
    [Google Scholar]
  9. Gouveia Júnior F.S. Silveira J.A.M. Holanda T.M. Marinho A.D. Ridnour L.A. Wink D.A. de Siqueira R.J.B. Monteiro H.S.A. Sousa E.H.S. Lopes L.G.F. New nitrosyl ruthenium complexes with combined activities for multiple cardiovascular disorders. Dalton Trans. 2023 52 16 5176 5191 10.1039/D3DT00059A 36970749
    [Google Scholar]
  10. de Oliveira Neto J. Marinho M.M. Silveira J.A.M. Rocha D.G. Lima N.C.B. Gouveia Júnior F.S. Lopes L.G.F. de Sousa E.H.S. Martins A.M.C. Marinho A.D. Jorge R.J.B. Monteiro H.S.A. Synthesis and potential vasorelaxant effect of a novel ruthenium-based nitro complex. J. Inorg. Biochem. 2022 228 111666 10.1016/j.jinorgbio.2021.111666 34923187
    [Google Scholar]
  11. Tejero J. Shiva S. Gladwin M.T. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol. Rev. 2019 99 1 311 379 10.1152/physrev.00036.2017 30379623
    [Google Scholar]
  12. Cyr A.R. Huckaby L.V. Shiva S.S. Zuckerbraun B.S. Nitric oxide and endothelial dysfunction. Crit. Care Clin. 2020 36 2 307 321 10.1016/j.ccc.2019.12.009 32172815
    [Google Scholar]
  13. Ignarro L.J. Buga G.M. Wood K.S. Byrns R.E. Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 1987 84 24 9265 9269 10.1073/pnas.84.24.9265 2827174
    [Google Scholar]
  14. Farah C. Reboul C. NO better way to protect the heart during Ischemia Reperfusion: To be in the right place at the right time. Front Pediatr. 2015 3 6 10.3389/fped.2015.00006 25705614
    [Google Scholar]
  15. Lundberg J.O. Gladwin M.T. Weitzberg E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat. Rev. Drug Discov. 2015 14 623 10.1038/nrd4623
    [Google Scholar]
  16. Hsu C.N. Tain Y.L. Preventing developmental origins of cardiovascular disease: Hydrogen sulfide as a potential target? Antioxidants 2021 10 247 10.3390/antiox10020247
    [Google Scholar]
  17. Clark J.E. Naughton P. Shurey S. Green C.J. Johnson T.R. Mann B.E. Foresti R. Motterlini R. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ. Res. 2003 93 2 e2 e8 10.1161/01.RES.0000084381.86567.08 12842916
    [Google Scholar]
  18. Varadi J. Lekli I. Juhasz B. Bacskay I. Szabo G. Gesztelyi R. Szendrei L. Varga E. Bak I. Foresti R. Motterlini R. Tosaki A. Beneficial effects of carbon monoxide-releasing molecules on post-ischemic myocardial recovery. Life Sci. 2007 80 17 1619 1626 10.1016/j.lfs.2007.01.047 17321552
    [Google Scholar]
  19. Musameh M.D. Fuller B.J. Mann B.E. Green C.J. Motterlini R. Positive inotropic effects of carbon monoxide‐releasing molecules (CO‐RMs) in the isolated perfused rat heart. Br. J. Pharmacol. 2006 149 8 1104 1112 10.1038/sj.bjp.0706939 17057755
    [Google Scholar]
  20. Guo Y. Stein A.B. Wu W.J. Tan W. Zhu X. Li Q.H. Dawn B. Motterlini R. Bolli R. Administration of a CO-releasing molecule at the time of reperfusion reduces infarct size in vivo. Am. J. Physiol. Heart Circ. Physiol. 2004 286 5 H1649 H1653 10.1152/ajpheart.00971.2003 14704226
    [Google Scholar]
  21. Stein A. Guo Y. Tan W. Wu W. Zhu X. Li Q. Luo C. Dawn B. Johnson T. Motterlini R. Bolli R. Administration of a CO-releasing molecule induces late preconditioning against myocardial infarction. J. Mol. Cell. Cardiol. 2005 38 1 127 134 10.1016/j.yjmcc.2004.10.006 15623429
    [Google Scholar]
  22. Stein A.B. Bolli R. Dawn B. Sanganalmath S.K. Zhu Y. Wang O.L. Guo Y. Motterlini R. Xuan Y.T. Carbon monoxide induces a late preconditioning-mimetic cardioprotective and antiapoptotic milieu in the myocardium. J. Mol. Cell. Cardiol. 2012 52 1 228 236 10.1016/j.yjmcc.2011.11.005 22119801
    [Google Scholar]
  23. Di Filippo C. Perretti M. Rossi F. Ferraraccio F. Motterlini R. D’Amico M. Acute myocardial infarction in streptozotocin-induced hyperglycaemic rats: protection by a carbon monoxide-releasing molecule (CORM-3). Naunyn Schmiedebergs Arch. Pharmacol. 2012 385 2 137 144 10.1007/s00210‑011‑0703‑1 22038495
    [Google Scholar]
  24. Segersvärd H. Lakkisto P. Hänninen M. Forsten H. Siren J. Immonen K. Kosonen R. Sarparanta M. Laine M. Tikkanen I. Carbon monoxide releasing molecule improves structural and functional cardiac recovery after myocardial injury. Eur. J. Pharmacol. 2018 818 57 66 10.1016/j.ejphar.2017.10.031 29055786
    [Google Scholar]
  25. Portal L. Morin D. Motterlini R. Ghaleh B. Pons S. The CO-releasing molecule CORM-3 protects adult cardiomyocytes against hypoxia-reoxygenation by modulating pH restoration. Eur. J. Pharmacol. 2019 862 172636 10.1016/j.ejphar.2019.172636 31491405
    [Google Scholar]
  26. Foresti R. Hammad J. Clark J.E. Johnson T.R. Mann B.E. Friebe A. Green C.J. Motterlini R. Vasoactive properties of CORM‐3, a novel water‐soluble carbon monoxide‐releasing molecule. Br. J. Pharmacol. 2004 142 3 453 460 10.1038/sj.bjp.0705825 15148243
    [Google Scholar]
  27. Alshehri A. Bourguignon M.P. Clavreul N. Badier-Commander C. Gosgnach W. Simonet S. Vayssettes-Courchay C. Cordi A. Fabiani J.N. Verbeuren T.J. Félétou M. Mechanisms of the vasorelaxing effects of CORM-3, a water-soluble carbon monoxide-releasing molecule: Interactions with eNOS. Naunyn Schmiedebergs Arch. Pharmacol. 2013 386 3 185 196 10.1007/s00210‑012‑0829‑9 23296254
    [Google Scholar]
  28. Failli P. Vannacci A. Di Cesare Mannelli L. Motterlini R. Masini E. Masini E. Relaxant effect of a water soluble carbon monoxide-releasing molecule (CORM-3) on spontaneously hypertensive rat aortas. Cardiovasc. Drugs Ther. 2012 26 4 285 292 10.1007/s10557‑012‑6400‑6 22766583
    [Google Scholar]
  29. Abid S. Houssaïni A. Mouraret N. Marcos E. Amsellem V. Wan F. Dubois-Randé J.L. Derumeaux G. Boczkowski J. Motterlini R. Adnot S. P21-dependent protective effects of a carbon monoxide-releasing molecule-3 in pulmonary hypertension. Arterioscler. Thromb. Vasc. Biol. 2014 34 2 304 312 10.1161/ATVBAHA.113.302302 24334871
    [Google Scholar]
  30. de Lima R.G. Sauaia M.G. Bonaventura D. Tedesco A.C. Bendhack L.M. da Silva R.S. Influence of ancillary ligand L in the nitric oxide photorelease by the [Ru(L)(tpy)NO]3+ complex and its vasodilator activity based on visible light irradiation. Inorg. Chim. Acta 2006 359 8 2543 2549 10.1016/j.ica.2006.02.020
    [Google Scholar]
  31. Bonaventura D. de Lima R.G. Vercesi J.A. da Silva R.S. Bendhack L.M. Comparison of the mechanisms underlying the relaxation induced by two nitric oxide donors: Sodium nitroprusside and a new ruthenium complex. Vascul. Pharmacol. 2007 46 3 215 222 10.1016/j.vph.2006.10.002 17127100
    [Google Scholar]
  32. Bonaventura D. Lunardi C.N. Rodrigues G.J. Neto M.A. Vercesi J.A. de Lima R.G. da Silva R.S. Bendhack L.M. Endothelium negatively modulates the vascular relaxation induced by nitric oxide donor, due to uncoupling NO synthase. J. Inorg. Biochem. 2009 103 10 1366 1374 10.1016/j.jinorgbio.2009.07.015 19699534
    [Google Scholar]
  33. Paulo M. Rodrigues G.J. da Silva R.S. Bendhack L.M. A new NO donor failed to release NO and to induce relaxation in the rat basilar artery. Eur. J. Pharm. Sci. 2012 45 3 344 350 10.1016/j.ejps.2011.12.002 22178018
    [Google Scholar]
  34. Munhoz F.C. Potje S.R. Pereira A.C. Daruge M.G. da Silva R.S. Bendhack L.M. Antoniali C. Hypotensive and vasorelaxing effects of the new NO-donor [Ru(terpy)(bdq)NO+]3+ in spontaneously hypertensive rats. Nitric Oxide 2012 26 2 111 117 10.1016/j.niox.2011.12.008 22245451
    [Google Scholar]
  35. Bonaventura D. de Lima R.G. da Silva R.S. Bendhack L.M. NO donors-relaxation is impaired in aorta from hypertensive rats due to a reduced involvement of K+ channels and sarcoplasmic reticulum Ca2+-ATPase. Life Sci. 2011 89 17-18 595 602 10.1016/j.lfs.2011.07.022 21839096
    [Google Scholar]
  36. Rodrigues G.J. Lunardi C.N. Lima R.G. Santos C.X. Laurindo F.R.M. Silva R.S. Bendhack L.M. Vitamin C improves the effect of a new nitric oxide donor on the vascular smooth muscle from renal hypertensive rats. Nitric Oxide 2008 18 3 176 183 10.1016/j.niox.2007.12.002 18194676
    [Google Scholar]
  37. Rodrigues G.J. Pereira A.C. Vercesi J.A. Lima R.G. Silva R.S. Bendhack L.M. Long-lasting hypotensive effect in renal hypertensive rats induced by nitric oxide released from a ruthenium complex. J. Cardiovasc. Pharmacol. 2012 60 2 193 198 10.1097/FJC.0b013e31825bacc4 22635073
    [Google Scholar]
  38. Potje S.R. Hildebrand M.C. Munhoz F.C. Troiano J.A. Pereira A.A.F. Nakamune A.C.M.S. da Silva R.S. Bendhack L.M. Antoniali C. The hypotensive effect of the ruthenium complex [Ru(terpy)(bdq)NO]3+ is higher in male than in female spontaneously hypertensive rats (SHR). Naunyn Schmiedebergs Arch. Pharmacol. 2014 387 11 1045 1051 10.1007/s00210‑014‑1020‑2 25066265
    [Google Scholar]
  39. Potje S.R. Munhoz F.C. Perassa L.A. Graton M.E. Pereira A.A.F. Nakamune A.C.M.S. da Silva R.S. Bendhack L.M. Sumida D.H. Antoniali C. Mechanisms underlying the hypotensive and vasodilator effects of Ru(terpy)(bdq)NO]3+, a nitric oxide donor, differ between normotensive and spontaneously hypertensive rats. Eur. J. Pharmacol. 2014 741 222 229 10.1016/j.ejphar.2014.08.008 25179868
    [Google Scholar]
  40. Madhani M. Patra A.K. Miller T.W. Eroy-Reveles A.A. Hobbs A.J. Fukuto J.M. Mascharak P.K. Biological activity of designed photolabile metal nitrosyls: light-dependent activation of soluble guanylate cyclase and vasorelaxant properties in rat aorta. J. Med. Chem. 2006 49 25 7325 7330 10.1021/jm0604629 17149862
    [Google Scholar]
  41. Bonaventura D. Oliveira F.S. Togniolo V. Tedesco A.C. da Silva R.S. Bendhack L.M. A macrocyclic nitrosyl ruthenium complex is a NO donor that induces rat aorta relaxation. Nitric Oxide 2004 10 2 83 91 10.1016/j.niox.2004.03.004 15135361
    [Google Scholar]
  42. Bonaventura D. Oliveira F.S. Lunardi C.N. Vercesi J.A. da Silva R.S. Bendhack L.M. Characterization of the mechanisms of action and nitric oxide species involved in the relaxation induced by the ruthenium complex. Nitric Oxide 2006 15 4 387 394 10.1016/j.niox.2006.04.260 16769232
    [Google Scholar]
  43. Ferezin C.Z. Oliveira F.S. da Silva R.S. Simioni A.R. Tedesco A.C. Bendhack L.M. The complex trans-[RuCl([15]aneN4)NO]2+ induces rat aorta relaxation by ultraviolet light irradiation. Nitric Oxide 2005 13 3 170 175 10.1016/j.niox.2005.06.002 16054406
    [Google Scholar]
  44. de Gaitani C.M. de Melo M.C.C. Lunardi C.N. de S Oliveira, F.; da Silva, R.S.; Bendhack, L.M. Hypotensive effect of the nitrosyl ruthenium complex nitric oxide donor in renal hypertensive rats. Nitric Oxide 2009 20 3 195 199 10.1016/j.niox.2008.12.002 19114114
    [Google Scholar]
  45. Lunardi C.N. Cacciari A.L. Silva R.S. Bendhack L.M. Cytosolic calcium concentration is reduced by photolysis of a nitrosyl ruthenium complex in vascular smooth muscle cells. Nitric Oxide 2006 15 3 252 258 10.1016/j.niox.2006.02.001 16564714
    [Google Scholar]
  46. Woods J.J. Cao J. Lippert A.R. Wilson J.J. Characterization and biological activity of a hydrogen sulfide-releasing red light-activated Ruthenium(II) complex. J. Am. Chem. Soc. 2018 140 39 12383 12387 10.1021/jacs.8b08695 30230336
    [Google Scholar]
  47. Kaes C. Katz A. Hosseini M.W. Bipyridine: The most widely used ligand. A review of molecules comprising at least two 2,2′-bipyridine units. Chem. Rev. 2000 100 10 3553 3590 10.1021/cr990376z 11749322
    [Google Scholar]
  48. Constable E.C. Housecroft C.E. The early years of 2,2′-bipyridine: A ligand in its own lifetime. Molecules 2019 24 21 3951 10.3390/molecules24213951 31683694
    [Google Scholar]
  49. Lunardi C.N. Vercesi J.A. da Silva R.S. Bendhack L.M. Vasorelaxation induced by the new nitric oxide donor cis-[Ru(Cl)(bpy)2(NO)](PF6) is due to activation of KCa by a cGMP-dependent pathway. Vascul. Pharmacol. 2007 47 2-3 139 144 10.1016/j.vph.2007.05.003 17602893
    [Google Scholar]
  50. Cerqueira J.B.G. Silva L.F.G. Lopes L.G.F. Moraes M.E.A. Nascimento N.R.F. Relaxation of rabbit corpus cavernosum smooth muscle and aortic vascular endothelium induced by new nitric oxide donor substances of the nitrosyl-ruthenium complex. Int. Braz J Urol 2008 34 5 638 647 10.1590/S1677‑55382008000500013 18986568
    [Google Scholar]
  51. da Rocha Z.N. Marchesi M.S.P. Molin J.C. Lunardi C.N. Miranda K.M. Bendhack L.M. Ford P.C. da Silva R.S. The inducing NO-vasodilation by chemical reduction of coordinated nitrite ion in cis-[Ru(NO2)L(bpy)2]+ complex. Dalton Trans. 2008 32 4282 4287 10.1039/b803441a 18682867
    [Google Scholar]
  52. Paulo M. Grando M.D. da Silva R.S. Minshall R.D. Bendhack L.M. The nitric oxide donor RuBPY does not induce in-vitro cross-tolerance with acetylcholine. Nitric Oxide 2017 69 69 77 10.1016/j.niox.2017.05.004 28559108
    [Google Scholar]
  53. Pereira A.C. Araújo A.V. Paulo M. Andrade F.A. Silva B.R. Vercesi J.A. da Silva R.S. Bendhack L.M. Hypotensive effect and vascular relaxation in different arteries induced by the nitric oxide donor RuBPY. Nitric Oxide 2017 62 11 16 10.1016/j.niox.2016.11.001 27845191
    [Google Scholar]
  54. Pereira A.C. Lunardi C.N. Paulo M. da Silva R.S. Bendhack L.M. Nitric oxide generated by the compound RuBPY promotes the vascular smooth cell membrane hyperpolarization. Eur. J. Pharm. Sci. 2013 48 4-5 604 610 10.1016/j.ejps.2013.01.003 23333503
    [Google Scholar]
  55. Pereira A.C. Ford P.C. da Silva R.S. Bendhack L.M. Ruthenium-nitrite complex as pro-drug releases NO in a tissue and enzyme-dependent way. Nitric Oxide 2011 24 4 192 198 10.1016/j.niox.2011.03.001 21440656
    [Google Scholar]
  56. Pereira A.C. Araújo A.V. Paulo M. da Silva R.S. Bendhack L.M. RuBPY decreases intracellular calcium by decreasing influx and increasing storage. Clin. Exp. Pharmacol. Physiol. 2022 49 7 759 766 10.1111/1440‑1681.13652 35527704
    [Google Scholar]
  57. Araújo A.V. Andrade F.A. Paulo M. de Paula T.D. Potje S.R. Pereira A.C. Bendhack L.M. NO donors induce vascular relaxation by different cellular mechanisms in hypertensive and normotensive rats. Nitric Oxide 2019 86 12 20 10.1016/j.niox.2019.02.004 30772501
    [Google Scholar]
  58. Rodrigues G.J. Pereira A.C. de Moraes T.F. Wang C.C. da Silva R.S. Bendhack L.M. Pharmacological characterization of the vasodilating effect induced by the ruthenium complex cis-[Ru(NO)(NO2)(bpy)2].(PF6)2. J. Cardiovasc. Pharmacol. 2015 65 2 168 175 10.1097/FJC.0000000000000175 25384194
    [Google Scholar]
  59. Vatanabe I.P. Rodrigues C.N.S. Buzinari T.C. Moraes T.F. Silva R.S. Rodrigues G.J. Ruthenium complex improves the endothelial function in aortic rings from hypertensive rats. Arq. Bras Cardiol. 2017 109 2 10.5935/abc.20170090 28678930
    [Google Scholar]
  60. Rodrigues G.J. Cicillini S.A. Silva R.S. Bendhack L.M. Mechanisms underlying the vascular relaxation induced by a new nitric oxide generator. Nitric Oxide 2011 25 3 331 337 10.1016/j.niox.2011.06.002 21704179
    [Google Scholar]
  61. Oishi J.C. Buzinnari T.C. Pestana C.R. De Moraes T.F. Vatanabe I.P. Wink D.A. Da Silva R.S. Bendhack L.M. Rodrigues G.J. in-vitro treatment with cis-[Ru(H-dcbpy-)2(Cl)(NO)] improves the endothelial function in aortic rings with endothelial dysfunction. J. Pharm. Pharm. Sci. 2015 18 5 696 704 10.18433/J3CC9K 26670366
    [Google Scholar]
  62. Campelo M.W.S. Campelo A.P.B.S. Lopes L.G.F. Santos A.A. Guimarães S.B. Vasconcelos P.R.L. Effects of Rut-bpy (Cis-[Ru(bpy)2(SO3)(NO)]PF 6), a novel nitric oxide donor, in L-NAME-induced hypertension in rats. Acta Cir. Bras. 2011 26 Suppl. 1 57 59 10.1590/S0102‑86502011000700012 21971659
    [Google Scholar]
  63. Costa P.P.C. Campos R. Cabral P.H.B. Gomes V.M. Santos C.F. Waller S.B. de Sousa E.H.S. Lopes L.G.F. Fonteles M.C. do Nascimento N.R.F. Antihypertensive potential of cis-[Ru(bpy)2(ImN)(NO)]3+, a ruthenium-based nitric oxide donor. Res. Vet. Sci. 2020 130 153 160 10.1016/j.rvsc.2020.03.014 32193002
    [Google Scholar]
  64. Zanichelli P.G. Estrela H.F.G. Spadari-Bratfisch R.C. Grassi-Kassisse D.M. Franco D.W. The effects of ruthenium tetraammine compounds on vascular smooth muscle. Nitric Oxide 2007 16 2 189 196 10.1016/j.niox.2006.10.001 17123848
    [Google Scholar]
  65. Conceição-Vertamatti A.G. Ramos L.A.F. Calandreli I. Chiba A.N. Franco D.W. Tfouni E. Grassi-Kassisse D.M. Vascular response of ruthenium tetraamines in aortic ring from normotensive rats. Arq. Bras. Cardiol. 2014 104 3 185 194 10.5935/abc.20140189 25494016
    [Google Scholar]
  66. Alves J.Q. Pernomian L. Silva C.D. Gomes M.S. de Oliveira A.M. da Silva R.S. Vascular tone and angiogenesis modulation by catecholamine coordinated to ruthenium. RSC Med. Chem. 2020 11 4 497 510 10.1039/C9MD00573K 33479651
    [Google Scholar]
  67. de Jesús García-Rivas G. Guerrero-Hernández A. Guerrero-Serna G. Rodríguez-Zavala J.S. Zazueta C. Inhibition of the mitochondrial calcium uniporter by the oxo‐bridged dinuclear ruthenium amine complex (Ru 360) prevents from irreversible injury in postischemic rat heart. FEBS J. 2005 272 13 3477 3488 10.1111/j.1742‑4658.2005.04771.x 15978050
    [Google Scholar]
  68. Vadori M. Florio C. Groppo B. Cocchietto M. Pacor S. Zorzet S. Candussio L. Sava G. The antimetastatic drug NAMI-A potentiates the phenylephrine-induced contraction of aortic smooth muscle cells and induces a transient increase in systolic blood pressure. J. Biol. Inorg. Chem. 2015 20 5 831 840 10.1007/s00775‑015‑1269‑z 25982099
    [Google Scholar]
  69. Parveen S. Khan A. Anticancer potential of ruthenium macrocyclic complexes. ACS Symposium Ser 2025 171 196 10.1021/bk‑2025‑1492.ch008
    [Google Scholar]
  70. Mabuza L.P. Gamede M.W. Maikoo S. Booysen I.N. Ngubane P.S. Khathi A. Cardioprotective effects of a ruthenium (II) Schiff base complex in diet-induced prediabetic rats. Diabetes Metab. Syndr. Obes. 2019 12 217 223 10.2147/DMSO.S183811 30858714
    [Google Scholar]
  71. Nikolaou S. Silva C. Considerations on texts dealing with the development of ruthene metalopharmacics. Quim. Nova 2018 41 833 838 10.21577/0100‑4042.20170228
    [Google Scholar]
  72. Mazuryk O. Magiera K. Rys B. Suzenet F. Kieda C. Brindell M. Multifaceted interplay between lipophilicity, protein interaction and luminescence parameters of non-intercalative ruthenium(II) polypyridyl complexes controlling cellular imaging and cytotoxic properties. J. Biol. Inorg. Chem. 2014 19 8 1305 1316 10.1007/s00775‑014‑1187‑5 25156150
    [Google Scholar]
  73. Catevas N. Tsipis A. Axial ligand effects on the mechanism of Ru-CO bond photodissociation and photophysical properties of Ru(II)-Salen PhotoCORMs/theranostics: A density functional theory study. Molecules 2025 30 5 1147 10.3390/molecules30051147 40076369
    [Google Scholar]
  74. Yao Z. Yu K. Qian C. Zhou B. Lin Y. Zhang X. Zhang Y. Zhou T. Zeng W. Cao J. Sun Y. Gallium nitrate inhibits multidrug-resistant Acinetobacter baumannii isolated from bloodstream infection by disrupting multiple iron-dependent metabolic processes. BMC Microbiol. 2025 25 1 216 10.1186/s12866‑025‑03950‑4 40229649
    [Google Scholar]
  75. Mihajlovic K. Milosavljevic I. Jeremic J. Savic M. Sretenovic J. Srejovic I. Zivkovic V. Jovicic N. Paunovic M. Bolevich S. Jakovljevic V. Novokmet S. Redox and apoptotic potential of novel ruthenium complexes in rat blood and heart. Can. J. Physiol. Pharmacol. 2021 99 2 207 217 10.1139/cjpp‑2020‑0349 32976727
    [Google Scholar]
  76. Vadori M. Pacor S. Vita F. Zorzet S. Cocchietto M. Sava G. Features and full reversibility of the renal toxicity of the ruthenium-based drug NAMI-A in mice. J. Inorg. Biochem. 2013 118 21 27 10.1016/j.jinorgbio.2012.09.018 23123335
    [Google Scholar]
  77. Savic M. Arsenijevic A. Milovanovic J. Stojanovic B. Stankovic V. Simovic A.R. Lazic D. Arsenijevic N. Milovanovic M. Antitumor activity of ruthenium(II) terpyridine complexes towards colon cancer cells in-vitro and in vivo. Molecules 2020 25 20 4699 4699 10.3390/molecules25204699
    [Google Scholar]
  78. Li P. Liang F. Wang L. Jin D. Shang Y. Liu X. Pan Y. Yuan J. Shen J. Yin M. Bilayer vascular grafts with on-demand NO and H2S release capabilities. Bioact. Mater. 2024 31 38 52 10.1016/j.bioactmat.2023.07.020 37601276
    [Google Scholar]
  79. Munteanu C. Popescu C. Vlădulescu-Trandafir A.I. Onose G. Signaling paradigms of H2S-induced vasodilation: A comprehensive review. Antioxidants 2024 13 10 1158 1158 10.3390/antiox13101158
    [Google Scholar]
  80. Nin D.S. Idres S.B. Song Z.J. Moore P.K. Deng L.W. Biological effects of morpholin-4-ium 4 methoxyphenyl (morpholino) phosphinodithioate and other phosphorothioate-based hydrogen sulfide donors. Antioxid. Redox Signal. 2020 32 2 145 158 10.1089/ars.2019.7896 31642346
    [Google Scholar]
  81. Wu Q. Feng Y. Lepoitevin M. Yu M. Serre C. Ge J. Huang Y. Metal–organic frameworks: Unlocking New frontiers in cardiovascular diagnosis and therapy. Adv. Sci. (Weinh.) 2025 12 22 e2416302 10.1002/advs.202416302 40270437
    [Google Scholar]
  82. Liu R. Wu H. Chung H.Y. Ng Y.H. Making photoresponsive metal–organic frameworks an effective class of heterogeneous photocatalyst. Adv. Funct. Mater. 2025 2421318 2421318 10.1002/adfm.202421318
    [Google Scholar]
  83. Das B. Transition metal complex‐loaded nanosystems: Advances in stimuli‐responsive cancer therapies. Small 2025 21 7 2410338 10.1002/smll.202410338 39663716
    [Google Scholar]
  84. Sonkar C. Sarkar S. Mukhopadhyay S. Ruthenium(ii)–arene complexes as anti-metastatic agents, and related techniques. RSC Med. Chem. 2022 13 1 22 38 10.1039/D1MD00220A 35224494
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575400005250905072357
Loading
/content/journals/mrmc/10.2174/0113895575400005250905072357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test