Skip to content
2000
image of Breaking Barriers in Breast Cancer: Multi-Targeted Therapeutic Insights

Abstract

Introduction

Breast cancer accounts for one of the leading causes of cancer deaths in women globally. Breast cancer is characterized by molecular heterogeneity, and different patients show various responses to therapy. In addition to hormone therapies, there are targeted agents and immunotherapies, but resistance to therapy and recurrence remain a critical clinical problem for patients.

Methods

This review is aimed at presenting innovations in multi-targeted therapies against breast cancer. It also includes an understanding of the biological mechanisms in pathways of this disease in relation to these agents to address treatment failure. The molecular pathways examined are ER, HER2, EGFR, VEGFR, PI3K/AKT/mTOR, MAPK, PARP, and CDK4/6. Additionally, KAT6A is identified as a molecular target along with new clinical agents that are being reviewed, as well as combinations of strategies using molecular profiling and pathology reports.

Results

The major signaling pathways that control breast cancer progression and resistance, and/or sensitivity to therapy. KAT6A, a histone acetylase, was amplified in all of the ER+ breast cancers, suggesting that it can be used as a biomarker for assessing the effectiveness of CDK4/6 inhibitors and is an epigenetic therapeutic target in mammary cell lines. KAT6A is being developed as a selective KAT6 inhibitor; however, it seems most benefits may come from additional inhibitors of Menin, which could help overcome endocrine therapeutic resistance. We also reviewed CDK4/6 Mutations and resistance invariably associated with palbociclib, as well as immunotherapy with antibody-drug conjugate, including trastuzumab deruxtecan (DS-8201).

Discussion

Multi-pathway targeting holds promise to overcome shortcomings of current monotherapies. Due to the complexity of the breast cancer molecular landscape, we must plan for and potentially target resistance mechanisms. The use of KAT6A as a biomarker, along with the use of novel inhibitors, may help inform treatment decisions and improve outcomes. Additionally, this review has identified the need to position the surveillance and addressing of our resistance mechanisms for current therapies, like CDK4/6 inhibitors and antibody-drug conjugates, rationalized combinations.

Conclusion

The future of breast cancer therapy lies in combination strategies that are developed molecular profiling and guided by resistance biomarkers. Integrative, biomarker-driven treatment approaches will provide a rationalized and likely more effective means of treating advanced and refractory breast cancer in our effort to improve patient outcomes in a targeted and personalized approach.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575409206250918080644
2025-10-08
2025-10-18
Loading full text...

Full text loading...

References

  1. Sedeta E.T. Jobre B. Avezbakiyev B. Breast cancer: Global patterns of incidence, mortality, and trends. J. Clin. Oncol. 2023 41 16_suppl 10528 10528 10.1200/JCO.2023.41.16_suppl.10528
    [Google Scholar]
  2. Khanikar D. Kamalasanan K. Krishnamurthy A. Hazarika M. Kataki A.C. Breast cancer. Fundamentals in Gynaecologic Malignancy. Singapore Springer Nature Singapore 2022 133 181 10.1007/978‑981‑19‑5860‑1_10
    [Google Scholar]
  3. Orrantia-Borunda E. Anchondo-Nuñez P. Acuña-Aguilar L.E. Gómez-Valles F.O. Ramírez-Valdespino C.A. Subtypes of Breast Cancer. Breast Cancer. Exon Publications 2022 31 42 10.36255/exon‑publications‑breast‑cancer‑subtypes
    [Google Scholar]
  4. Burguin A. Diorio C. Durocher F. Breast cancer treatments: Updates and new challenges. J. Pers. Med. 2021 11 8 808 10.3390/jpm11080808 34442452
    [Google Scholar]
  5. Vidal M. Paré L. Prat A. Molecular Classification of Breast Cancer. Management of Breast Diseases. Cham Springer International Publishing 2016 203 219 10.1007/978‑3‑319‑46356‑8_12
    [Google Scholar]
  6. Ensenyat-Mendez M. Llinàs-Arias P. Orozco J.I.J. Íñiguez-Muñoz S. Salomon M.P. Sesé B. DiNome M.L. Marzese D.M. Current triple-negative breast cancer subtypes: Dissecting the most aggressive form of breast cancer. Front. Oncol. 2021 11 681476 10.3389/fonc.2021.681476 34221999
    [Google Scholar]
  7. Chapdelaine A.G. Sun G. Challenges and opportunities in developing targeted therapies for triple negative breast cancer. Biomolecules 2023 13 8 1207 10.3390/biom13081207 37627272
    [Google Scholar]
  8. Kelly C.M. Buzdar A.U. Using multiple targeted therapies in oncology: Considerations for use, and progress to date in breast cancer. Drugs 2013 73 6 505 515 10.1007/s40265‑013‑0044‑0 23605692
    [Google Scholar]
  9. Kumar M. Precision oncology, signaling pathways reprogramming and targeted therapy: A holistic approach to molecular cancer therapeutics. ScienceOpen Preprints 2024 10.14293/PR2199.000553.v4
    [Google Scholar]
  10. Xiong N. Wu H. Yu Z. Advancements and challenges in triple-negative breast cancer: A comprehensive review of therapeutic and diagnostic strategies. Front. Oncol. 2024 14 1405491 10.3389/fonc.2024.1405491 38863622
    [Google Scholar]
  11. Doostmohammadi A. Jooya H. Ghorbanian K. Gohari S. Dadashpour M. Potentials and future perspectives of multi-target drugs in cancer treatment: The next generation anti-cancer agents. Cell Commun. Signal. 2024 22 1 228 10.1186/s12964‑024‑01607‑9 38622735
    [Google Scholar]
  12. Zhang Y. Targeting epidermal growth factor receptor for cancer treatment: Abolishing both kinase-dependent and kinase-independent functions of the receptor. Pharmacol. Rev. 2023 75 6 1218 1232 10.1124/pharmrev.123.000906 37339882
    [Google Scholar]
  13. Sankarapandian V. Rajendran R.L. Miruka C.O. Sivamani P. Maran B.A.V. Krishnamoorthy R. Gangadaran P. Ahn B.C. A review on tyrosine kinase inhibitors for targeted breast cancer therapy. Pathol. Res. Pract. 2024 263 155607 10.1016/j.prp.2024.155607 39326367
    [Google Scholar]
  14. Walter K.R. Goodman M.L. Singhal H. Hall J.A. Li T. Holloran S.M. Trinca G.M. Gibson K.A. Jin V.X. Greene G.L. Hagan C.R. Interferon-stimulated genes are transcriptionally repressed by pr in breast cancer. Mol. Cancer Res. 2017 15 10 1331 1340 10.1158/1541‑7786.MCR‑17‑0180 28684637
    [Google Scholar]
  15. Leu Y.W. Yan P.S. Fan M. Jin V.X. Liu J.C. Curran E.M. Welshons W.V. Wei S.H. Davuluri R.V. Plass C. Nephew K.P. Huang T.H.M. Loss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer. Cancer Res. 2004 64 22 8184 8192 10.1158/0008‑5472.CAN‑04‑2045 15548683
    [Google Scholar]
  16. Finlay-Schultz J. Gillen A.E. Brechbuhl H.M. Ivie J.J. Matthews S.B. Jacobsen B.M. Bentley D.L. Kabos P. Sartorius C.A. Breast cancer suppression by progesterone receptors is mediated by their modulation of estrogen receptors and RNA polymerase III. Cancer Res. 2017 77 18 4934 4946 10.1158/0008‑5472.CAN‑16‑3541 28729413
    [Google Scholar]
  17. Schmidt S Lange CA Role of ER, PR, IRS-1 transcriptional complexes in endocrine resistant luminal breast cancer. J Endocr Soc 2024 8 Supplement_1 bvae163.1824 10.1210/jendso/bvae163.1824
    [Google Scholar]
  18. Cavallaro P.A. De Santo M. Belsito E.L. Longobucco C. Curcio M. Morelli C. Pasqua L. Leggio A. Peptides targeting HER2-positive breast cancer cells and applications in tumor imaging and delivery of chemotherapeutics. Nanomaterials 2023 13 17 2476 10.3390/nano13172476 37686984
    [Google Scholar]
  19. Swain S.M. Shastry M. Hamilton E. Targeting HER2-positive breast cancer: Advances and future directions. Nat. Rev. Drug Discov. 2023 22 2 101 126 10.1038/s41573‑022‑00579‑0 36344672
    [Google Scholar]
  20. Rojhannezhad M. Soltani B.M. Vasei M. Ghorbanmehr N. Mowla S.J. Functional analysis of a putative HER2-associated expressed enhancer, Her2-Enhancer1, in breast cancer cells. Sci. Rep. 2023 13 1 19516 10.1038/s41598‑023‑46460‑x 37945744
    [Google Scholar]
  21. Nami B. Ghanaeian A. Black C. Wang Z. Epigenetic silencing of HER2 expression during epithelial-mesenchymal transition leads to trastuzumab resistance in breast cancer. Life 2021 11 9 868 10.3390/life11090868 34575017
    [Google Scholar]
  22. Yuan Y. Zhou S. Li C. Zhang X. Mao H. Chen W. Jiang X. Cascade downregulation of the her family by a dual‐targeted recombinant protein–drug conjugate to inhibit tumor growth and metastasis. Adv. Mater. 2022 34 23 2201558 10.1002/adma.202201558 35365900
    [Google Scholar]
  23. Ghosh C. Xing Y. Cai J. Sun Y. Irreversible tyrosine kinase inhibitors induce the endocytosis and downregulation of ErbB2. Biochem. Biophys. Rep. 2023 34 101436 10.1016/j.bbrep.2023.101436 36824069
    [Google Scholar]
  24. Widatalla S.E. Korolkova O.Y. Whalen D.S. Goodwin J.S. Williams K.P. Ochieng J. Sakwe A.M. Lapatinib-induced annexin A6 upregulation as an adaptive response of triple-negative breast cancer cells to EGFR tyrosine kinase inhibitors. Carcinogenesis 2019 40 8 998 1009 10.1093/carcin/bgy192 30590459
    [Google Scholar]
  25. Zheng J. Ma Y. Fang Z. Qi Y. Abstract 549: PDZK1 sensitizes TNBC cells to erlotinib via promoting c-Cbl-mediated EGFR degradation and inhibiting EGFR phosphorylation. Cancer Res. 2024 84 6_Supplement 549 549 10.1158/1538‑7445.AM2024‑549
    [Google Scholar]
  26. Haines E. Schlienger S. Claing A. The small GTPase ADP-Ribosylation Factor 1 mediates the sensitivity of triple negative breast cancer cells to EGFR tyrosine kinase inhibitors. Cancer Biol. Ther. 2015 16 10 1535 1547 10.1080/15384047.2015.1071737 26176330
    [Google Scholar]
  27. Huh J.I. Calvo A. Stafford J. Cheung M. Kumar R. Philp D. Kleinman H.K. Green J.E. Inhibition of VEGF receptors significantly impairs mammary cancer growth in C3(1)/Tag transgenic mice through antiangiogenic and non-antiangiogenic mechanisms. Oncogene 2005 24 5 790 800 10.1038/sj.onc.1208221 15592523
    [Google Scholar]
  28. Young E. Miele L. Tucker K.B. Huang M. Wells J. Gu J.W. SU11248, A selective tyrosine kinases inhibitor suppresses breast tumor angiogenesis and growth via targeting both tumor vasculature and breast cancer cells. Cancer Biol. Ther. 2010 10 7 703 711 10.4161/cbt.10.7.12904 20686367
    [Google Scholar]
  29. Gu J.W. Tucker K.B. Huang M. Young E. Wells J. Pan Z.J. SU11248, a selective tyrosine kinases inhibitor suppresses breast tumor angiogenesis and growth via targeting both tumor vasculature and breast cancer cells. FASEB J. 2010 24 S1 10.1096/fasebj.24.1_supplement.774.1
    [Google Scholar]
  30. Chien M.H. Lee L.M. Hsiao M. Wei L.H. Chen C.H. Lai T.C. Hua K.T. Chen M.W. Sun C.M. Kuo M.L. Inhibition of metastatic potential in breast carcinoma in vivo and in vitro through targeting VEGFRs and FGFRs. Evid. Based Complement. Alternat. Med. 2013 2013 1 13 10.1155/2013/718380 23861711
    [Google Scholar]
  31. Lazarte J.M.S. Lamango N.S. Activation of MAP kinase pathway by polyisoprenylated cysteinyl amide inhibitors causes apoptosis and disrupts breast cancer cell invasion. Biomedicines 2024 12 3 470 10.3390/biomedicines12030470 38540084
    [Google Scholar]
  32. Shi A. Liu L. Li S. Qi B. Natural products targeting the MAPK-signaling pathway in cancer: Overview. J. Cancer Res. Clin. Oncol. 2024 150 1 6 10.1007/s00432‑023‑05572‑7 38193944
    [Google Scholar]
  33. Bahar M.E. Kim H.J. Kim D.R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical studies. Signal Transduct. Target. Ther. 2023 8 1 455 10.1038/s41392‑023‑01705‑z 38105263
    [Google Scholar]
  34. Du S.G. Zhang H.M. Ji Y.X. Tian Y.L. Wang D. Zhu K. Zhang Q.G. Liu S.P. Polyphyllin VII promotes apoptosis in breast cancer by inhibiting mapk/erk signaling pathway through downregulation of SOS1. Am. J. Chin. Med. 2024 52 3 885 904 10.1142/S0192415X24500368 38716619
    [Google Scholar]
  35. Huang J Zeng S Xiao Y Wang X Li H Xiang T Kong L Ren G MAPK pathway inhibition as a rational therapeutic strategy for mir-138-5p/paqr3 dysregulation-mediated epirubicin resistance in triple-negative breast cancer. bioRxiv 10.1101/2021.02.28.433242 2021
    [Google Scholar]
  36. Kim G.E. Kim N.I. Lee J.S. Park M.H. Yoon J.H. Reduced RKIP expression is associated with breast neoplastic progression and is correlated with poor outcomes and aberrant methylation in breast carcinoma. Appl. Immunohistochem. Mol. Morphol. 2017 25 7 467 474 10.1097/PAI.0000000000000323 26894644
    [Google Scholar]
  37. Braicu C. Buse M. Busuioc C. Drula R. Gulei D. Raduly L. Rusu A. Irimie A. Atanasov A.G. Slaby O. Ionescu C. Berindan-Neagoe I. A comprehensive review on mapk: A promising therapeutic target in cancer. Cancers 2019 11 10 1618 10.3390/cancers11101618 31652660
    [Google Scholar]
  38. Hegan D.C. Lu Y. Stachelek G.C. Crosby M.E. Bindra R.S. Glazer P.M. Inhibition of poly(ADP-ribose) polymerase down-regulates BRCA1 and RAD51 in a pathway mediated by E2F4 and p130. Proc. Natl. Acad. Sci. USA 2010 107 5 2201 2206 10.1073/pnas.0904783107 20133863
    [Google Scholar]
  39. Carey J.P.W. Karakas C. Bui T. Chen X. Vijayaraghavan S. Zhao Y. Wang J. Mikule K. Litton J.K. Hunt K.K. Keyomarsi K. Synthetic lethality of PARP inhibitors in combination with MYC blockade is independent of brca status in triple-negative breast cancer. Cancer Res. 2018 78 3 742 757 10.1158/0008‑5472.CAN‑17‑1494 29180466
    [Google Scholar]
  40. McCann K.E. Hurvitz S.A. Advances in the use of PARP inhibitor therapy for breast cancer. Drugs Context 2018 7 1 30 10.7573/dic.212540 30116283
    [Google Scholar]
  41. Rios J. Puhalla S. PARP inhibitors in breast cancer: BRCA and beyond. Oncology 2011 25 11 1014 1025 22106552
    [Google Scholar]
  42. Yu S. Si Y. Xu M. Wang Y. Liu C. Bi C. Sun M. Sun H. Downregulation of the splicing regulator NSRP1 confers resistance to CDK4/6 inhibitors via activation of interferon signaling in breast cancer. J. Biol. Chem. 2025 301 1 108070 10.1016/j.jbc.2024.108070 39667501
    [Google Scholar]
  43. Yang W.C. Wei M.F. Lee Y.H. Huang C.S. Kuo S.H. Radiosensitizing effects of CDK4/6 inhibitors in hormone receptor-positive and HER2-negative breast cancer mediated downregulation of DNA repair mechanism and NF-κB-signaling pathway. Transl. Oncol. 2024 49 102092 10.1016/j.tranon.2024.102092 39153367
    [Google Scholar]
  44. Lin C.Y. Yu C.J. Liu C.Y. Chao T.C. Huang C.C. Tseng L.M. Lai J.I. CDK4/6 inhibitors downregulate the ubiquitin-conjugating enzymes UBE2C/S/T involved in the ubiquitin–proteasome pathway in ER + breast cancer. Clin. Transl. Oncol. 2022 24 11 2120 2135 10.1007/s12094‑022‑02881‑0 35917055
    [Google Scholar]
  45. Zhang H. Jiang R. Zhu J. Sun K. Huang Y. Zhou H. Zheng Y. Wang X. PI3K/AKT/mTOR signaling pathway: An important driver and therapeutic target in triple-negative breast cancer. Breast Cancer 2024 31 4 539 551 10.1007/s12282‑024‑01567‑5 38630392
    [Google Scholar]
  46. Jiang Q. Xiao J. Hsieh Y.C. Kumar N.L. Han L. Zou Y. Li H. The Role of the PI3K/Akt/mTOR Axis in Head and Neck Squamous Cell Carcinoma. Biomedicines 2024 12 7 1610 10.3390/biomedicines12071610 39062182
    [Google Scholar]
  47. Glaviano A. Foo A.S.C. Lam H.Y. Yap K.C.H. Jacot W. Jones R.H. Eng H. Nair M.G. Makvandi P. Geoerger B. Kulke M.H. Baird R.D. Prabhu J.S. Carbone D. Pecoraro C. Teh D.B.L. Sethi G. Cavalieri V. Lin K.H. Javidi-Sharifi N.R. Toska E. Davids M.S. Brown J.R. Diana P. Stebbing J. Fruman D.A. Kumar A.P. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023 22 1 138 10.1186/s12943‑023‑01827‑6 37596643
    [Google Scholar]
  48. Abu-Alghayth M.H. Khan F.R. Belali T.M. Abalkhail A. Alshaghdali K. Nassar S.A. Almoammar N.E. Almasoudi H.H. Hessien K.B.G. aldossari M. Binshaya A.S. The emerging role of noncoding RNAs in the PI3K/AKT/mTOR signalling pathway in breast cancer. Pathol. Res. Pract. 2024 255 155180 10.1016/j.prp.2024.155180 38330621
    [Google Scholar]
  49. Zhu K. Wu Y. He P. Fan Y. Zhong X. Zheng H. Luo T. PI3K/AKT/mTOR-Targeted therapy for breast cancer. Cells 2022 11 16 2508 10.3390/cells11162508 36010585
    [Google Scholar]
  50. Cerma K. Piacentini F. Moscetti L. Barbolini M. Canino F. Tornincasa A. Caggia F. Cerri S. Molinaro A. Dominici M. Omarini C. Targeting PI3K/AKT/mTOR Pathway in Breast Cancer: From Biology to Clinical Challenges. Biomedicines 2023 11 1 109 10.3390/biomedicines11010109 36672617
    [Google Scholar]
  51. Browne I.M. Okines A.F.C. Resistance to targeted inhibitors of the pi3k/akt/mtor pathway in advanced oestrogen-receptor-positive breast cancer. Cancers 2024 16 12 2259 10.3390/cancers16122259 38927964
    [Google Scholar]
  52. Miricescu D. Totan A. Stanescu-Spinu I.I. Badoiu S.C. Stefani C. Greabu M. PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects. Int. J. Mol. Sci. 2020 22 1 173 10.3390/ijms22010173 33375317
    [Google Scholar]
  53. Sharma V.R. Gupta G.K. Sharma A.K. Batra N. Sharma D.K. Joshi A. Sharma A.K. PI3K/Akt/mTOR intracellular pathway and breast cancer: Factors, mechanism and regulation. Curr. Pharm. Des. 2017 23 11 1633 1638 10.2174/1381612823666161116125218 27848885
    [Google Scholar]
  54. Palanisamy G.S. Venkateshappa C. Goyal M. Barratt S.A. Hearn B.R. Daginakatte G. B A.A. S S.D. Bera K. S S. Khare L. Parisian A.D. Heerding D.A. Ng R.A. Harmon C.L. Samajdar S. Ramachandra M. Myles D.C. Abstract A044: The discovery of potent KAT6 inhibitors that demonstrate anti-tumor activity in preclinical models of ER+ breast cancer. Mol. Cancer Ther. 2023 22 12_Supplement A044 A044 10.1158/1535‑7163.TARG‑23‑A044
    [Google Scholar]
  55. Cai X. Cheng X. Qin L. Zhang M. Qiao J. Bavadekar S. Rao S. Ren F. Abstract PO2-05-08: ISM5043, a novel, selective KAT6 inhibitor for the treatment of advanced and refractory ER+ breast cancer. Cancer Rsearch 2024 84 (9_Supplement) PO2-05 10.1158/1538‑7445.SABCS23‑PO2‑05‑08
    [Google Scholar]
  56. Mukohara T. Park Y.H. Sommerhalder D. Yonemori K. Kim S-B. Kim J.H. Iwata H. Yamashita T. Layman R.M. Kim G.M. Im S-A. Lindeman G.J. Rugo H.S. Liyanage M. Homji Mishra N. Maity A. Bogg O. Liu L. Li M. LoRusso P. A phase 1 dose expansion study of a first-in-class KAT6 inhibitor (PF-07248144) in patients with advanced or metastatic ER+ HER2− breast cancer. J. Clin. Oncol. 2024 42 16_suppl 3006 3006 10.1200/JCO.2024.42.16_suppl.3006
    [Google Scholar]
  57. Olsen S.N. Anderson B. Hatton C. Jeselsohn R. Brown M. Toska E. Armstrong S. Abstract PR012: KAT6A/B and Menin-MLL complexes coordinately regulate estrogen receptor-driven gene expression programs in breast cancer. Mol. Cancer Ther. 2024 23 6_Supplement PR012 PR012 10.1158/1538‑8514.SYNTHLETH24‑PR012
    [Google Scholar]
  58. Cristofanilli M. Liu L. Deng S. Huang X. André F. Loibl S. DeMichele A. Gauthier E. Liu Y. Turner N.C. Abstract 7613: Association of KAT6A expression with clinical outcomes in previously treated HR-positive and HER2-negative metastatic breast cancer. Cancer Res. 2024 84 6_Supplement 7613 7613 10.1158/1538‑7445.AM2024‑7613
    [Google Scholar]
  59. Jiang R. Zhu J. Zhang H. Yu Y. Dong Z. Zhou H. Wang X. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int. 2024 24 1 356 10.1186/s12935‑024‑03541‑9 39468521
    [Google Scholar]
  60. V. & M. I. & G. M. & G. A. & T. A. Lorusso Present and Emerging Target Therapy for Metastatic Breast Cancer. J. Cancer Res. Updates 2012 1 1 1 8
    [Google Scholar]
  61. Mehta K. Hegde M. Girisa S. Vishwa R. Alqahtani M.S. Abbas M. Shakibaei M. Sethi G. Kunnumakkara A.B. Targeting RTKs/nRTKs as promising therapeutic strategies for the treatment of triple-negative breast cancer: Evidence from clinical trials. Mil. Med. Res. 2024 11 1 76 10.1186/s40779‑024‑00582‑z 39668367
    [Google Scholar]
  62. Roskoski R. Jr Targeted and cytotoxic inhibitors used in the treatment of breast cancer. Pharmacol. Res. 2024 210 107534 10.1016/j.phrs.2024.107534 39631485
    [Google Scholar]
  63. Alečković M. Li Z. Zhou N. Qiu X. Lulseged B. Foidart P. Huang X.Y. Garza K. Shu S. Kesten N. Li R. Lim K. Garrido-Castro A.C. Guerriero J.L. Qi J. Long H.W. Polyak K. Combination therapies to improve the efficacy of immunotherapy in triple-negative breast cancer. Mol. Cancer Ther. 2023 22 11 1304 1318 10.1158/1535‑7163.MCT‑23‑0303 37676980
    [Google Scholar]
  64. Sambi M. Haq S. Samuel V. Qorri B. Haxho F. Hill K. Harless W. Szewczuk M. Alternative therapies for metastatic breast cancer: Multimodal approach targeting tumor cell heterogeneity. Breast Cancer 2017 9 85 93 10.2147/BCTT.S130838 28280388
    [Google Scholar]
  65. Szulc A. Woźniak M. Targeting pivotal hallmarks of cancer for enhanced therapeutic strategies in triple-negative breast cancer treatment—in vitro, in vivo and clinical trials literature review. Cancers 2024 16 8 1483 10.3390/cancers16081483 38672570
    [Google Scholar]
  66. Triple Negative Breast Cancer: Tumour Biology and Optimisation of Clinical Outcome. Journal of Angiotherapy 2022 6 3 10.25163/angiotherapy.638C
    [Google Scholar]
  67. Zhang J. Xia Y. Zhou X. Yu H. Tan Y. Du Y. Zhang Q. Wu Y. Current landscape of personalized clinical treatments for triple-negative breast cancer. Front. Pharmacol. 2022 13 977660 10.3389/fphar.2022.977660 36188535
    [Google Scholar]
  68. Li Y. Zhan Z. Yin X. Fu S. Deng X. Targeted therapeutic strategies for triple-negative breast cancer. Front. Oncol. 2021 11 731535 10.3389/fonc.2021.731535 34778045
    [Google Scholar]
  69. Mokhtarpour K. Razi S. Rezaei N. Ferroptosis as a promising targeted therapy for triple negative breast cancer. Breast Cancer Res. Treat. 2024 207 3 497 513 10.1007/s10549‑024‑07387‑7 38874688
    [Google Scholar]
  70. Vitale I. Shema E. Loi S. Galluzzi L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 2021 27 2 212 224 10.1038/s41591‑021‑01233‑9 33574607
    [Google Scholar]
  71. Ramón y Cajal S. Sesé M. Capdevila C. Aasen T. De Mattos-Arruda L. Diaz-Cano S.J. Hernández-Losa J. Castellví J. Clinical implications of intratumor heterogeneity: Challenges and opportunities. J. Mol. Med. 2020 98 2 161 177 10.1007/s00109‑020‑01874‑2 31970428
    [Google Scholar]
  72. Pribluda A. de la Cruz C.C. Jackson E.L. Intratumoral heterogeneity: From diversity comes resistance. Clin. Cancer Res. 2015 21 13 2916 2923 10.1158/1078‑0432.CCR‑14‑1213 25838394
    [Google Scholar]
  73. Dagogo-Jack I. Shaw A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018 15 2 81 94 10.1038/nrclinonc.2017.166 29115304
    [Google Scholar]
  74. Khan S. Jandrajupalli S.B. Bushara N.Z.A. Raja R.D.P. Mirza S. Sharma K. Verma R. Kumar A. Lohani M. Targeting refractory triple-negative breast cancer with sacituzumab govitecan: A new era in precision medicine. Cells 2024 13 24 2126 10.3390/cells13242126 39768216
    [Google Scholar]
  75. Keller D.M. From shotgun to Gatling Gun: Multi-barrelled approach to cancer treatment. Oncology Times UK 2009 6 5 17 18 10.1097/01434893‑200905000‑00015
    [Google Scholar]
  76. Petrelli A. Valabrega G. Multitarget drugs: The present and the future of cancer therapy. Expert Opin. Pharmacother. 2009 10 4 589 600 10.1517/14656560902781907 19284362
    [Google Scholar]
  77. Şeker Karatoprak G. Dumlupınar B. Celep E. Kurt Celep I. Küpeli Akkol E. Sobarzo-Sánchez E. A comprehensive review on the potential of coumarin and related derivatives as multi-target therapeutic agents in the management of gynecological cancers. Front. Pharmacol. 2024 15 1423480 10.3389/fphar.2024.1423480 39364049
    [Google Scholar]
  78. Curigliano G Criscitiello C Successes and limitations of targeted cancer therapy in breast cancer. Prog. Tumor. Res. 2014 41 15 35 10.1159/000355896 24727984
    [Google Scholar]
  79. Baliu-Piqué M. Pandiella A. Ocana A. Breast cancer heterogeneity and response to novel therapeutics. Cancers 2020 12 11 3271 10.3390/cancers12113271 33167363
    [Google Scholar]
  80. Jemal A. Bray F. Center M.M. Ferlay J. Ward E. Forman D. Global cancer statistics. CA Cancer J. Clin. 2011 61 2 69 90 10.3322/caac.20107 21296855
    [Google Scholar]
  81. Shipitsin M. Campbell L.L. Argani P. Weremowicz S. Bloushtain-Qimron N. Yao J. Nikolskaya T. Serebryiskaya T. Beroukhim R. Hu M. Halushka M.K. Sukumar S. Parker L.M. Anderson K.S. Harris L.N. Garber J.E. Richardson A.L. Schnitt S.J. Nikolsky Y. Gelman R.S. Polyak K. Molecular definition of breast tumor heterogeneity. Cancer Cell 2007 11 3 259 273 10.1016/j.ccr.2007.01.013 17349583
    [Google Scholar]
  82. Chambers A.F. Groom A.C. MacDonald I.C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2002 2 8 563 572 10.1038/nrc865 12154349
    [Google Scholar]
  83. Reya T. Morrison S.J. Clarke M.F. Weissman I.L. Stem cells, cancer, and cancer stem cells. Nature 2001 414 6859 105 111 10.1038/35102167 11689955
    [Google Scholar]
  84. Eyler C.E. Rich J.N. Survival of the fittest: Cancer stem cells in therapeutic resistance and angiogenesis. J. Clin. Oncol. 2008 26 17 2839 2845 10.1200/JCO.2007.15.1829 18539962
    [Google Scholar]
  85. Dick J.E. Breast cancer stem cells revealed. Proc. Natl. Acad. Sci. USA 2003 100 7 3547 3549 10.1073/pnas.0830967100 12657737
    [Google Scholar]
  86. Campbell L.L. Polyak K. Breast tumor heterogeneity: Cancer stem cells or clonal evolution? Cell Cycle 2007 6 19 2332 2338 10.4161/cc.6.19.4914 17786053
    [Google Scholar]
  87. Ryszkiewicz P. Malinowska B. Schlicker E. Polypharmacology: New drugs in 2023–2024. Pharmacol. Rep. 2025 77 3 543 560 10.1007/s43440‑025‑00715‑8 40095348
    [Google Scholar]
  88. Yang T. Li W. Huang T. Zhou J. Antibody-drug conjugates for breast cancer treatment: Emerging agents, targets and future directions. Int. J. Mol. Sci. 2023 24 15 11903 10.3390/ijms241511903 37569276
    [Google Scholar]
  89. Zimmerman B.S. Esteva F.J. Next-generation her2-targeted antibody–drug conjugates in breast cancer. Cancers 2024 16 4 800 10.3390/cancers16040800
    [Google Scholar]
  90. De A Patel S Gowthamarajan K Next-generation therapies for breast cancer. Functional smart nanomaterials and their theranostics approaches Madhusudhan A Purohit SD Prasad R Husen A Singapore Springer 2024 10.1007/978‑981‑99‑6597‑7_5
    [Google Scholar]
  91. Garg P. Singhal G. Kulkarni P. Horne D. Salgia R. Singhal S.S. Artificial intelligence–driven computational approaches in the development of anticancer drugs. Cancers 2024 16 22 3884 10.3390/cancers16223884 39594838
    [Google Scholar]
  92. Singh D. Sachdeva D. Singh L. Advancing breast cancer drug delivery: The transformative potential of bioinformatics and artificial intelligence. Curr. Cancer Ther. Rev. 2025 21 3 254 264 10.2174/0115733947287709240229104857
    [Google Scholar]
  93. R N Venkatesan M Chandrabose P Karuppiah Subbulakshmanan NK Krishnan S Revolutionizing breast cancer care: The role of artificial intelligence in detection, prediction, and personalized treatment. Proceedings of the First International Conference on Science, Engineering and Technology Practices for Sustainable Development, ICSETPSD 2023 Coimbatore, Tamilnadu, India, 17th-18th November 2023.
    [Google Scholar]
  94. Tousif Md Noumil Akhter Rumana Labonno Tasnima Mahmud Sadia Islam Md Revolutionizing cancer therapy: The role of artificial intelligence in enhancing treatment efficacy. 2023 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD) Dhaka, Bangladesh, 21-23 September 2023, pp. 89–93 10.1109/ICICT4SD59951.2023.10303570
    [Google Scholar]
  95. Yu D. Application and prospects of artificial intelligence in breast cancer early diagnosis, screening, and treatment. Transact. Mat. Biotech. Life Sci. 2024 3 213 218 10.62051/5wdt5q27
    [Google Scholar]
  96. Mufamadi S. Ngoepe M. Battison A. Zosela I. Novel pharmaceutical nanomaterials to advance the current breast cancer treatment – current trends and future perspective. Drug and Therapy Development for Triple Negative Breast Cancer. Hoboken, New Jersey Wiley 2023 117 129 10.1002/9783527841165.ch7
    [Google Scholar]
  97. Patel P. Vedarethinam V. Korsah M.A. Danquah M.K. Jeevanandam J. Exploring the potential of nanoparticles in the treatment of breast cancer: Current applications and future directions. Appl. Sci. 2024 14 5 1809 10.3390/app14051809
    [Google Scholar]
  98. Basingab F. Alshahrani O. Alansari I. Almarghalani N. Alshelali N. Alsaiary A. Alharbi N. Zaher K. From pioneering discoveries to innovative therapies: A journey through the history and advancements of nanoparticles in breast cancer treatment. Breast Cancer 2025 17 27 51 10.2147/BCTT.S501448 39867813
    [Google Scholar]
  99. Wang R. Kumar P. Reda M. Wallstrum A.G. Crumrine N.A. Ngamcherdtrakul W. Yantasee W. Nanotechnology applications in breast cancer immunotherapy. Small 2023 Dec 2308639 10.1002/smll.202308639 38126905
    [Google Scholar]
  100. Tran P. Lee S.E. Kim D.H. Pyo Y.C. Park J.S. Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. J. Pharm. Investig. 2020 50 3 261 270 10.1007/s40005‑019‑00459‑7
    [Google Scholar]
  101. Mukherjee D. Raikwar S. Recent update on nanocarrier(s) as the targeted therapy for breast cancer. AAPS PharmSciTech 2024 25 6 153 10.1208/s12249‑024‑02867‑x 38961013
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575409206250918080644
Loading
/content/journals/mrmc/10.2174/0113895575409206250918080644
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: multi-targeted ; hormone receptors ; tyrosine kinase ; Breast cancer ; KAT6A ; biomarker
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test