Skip to content
2000
Volume 25, Issue 18
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Ruthenium complexes stand out as an excellent alternative in the field of organometallic chemistry with applications in various areas. Recently, in cardiovascular pharmacology, there has been a growing interest in investigating complexes that modulate the Nitric Oxide (NO) pathway without necessarily and directly donating NO. NO has a proven vasodilatory and cardioprotective effect, and it is known that reduced levels are associated with an increased risk of CardioVascular Diseases (CVD). Studies suggest that ruthenium complexes significantly contribute to the treatment of CVD pathophysiology through different pharmacological mechanisms, including the precise delivery of carbon monoxide (CO) to the molecular target, the release of nitric oxide species under visible and invisible (UV) light, the ability to stimulate the activation of soluble Guanylate Cyclase (sGC) enzyme, participation in the opening of potassium channels, and reduction of cytoplasmic calcium levels. This study aims to conduct a narrative review of the cardiovascular effects of ruthenium complexes, focusing on hypertension and myocardial injury, and demonstrate that metal complexes acting on the NO pathway may have promising targets for the development of therapeutic strategies in CVD treatment.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575400005250905072357
2025-10-01
2025-12-31
Loading full text...

Full text loading...

References

  1. ValléeA. SafarM.E. BlacherJ. Permanent essential arterial hypertension: Definitions and hemodynamic, clinical and therapeutic review.Presse Med.2019481192810.1016/j.lpm.2018.11.017 30665781
    [Google Scholar]
  2. TouyzR.M. Alves-LopesR. RiosF.J. CamargoL.L. AnagnostopoulouA. ArnerA. MontezanoA.C. Vascular smooth muscle contraction in hypertension.Cardiovasc. Res.2018114452953910.1093/cvr/cvy023 29394331
    [Google Scholar]
  3. SoaresR.O.S. LosadaD.M. JordaniM.C. ÉvoraP. Castro-EO. Castro-E-Silva, ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies.Int. J. Molecule Sci.201920503410.3390/ijms20205034
    [Google Scholar]
  4. GasserG. Metzler-NolteN. The potential of organometallic complexes in medicinal chemistry.Curr. Opin. Chem. Biol.2012161-2849110.1016/j.cbpa.2012.01.013 22366385
    [Google Scholar]
  5. ZhangP. SadlerP.J. Advances in the design of organometallic anticancer complexes.J. Organomet. Chem.201783951410.1016/j.jorganchem.2017.03.038
    [Google Scholar]
  6. DragutanI. DragutanV. DemonceauA. Editorial of special issue Ruthenium complex: The expanding chemistry of the ruthenium complexes.Molecules201520172441727410.3390/molecules200917244
    [Google Scholar]
  7. ClarkeM.J. Ruthenium metallopharmaceuticals.Coord. Chem. Rev.20022321-2699310.1016/S0010‑8545(02)00025‑5
    [Google Scholar]
  8. GandosioA. PurkaitK. GasserG. Recent approaches towards the development of Ru(II) polypyridyl complexes for anticancer photodynamic therapy.Chimia (Aarau)2021751084585510.2533/chimia.2021.845 34728011
    [Google Scholar]
  9. Gouveia JúniorF.S. SilveiraJ.A.M. HolandaT.M. MarinhoA.D. RidnourL.A. WinkD.A. de SiqueiraR.J.B. MonteiroH.S.A. SousaE.H.S. LopesL.G.F. New nitrosyl ruthenium complexes with combined activities for multiple cardiovascular disorders.Dalton Trans.202352165176519110.1039/D3DT00059A 36970749
    [Google Scholar]
  10. de Oliveira NetoJ. MarinhoM.M. SilveiraJ.A.M. RochaD.G. LimaN.C.B. Gouveia JúniorF.S. LopesL.G.F. de SousaE.H.S. MartinsA.M.C. MarinhoA.D. JorgeR.J.B. MonteiroH.S.A. Synthesis and potential vasorelaxant effect of a novel ruthenium-based nitro complex.J. Inorg. Biochem.202222811166610.1016/j.jinorgbio.2021.111666 34923187
    [Google Scholar]
  11. TejeroJ. ShivaS. GladwinM.T. Sources of vascular nitric oxide and reactive oxygen species and their regulation.Physiol. Rev.201999131137910.1152/physrev.00036.2017 30379623
    [Google Scholar]
  12. CyrA.R. HuckabyL.V. ShivaS.S. ZuckerbraunB.S. Nitric oxide and endothelial dysfunction.Crit. Care Clin.202036230732110.1016/j.ccc.2019.12.009 32172815
    [Google Scholar]
  13. IgnarroL.J. BugaG.M. WoodK.S. ByrnsR.E. ChaudhuriG. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide.Proc. Natl. Acad. Sci. USA198784249265926910.1073/pnas.84.24.9265 2827174
    [Google Scholar]
  14. FarahC. ReboulC. NO better way to protect the heart during Ischemia Reperfusion: To be in the right place at the right time.Front Pediatr.20153610.3389/fped.2015.00006 25705614
    [Google Scholar]
  15. LundbergJ.O. GladwinM.T. WeitzbergE. Strategies to increase nitric oxide signalling in cardiovascular disease.Nature Rev. Drug Discov.20151462310.1038/nrd4623
    [Google Scholar]
  16. HsuC.N. TainY.L. Preventing developmental origins of cardiovascular disease: Hydrogen sulfide as a potential target?Antioxidants20211024710.3390/antiox10020247
    [Google Scholar]
  17. ClarkJ.E. NaughtonP. ShureyS. GreenC.J. JohnsonT.R. MannB.E. ForestiR. MotterliniR. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule.Circ. Res.2003932e2e810.1161/01.RES.0000084381.86567.08 12842916
    [Google Scholar]
  18. VaradiJ. LekliI. JuhaszB. BacskayI. SzaboG. GesztelyiR. SzendreiL. VargaE. BakI. ForestiR. MotterliniR. TosakiA. Beneficial effects of carbon monoxide-releasing molecules on post-ischemic myocardial recovery.Life Sci.200780171619162610.1016/j.lfs.2007.01.047 17321552
    [Google Scholar]
  19. MusamehM.D. FullerB.J. MannB.E. GreenC.J. MotterliniR. Positive inotropic effects of carbon monoxide‐releasing molecules (CO‐RMs) in the isolated perfused rat heart.Br. J. Pharmacol.200614981104111210.1038/sj.bjp.0706939 17057755
    [Google Scholar]
  20. GuoY. SteinA.B. WuW.J. TanW. ZhuX. LiQ.H. DawnB. MotterliniR. BolliR. Administration of a CO-releasing molecule at the time of reperfusion reduces infarct size in vivo.Am. J. Physiol. Heart Circ. Physiol.20042865H1649H165310.1152/ajpheart.00971.2003 14704226
    [Google Scholar]
  21. SteinA. GuoY. TanW. WuW. ZhuX. LiQ. LuoC. DawnB. JohnsonT. MotterliniR. BolliR. Administration of a CO-releasing molecule induces late preconditioning against myocardial infarction.J. Mol. Cell. Cardiol.200538112713410.1016/j.yjmcc.2004.10.006 15623429
    [Google Scholar]
  22. SteinA.B. BolliR. DawnB. SanganalmathS.K. ZhuY. WangO.L. GuoY. MotterliniR. XuanY.T. Carbon monoxide induces a late preconditioning-mimetic cardioprotective and antiapoptotic milieu in the myocardium.J. Mol. Cell. Cardiol.201252122823610.1016/j.yjmcc.2011.11.005 22119801
    [Google Scholar]
  23. Di FilippoC. PerrettiM. RossiF. FerraraccioF. MotterliniR. D’AmicoM. Acute myocardial infarction in streptozotocin-induced hyperglycaemic rats: protection by a carbon monoxide-releasing molecule (CORM-3).Naunyn Schmiedebergs Arch. Pharmacol.2012385213714410.1007/s00210‑011‑0703‑1 22038495
    [Google Scholar]
  24. SegersvärdH. LakkistoP. HänninenM. ForstenH. SirenJ. ImmonenK. KosonenR. SarparantaM. LaineM. TikkanenI. Carbon monoxide releasing molecule improves structural and functional cardiac recovery after myocardial injury.Eur. J. Pharmacol.2018818576610.1016/j.ejphar.2017.10.031 29055786
    [Google Scholar]
  25. PortalL. MorinD. MotterliniR. GhalehB. PonsS. The CO-releasing molecule CORM-3 protects adult cardiomyocytes against hypoxia-reoxygenation by modulating pH restoration.Eur. J. Pharmacol.201986217263610.1016/j.ejphar.2019.172636 31491405
    [Google Scholar]
  26. ForestiR. HammadJ. ClarkJ.E. JohnsonT.R. MannB.E. FriebeA. GreenC.J. MotterliniR. Vasoactive properties of CORM‐3, a novel water‐soluble carbon monoxide‐releasing molecule.Br. J. Pharmacol.2004142345346010.1038/sj.bjp.0705825 15148243
    [Google Scholar]
  27. AlshehriA. BourguignonM.P. ClavreulN. Badier-CommanderC. GosgnachW. SimonetS. Vayssettes-CourchayC. CordiA. FabianiJ.N. VerbeurenT.J. FélétouM. Mechanisms of the vasorelaxing effects of CORM-3, a water-soluble carbon monoxide-releasing molecule: Interactions with eNOS.Naunyn Schmiedebergs Arch. Pharmacol.2013386318519610.1007/s00210‑012‑0829‑9 23296254
    [Google Scholar]
  28. FailliP. VannacciA. Di Cesare MannelliL. MotterliniR. MasiniE. MasiniE. Relaxant effect of a water soluble carbon monoxide-releasing molecule (CORM-3) on spontaneously hypertensive rat aortas.Cardiovasc. Drugs Ther.201226428529210.1007/s10557‑012‑6400‑6 22766583
    [Google Scholar]
  29. AbidS. HoussaïniA. MouraretN. MarcosE. AmsellemV. WanF. Dubois-RandéJ.L. DerumeauxG. BoczkowskiJ. MotterliniR. AdnotS. P21-dependent protective effects of a carbon monoxide-releasing molecule-3 in pulmonary hypertension.Arterioscler. Thromb. Vasc. Biol.201434230431210.1161/ATVBAHA.113.302302 24334871
    [Google Scholar]
  30. de LimaR.G. SauaiaM.G. BonaventuraD. TedescoA.C. BendhackL.M. da SilvaR.S. Influence of ancillary ligand L in the nitric oxide photorelease by the [Ru(L)(tpy)NO]3+ complex and its vasodilator activity based on visible light irradiation.Inorg. Chim. Acta200635982543254910.1016/j.ica.2006.02.020
    [Google Scholar]
  31. BonaventuraD. de LimaR.G. VercesiJ.A. da SilvaR.S. BendhackL.M. Comparison of the mechanisms underlying the relaxation induced by two nitric oxide donors: Sodium nitroprusside and a new ruthenium complex.Vascul. Pharmacol.200746321522210.1016/j.vph.2006.10.002 17127100
    [Google Scholar]
  32. BonaventuraD. LunardiC.N. RodriguesG.J. NetoM.A. VercesiJ.A. de LimaR.G. da SilvaR.S. BendhackL.M. Endothelium negatively modulates the vascular relaxation induced by nitric oxide donor, due to uncoupling NO synthase.J. Inorg. Biochem.2009103101366137410.1016/j.jinorgbio.2009.07.015 19699534
    [Google Scholar]
  33. PauloM. RodriguesG.J. da SilvaR.S. BendhackL.M. A new NO donor failed to release NO and to induce relaxation in the rat basilar artery.Eur. J. Pharm. Sci.201245334435010.1016/j.ejps.2011.12.002 22178018
    [Google Scholar]
  34. MunhozF.C. PotjeS.R. PereiraA.C. DarugeM.G. da SilvaR.S. BendhackL.M. AntonialiC. Hypotensive and vasorelaxing effects of the new NO-donor [Ru(terpy)(bdq)NO+]3+ in spontaneously hypertensive rats.Nitric Oxide201226211111710.1016/j.niox.2011.12.008 22245451
    [Google Scholar]
  35. BonaventuraD. de LimaR.G. da SilvaR.S. BendhackL.M. NO donors-relaxation is impaired in aorta from hypertensive rats due to a reduced involvement of K+ channels and sarcoplasmic reticulum Ca2+-ATPase.Life Sci.20118917-1859560210.1016/j.lfs.2011.07.022 21839096
    [Google Scholar]
  36. RodriguesG.J. LunardiC.N. LimaR.G. SantosC.X. LaurindoF.R.M. SilvaR.S. BendhackL.M. Vitamin C improves the effect of a new nitric oxide donor on the vascular smooth muscle from renal hypertensive rats.Nitric Oxide200818317618310.1016/j.niox.2007.12.002 18194676
    [Google Scholar]
  37. RodriguesG.J. PereiraA.C. VercesiJ.A. LimaR.G. SilvaR.S. BendhackL.M. Long-lasting hypotensive effect in renal hypertensive rats induced by nitric oxide released from a ruthenium complex.J. Cardiovasc. Pharmacol.201260219319810.1097/FJC.0b013e31825bacc4 22635073
    [Google Scholar]
  38. PotjeS.R. HildebrandM.C. MunhozF.C. TroianoJ.A. PereiraA.A.F. NakamuneA.C.M.S. da SilvaR.S. BendhackL.M. AntonialiC. The hypotensive effect of the ruthenium complex [Ru(terpy)(bdq)NO]3+ is higher in male than in female spontaneously hypertensive rats (SHR).Naunyn Schmiedebergs Arch. Pharmacol.2014387111045105110.1007/s00210‑014‑1020‑2 25066265
    [Google Scholar]
  39. PotjeS.R. MunhozF.C. PerassaL.A. GratonM.E. PereiraA.A.F. NakamuneA.C.M.S. da SilvaR.S. BendhackL.M. SumidaD.H. AntonialiC. Mechanisms underlying the hypotensive and vasodilator effects of Ru(terpy)(bdq)NO]3+, a nitric oxide donor, differ between normotensive and spontaneously hypertensive rats.Eur. J. Pharmacol.201474122222910.1016/j.ejphar.2014.08.008 25179868
    [Google Scholar]
  40. MadhaniM. PatraA.K. MillerT.W. Eroy-RevelesA.A. HobbsA.J. FukutoJ.M. MascharakP.K. Biological activity of designed photolabile metal nitrosyls: light-dependent activation of soluble guanylate cyclase and vasorelaxant properties in rat aorta.J. Med. Chem.200649257325733010.1021/jm0604629 17149862
    [Google Scholar]
  41. BonaventuraD. OliveiraF.S. TognioloV. TedescoA.C. da SilvaR.S. BendhackL.M. A macrocyclic nitrosyl ruthenium complex is a NO donor that induces rat aorta relaxation.Nitric Oxide2004102839110.1016/j.niox.2004.03.004 15135361
    [Google Scholar]
  42. BonaventuraD. OliveiraF.S. LunardiC.N. VercesiJ.A. da SilvaR.S. BendhackL.M. Characterization of the mechanisms of action and nitric oxide species involved in the relaxation induced by the ruthenium complex.Nitric Oxide200615438739410.1016/j.niox.2006.04.260 16769232
    [Google Scholar]
  43. FerezinC.Z. OliveiraF.S. da SilvaR.S. SimioniA.R. TedescoA.C. BendhackL.M. The complex trans-[RuCl([15]aneN4)NO]2+ induces rat aorta relaxation by ultraviolet light irradiation.Nitric Oxide200513317017510.1016/j.niox.2005.06.002 16054406
    [Google Scholar]
  44. de GaitaniC.M. de MeloM.C.C. LunardiC.N. de S Oliveira, F.; da Silva, R.S.; Bendhack, L.M. Hypotensive effect of the nitrosyl ruthenium complex nitric oxide donor in renal hypertensive rats.Nitric Oxide200920319519910.1016/j.niox.2008.12.002 19114114
    [Google Scholar]
  45. LunardiC.N. CacciariA.L. SilvaR.S. BendhackL.M. Cytosolic calcium concentration is reduced by photolysis of a nitrosyl ruthenium complex in vascular smooth muscle cells.Nitric Oxide200615325225810.1016/j.niox.2006.02.001 16564714
    [Google Scholar]
  46. WoodsJ.J. CaoJ. LippertA.R. WilsonJ.J. Characterization and biological activity of a hydrogen sulfide-releasing red light-activated Ruthenium(II) complex.J. Am. Chem. Soc.201814039123831238710.1021/jacs.8b08695 30230336
    [Google Scholar]
  47. KaesC. KatzA. HosseiniM.W. Bipyridine: The most widely used ligand. A review of molecules comprising at least two 2,2′-bipyridine units.Chem. Rev.2000100103553359010.1021/cr990376z 11749322
    [Google Scholar]
  48. ConstableE.C. HousecroftC.E. The early years of 2,2′-bipyridine: A ligand in its own lifetime.Molecules20192421395110.3390/molecules24213951 31683694
    [Google Scholar]
  49. LunardiC.N. VercesiJ.A. da SilvaR.S. BendhackL.M. Vasorelaxation induced by the new nitric oxide donor cis-[Ru(Cl)(bpy)2(NO)](PF6) is due to activation of KCa by a cGMP-dependent pathway.Vascul. Pharmacol.2007472-313914410.1016/j.vph.2007.05.003 17602893
    [Google Scholar]
  50. CerqueiraJ.B.G. SilvaL.F.G. LopesL.G.F. MoraesM.E.A. NascimentoN.R.F. Relaxation of rabbit corpus cavernosum smooth muscle and aortic vascular endothelium induced by new nitric oxide donor substances of the nitrosyl-ruthenium complex.Int. Braz J Urol200834563864710.1590/S1677‑55382008000500013 18986568
    [Google Scholar]
  51. da RochaZ.N. MarchesiM.S.P. MolinJ.C. LunardiC.N. MirandaK.M. BendhackL.M. FordP.C. da SilvaR.S. The inducing NO-vasodilation by chemical reduction of coordinated nitrite ion in cis-[Ru(NO2)L(bpy)2]+ complex.Dalton Trans.2008324282428710.1039/b803441a 18682867
    [Google Scholar]
  52. PauloM. GrandoM.D. da SilvaR.S. MinshallR.D. BendhackL.M. The nitric oxide donor RuBPY does not induce in-vitro cross-tolerance with acetylcholine.Nitric Oxide201769697710.1016/j.niox.2017.05.004 28559108
    [Google Scholar]
  53. PereiraA.C. AraújoA.V. PauloM. AndradeF.A. SilvaB.R. VercesiJ.A. da SilvaR.S. BendhackL.M. Hypotensive effect and vascular relaxation in different arteries induced by the nitric oxide donor RuBPY.Nitric Oxide201762111610.1016/j.niox.2016.11.001 27845191
    [Google Scholar]
  54. PereiraA.C. LunardiC.N. PauloM. da SilvaR.S. BendhackL.M. Nitric oxide generated by the compound RuBPY promotes the vascular smooth cell membrane hyperpolarization.Eur. J. Pharm. Sci.2013484-560461010.1016/j.ejps.2013.01.003 23333503
    [Google Scholar]
  55. PereiraA.C. FordP.C. da SilvaR.S. BendhackL.M. Ruthenium-nitrite complex as pro-drug releases NO in a tissue and enzyme-dependent way.Nitric Oxide201124419219810.1016/j.niox.2011.03.001 21440656
    [Google Scholar]
  56. PereiraA.C. AraújoA.V. PauloM. da SilvaR.S. BendhackL.M. RuBPY decreases intracellular calcium by decreasing influx and increasing storage.Clin. Exp. Pharmacol. Physiol.202249775976610.1111/1440‑1681.13652 35527704
    [Google Scholar]
  57. AraújoA.V. AndradeF.A. PauloM. de PaulaT.D. PotjeS.R. PereiraA.C. BendhackL.M. NO donors induce vascular relaxation by different cellular mechanisms in hypertensive and normotensive rats.Nitric Oxide201986122010.1016/j.niox.2019.02.004 30772501
    [Google Scholar]
  58. RodriguesG.J. PereiraA.C. de MoraesT.F. WangC.C. da SilvaR.S. BendhackL.M. Pharmacological characterization of the vasodilating effect induced by the ruthenium complex cis-[Ru(NO)(NO2)(bpy)2 (PF6)2.J. Cardiovasc. Pharmacol.201565216817510.1097/FJC.0000000000000175 25384194
    [Google Scholar]
  59. VatanabeI.P. RodriguesC.N.S. BuzinariT.C. MoraesT.F. SilvaR.S. RodriguesG.J. Ruthenium complex improves the endothelial function in aortic rings from hypertensive rats.Arq. Bras. Cardiol.2017109212413110.5935/abc.20170090 28678930
    [Google Scholar]
  60. RodriguesG.J. CicilliniS.A. SilvaR.S. BendhackL.M. Mechanisms underlying the vascular relaxation induced by a new nitric oxide generator.Nitric Oxide201125333133710.1016/j.niox.2011.06.002 21704179
    [Google Scholar]
  61. OishiJ.C. BuzinnariT.C. PestanaC.R. De MoraesT.F. VatanabeI.P. WinkD.A. Da SilvaR.S. BendhackL.M. RodriguesG.J. in-vitro treatment with cis-[Ru(H-dcbpy-)2(Cl)(NO)] improves the endothelial function in aortic rings with endothelial dysfunction.J. Pharm. Pharm. Sci.201518569670410.18433/J3CC9K 26670366
    [Google Scholar]
  62. CampeloM.W.S. CampeloA.P.B.S. LopesL.G.F. SantosA.A. GuimarãesS.B. VasconcelosP.R.L. Effects of Rut-bpy (Cis-[Ru(bpy)2(SO3)(NO)]PF 6), a novel nitric oxide donor, in L-NAME-induced hypertension in rats.Acta Cir. Bras.201126Suppl. 1575910.1590/S0102‑86502011000700012 21971659
    [Google Scholar]
  63. CostaP.P.C. CamposR. CabralP.H.B. GomesV.M. SantosC.F. WallerS.B. de SousaE.H.S. LopesL.G.F. FontelesM.C. do NascimentoN.R.F. Antihypertensive potential of cis-[Ru(bpy)2(ImN)(NO)]3+, a ruthenium-based nitric oxide donor.Res. Vet. Sci.202013015316010.1016/j.rvsc.2020.03.014 32193002
    [Google Scholar]
  64. ZanichelliP.G. EstrelaH.F.G. Spadari-BratfischR.C. Grassi-KassisseD.M. FrancoD.W. The effects of ruthenium tetraammine compounds on vascular smooth muscle.Nitric Oxide200716218919610.1016/j.niox.2006.10.001 17123848
    [Google Scholar]
  65. Conceição-VertamattiA.G. RamosL.A.F. CalandreliI. ChibaA.N. FrancoD.W. TfouniE. Grassi-KassisseD.M. Vascular response of ruthenium tetraamines in aortic ring from normotensive rats.Arq. Bras. Cardiol.2014104318519410.5935/abc.20140189 25494016
    [Google Scholar]
  66. AlvesJ.Q. PernomianL. SilvaC.D. GomesM.S. de OliveiraA.M. da SilvaR.S. Vascular tone and angiogenesis modulation by catecholamine coordinated to ruthenium.RSC Med. Chem.202011449751010.1039/C9MD00573K 33479651
    [Google Scholar]
  67. de Jesús García-RivasG. Guerrero-HernándezA. Guerrero-SernaG. Rodríguez-ZavalaJ.S. ZazuetaC. Inhibition of the mitochondrial calcium uniporter by the oxo‐bridged dinuclear ruthenium amine complex (Ru 360) prevents from irreversible injury in postischemic rat heart.FEBS J.2005272133477348810.1111/j.1742‑4658.2005.04771.x 15978050
    [Google Scholar]
  68. VadoriM. FlorioC. GroppoB. CocchiettoM. PacorS. ZorzetS. CandussioL. SavaG. The antimetastatic drug NAMI-A potentiates the phenylephrine-induced contraction of aortic smooth muscle cells and induces a transient increase in systolic blood pressure.J. Biol. Inorg. Chem.201520583184010.1007/s00775‑015‑1269‑z 25982099
    [Google Scholar]
  69. ParveenS. KhanA. Anticancer potential of ruthenium macrocyclic complexes.ACS Symposium Ser202517119610.1021/bk‑2025‑1492.ch008
    [Google Scholar]
  70. MabuzaL.P. GamedeM.W. MaikooS. BooysenI.N. NgubaneP.S. KhathiA. Cardioprotective effects of a ruthenium (II) Schiff base complex in diet-induced prediabetic rats.Diabetes Metab. Syndr. Obes.20191221722310.2147/DMSO.S183811 30858714
    [Google Scholar]
  71. NikolaouS. SilvaC. Considerations on texts dealing with the development of ruthene metalopharmacics.Quim. Nova20184183383810.21577/0100‑4042.20170228
    [Google Scholar]
  72. MazurykO. MagieraK. RysB. SuzenetF. KiedaC. BrindellM. Multifaceted interplay between lipophilicity, protein interaction and luminescence parameters of non-intercalative ruthenium(II) polypyridyl complexes controlling cellular imaging and cytotoxic properties.J. Biol. Inorg. Chem.20141981305131610.1007/s00775‑014‑1187‑5 25156150
    [Google Scholar]
  73. CatevasN. TsipisA. Axial ligand effects on the mechanism of Ru-CO bond photodissociation and photophysical properties of Ru(II)-Salen PhotoCORMs/theranostics: A density functional theory study.Molecules2025305114710.3390/molecules30051147 40076369
    [Google Scholar]
  74. YaoZ. YuK. QianC. ZhouB. LinY. ZhangX. ZhangY. ZhouT. ZengW. CaoJ. SunY. Gallium nitrate inhibits multidrug-resistant Acinetobacter baumannii isolated from bloodstream infection by disrupting multiple iron-dependent metabolic processes.BMC Microbiol.202525121610.1186/s12866‑025‑03950‑4 40229649
    [Google Scholar]
  75. MihajlovicK. MilosavljevicI. JeremicJ. SavicM. SretenovicJ. SrejovicI. ZivkovicV. JovicicN. PaunovicM. BolevichS. JakovljevicV. NovokmetS. Redox and apoptotic potential of novel ruthenium complexes in rat blood and heart.Can. J. Physiol. Pharmacol.202199220721710.1139/cjpp‑2020‑0349 32976727
    [Google Scholar]
  76. VadoriM. PacorS. VitaF. ZorzetS. CocchiettoM. SavaG. Features and full reversibility of the renal toxicity of the ruthenium-based drug NAMI-A in mice.J. Inorg. Biochem.2013118212710.1016/j.jinorgbio.2012.09.018 23123335
    [Google Scholar]
  77. SavicM. ArsenijevicA. MilovanovicJ. StojanovicB. StankovicV. SimovicA.R. LazicD. ArsenijevicN. MilovanovicM. Antitumor activity of ruthenium(II) terpyridine complexes towards colon cancer cells in-vitro and in vivo.Molecules202025204699469910.3390/molecules25204699
    [Google Scholar]
  78. LiP. LiangF. WangL. JinD. ShangY. LiuX. PanY. YuanJ. ShenJ. YinM. Bilayer vascular grafts with on-demand NO and H2S release capabilities.Bioact. Mater.202431385210.1016/j.bioactmat.2023.07.020 37601276
    [Google Scholar]
  79. MunteanuC. PopescuC. Vlădulescu-TrandafirA.I. OnoseG. Signaling paradigms of H2S-induced vasodilation: A comprehensive review.Antioxidants202413101158115810.3390/antiox13101158
    [Google Scholar]
  80. NinD.S. IdresS.B. SongZ.J. MooreP.K. DengL.W. Biological effects of morpholin-4-ium 4 methoxyphenyl (morpholino) phosphinodithioate and other phosphorothioate-based hydrogen sulfide donors.Antioxid. Redox Signal.202032214515810.1089/ars.2019.7896 31642346
    [Google Scholar]
  81. WuQ. FengY. LepoitevinM. YuM. SerreC. GeJ. HuangY. Metal–organic frameworks: Unlocking New frontiers in cardiovascular diagnosis and therapy.Adv. Sci. (Weinh.)20251222e241630210.1002/advs.202416302 40270437
    [Google Scholar]
  82. LiuR. WuH. ChungH.Y. NgY.H. Making photoresponsive metal–organic frameworks an effective class of heterogeneous photocatalyst.Adv. Funct. Mater.20252421318242131810.1002/adfm.202421318
    [Google Scholar]
  83. DasB. Transition metal complex‐loaded nanosystems: Advances in stimuli‐responsive cancer therapies.Small2025217241033810.1002/smll.202410338 39663716
    [Google Scholar]
  84. SonkarC. SarkarS. MukhopadhyayS. Ruthenium(ii)–arene complexes as anti-metastatic agents, and related techniques.RSC Med. Chem.2022131223810.1039/D1MD00220A 35224494
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575400005250905072357
Loading
/content/journals/mrmc/10.2174/0113895575400005250905072357
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test