Skip to content
2000
image of Unraveling the Multifunctional Therapeutic Potential of Topsentin: A Marine-derived Versatile Scaffold

Abstract

Natural products (NPs) have long served as a rich inspirational source for drug discovery and development, offering diverse chemical structures and biological activities. Among these, topsentin, a marine alkaloid derived from marine sponges, has emerged as a promising scaffold due to its remarkable pharmacological properties and structural versatility. This review explores the significance of topsentin and its derivatives in drug discovery efforts. It discusses the diverse biological activities of topsentin and its analogs, including anticancer, antimicrobial, anti-inflammatory, and antiviral properties, highlighting their potential therapeutic applications. Moreover, it also focuses on the structural features of topsentin that contribute to its pharmacological profile, emphasizing its importance in the design and development of novel therapeutic agents. Structural modifications and synthetic strategies employed to enhance the pharmacological properties of topsentin derivatives are also discussed. Overall, this review underscores the significance of topsentin as a promising scaffold in drug discovery.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575405016251027105418
2026-01-20
2026-01-31
Loading full text...

Full text loading...

References

  1. Latif K. Ullah A. Shkodina A.D. Boiko D.I. Rafique Z. Alghamdi B.S. Alfaleh M.A. Ashraf G.M. Drug reprofiling history and potential therapies against Parkinson’s disease. Front. Pharmacol. 2022 13 1028356 10.3389/fphar.2022.1028356 36386233
    [Google Scholar]
  2. Shang X. Dai L. Cao X. Ma Y. Gulnaz I. Miao X. Li X. Yang X. Natural products in antiparasitic drug discovery: Advances, opportunities and challenges. Nat. Prod. Rep. 2025 42 9 1419 1458 10.1039/D5NP00007F 40501439
    [Google Scholar]
  3. Raymond M.J.F. Rakotondraibe H.L. Recent updates on terpenoids and other bioactive constituents of marine sponges. Molecules 2025 30 5 1112 10.3390/molecules30051112 40076335
    [Google Scholar]
  4. Sun H. Sun K. Sun J. Recent advances of marine natural indole products in chemical and biological aspects. Molecules 2023 28 5 2204 10.3390/molecules28052204 36903451
    [Google Scholar]
  5. Aborode A.T. Awuah W.A. Mikhailova T. Abdul- Rahman, T.; Pavlock, S.; Kundu, M.; Yarlagadda, R.; Pustake, M.; Correia, I.F.S.; Mehmood, Q.; Shah, P.; Mehta, A.; Ahmad, S.; Asekun, A.; Nansubuga, E.P.; Amaka, S.O.; Shkodina, A.D.; Alexiou, A. OMICs technologies for natural compounds-based drug development. Curr. Top. Med. Chem. 2022 22 21 1751 1765 10.2174/1568026622666220726092034 35894473
    [Google Scholar]
  6. Abdelrheem D.A. Abd El-Mageed H.R. Mohamed H.S. Rahman A.A. Elsayed K.N.M. Ahmed S.A. Bis-indole alkaloid caulerpin from a new source Sargassum platycarpum: Isolation, characterization, in vitro anticancer activity, binding with nucleobases by DFT calculations and MD simulation. J. Biomol. Struct. Dyn. 2021 39 14 5137 5147 10.1080/07391102.2020.1784285 32579063
    [Google Scholar]
  7. Khan N.A. Kaur N. Owens P. Thomas O.P. Boyd A. Bis-indole alkaloids isolated from the sponge Spongosorites calcicola disrupt cell membranes of MRSA. Int. J. Mol. Sci. 2022 23 4 1991 10.3390/ijms23041991 35216106
    [Google Scholar]
  8. Mizobuti D.S. da Rocha G.L. da Silva H.N.M. Covatti C. de Lourenço C.C. Pereira E.C.L. Salvador M.J. Minatel E. Antioxidant effects of bis-indole alkaloid indigo and related signaling pathways in the experimental model of Duchenne muscular dystrophy. Cell Stress Chaperones 2022 27 4 417 429 10.1007/s12192‑022‑01282‑0 35687225
    [Google Scholar]
  9. Zoraghi R. Worrall L. See R.H. Strangman W. Popplewell W.L. Gong H. Samaai T. Swayze R.D. Kaur S. Vuckovic M. Finlay B.B. Brunham R.C. McMaster W.R. Davies-Coleman M.T. Strynadka N.C. Andersen R.J. Reiner N.E. Methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase as a target for bis-indole alkaloids with antibacterial activities. J. Biol. Chem. 2011 286 52 44716 44725 10.1074/jbc.M111.289033 22030393
    [Google Scholar]
  10. Garcia-Lopez A. Tessaro F. Jonker H.R.A. Wacker A. Richter C. Comte A. Berntenis N. Schmucki R. Hatje K. Petermann O. Chiriano G. Perozzo R. Sciarra D. Konieczny P. Faustino I. Fournet G. Orozco M. Artero R. Metzger F. Ebeling M. Goekjian P. Joseph B. Schwalbe H. Scapozza L. Targeting RNA structure in SMN2 reverses spinal muscular atrophy molecular phenotypes. Nat. Commun. 2018 9 1 2032 10.1038/s41467‑018‑04110‑1 29795225
    [Google Scholar]
  11. Wright A. Killday K. Chakrabarti D. Guzmán E. Harmody D. McCarthy P. Pitts T. Pomponi S. Reed J. Roberts B. Rodrigues Felix C. Rohde K. Dragmacidin G. Dragmacidin G, a bioactive bis-indole alkaloid from a deep-water sponge of the genus spongosorites. Mar. Drugs 2017 15 1 16 10.3390/md15010016 28085024
    [Google Scholar]
  12. Bartik K. Braekman J.C. Daloze D. Stoller C. Huysecom J. Vandevyver G. Ottinger R. Topsentins, new toxic bis-indole alkaloids from the marine sponge Topsentia genitrix. Can. J. Chem. 1987 65 9 2118 2121 10.1139/v87‑352
    [Google Scholar]
  13. Tsujii S. Rinehart K.L. Gunasekera S.P. Kashman Y. Cross S.S. Lui M.S. Pomponi S.A. Diaz M.C. Topsentin, bromotopsentin, and dihydrodeoxybromotopsentin: Antiviral and antitumor bis(indolyl)imidazoles from Caribbean deep-sea sponges of the family Halichondriidae. Structural and synthetic studies. J. Org. Chem. 1988 53 23 5446 5453 10.1021/jo00258a009
    [Google Scholar]
  14. Sakemi S. Sun H.H. Nortopsentins A. Nortopsentins A. B, and C. Cytotoxic and antifungal imidazolediylbis[indoles] from the sponge Spongosorites ruetzleri. J. Org. Chem. 1991 56 13 4304 4307 10.1021/jo00013a044
    [Google Scholar]
  15. Gunasekera S.P. McCarthy P.J. Kelly-Borges M. Hamacanthins A and B, new antifungal bis indole alkaloids from the deep-water marine sponge, Hamacantha sp. J. Nat. Prod. 1994 57 10 1437 1441 10.1021/np50112a014 7807127
    [Google Scholar]
  16. Gogineni V. Schinazi R.F. Hamann M.T. Role of marine natural products in the genesis of antiviral agents. Chem. Rev. 2015 115 18 9655 9706 10.1021/cr4006318 26317854
    [Google Scholar]
  17. Oh K.B. Mar W. Kim S. Kim J.Y. Oh M.N. Kim J.G. Shin D. Sim C.J. Shin J. Bis(indole) alkaloids as sortase A inhibitors from the sponge Spongosorites sp. Bioorg. Med. Chem. Lett. 2005 15 22 4927 4931 10.1016/j.bmcl.2005.08.021 16154746
    [Google Scholar]
  18. Bao B. Sun Q. Yao X. Hong J. Lee C.O. Cho H.Y. Jung J.H. Bisindole alkaloids of the topsentin and hamacanthin classes from a marine sponge Spongosorites sp. J. Nat. Prod. 2007 70 1 2 8 10.1021/np060206z 17253840
    [Google Scholar]
  19. Burres N.S. Barber D.A. Gunasekera S.P. Shen L.L. Clement J.J. Antitumor activity and biochemical effects of topsentin. Biochem. Pharmacol. 1991 42 4 745 751 10.1016/0006‑2952(91)90031‑Y 1867631
    [Google Scholar]
  20. Alvarado S. Roberts B.F. Wright A.E. Chakrabarti D. The bis(indolyl)imidazole alkaloid nortopsentin a exhibits antiplasmodial activity. Antimicrob. Agents Chemother. 2013 57 5 2362 2364 10.1128/AAC.02091‑12 23403429
    [Google Scholar]
  21. Ji X. Wang Z. Dong J. Liu Y. Lu A. Wang Q. Discovery of topsentin alkaloids and their derivatives as novel antiviral and anti-phytopathogenic fungus agents. J. Agric. Food Chem. 2016 64 48 9143 9151 10.1021/acs.jafc.6b04020 27933985
    [Google Scholar]
  22. Hwang J. Kim D. Park J.S. Park H.J. Shin J. Lee S.K. Photoprotective activity of topsentin, A Bis(Indole) alkaloid from the marine sponge spongosorites genitrix, by regulation of COX-2 and Mir-4485 expression in UVB-irradiated human keratinocyte cells. Mar. Drugs 2020 18 2 87 10.3390/md18020087 32013063
    [Google Scholar]
  23. Bao B. Sun Q. Yao X. Hong J. Lee C.O. Sim C.J. Im K.S. Jung J.H. Cytotoxic bisindole alkaloids from a marine sponge Spongosorites sp. J. Nat. Prod. 2005 68 5 711 715 10.1021/np049577a 15921415
    [Google Scholar]
  24. Caspar Y. Jeanty M. Blu J. Burchak O. Le Pihive E. Maigre L. Schneider D. Jolivalt C. Paris J.M. Hequet A. Minassian F. Denis J.N. Maurin M. Novel synthetic bis-indolic derivatives with antistaphylococcal activity, including against MRSA and VISA strains. J. Antimicrob. Chemother. 2015 70 6 1727 1737 10.1093/jac/dkv015 25691323
    [Google Scholar]
  25. Jennings L.K. Khan N.M.D. Kaur N. Rodrigues D. Morrow C. Boyd A. Thomas O.P. Brominated bisindole alkaloids from the celtic sea sponge Spongosorites calcicola. Molecules 2019 24 21 3890 10.3390/molecules24213890 31671793
    [Google Scholar]
  26. Miyake F.Y. Yakushijin K. Horne D.A. A concise synthesis of topsentin A and nortopsentins B and D. Org. Lett. 2000 2 14 2121 2123 10.1021/ol000124g 10891245
    [Google Scholar]
  27. Guinchard X. Vallée Y. Denis J.N. Total synthesis of marine sponge bis(indole) alkaloids of the topsentin class. J. Org. Chem. 2007 72 10 3972 3975 10.1021/jo070286r 17444688
    [Google Scholar]
  28. Parrino B. Diana P. Cirrincione G. Cascioferro S. Bacterial biofilm inhibition in the development of effective anti-virulence strategy. Open Med. Chem. J. 2018 12 1 84 87 10.2174/1874104501812010084 30288179
    [Google Scholar]
  29. Sommer R. Rox K. Wagner S. Hauck D. Henrikus S.S. Newsad S. Arnold T. Ryckmans T. Brönstrup M. Imberty A. Varrot A. Hartmann R.W. Titz A. Anti-biofilm agents against Pseudomonas aeruginosa: A structure–activity relationship study of C-glycosidic LecB inhibitors. J. Med. Chem. 2019 62 20 9201 9216 10.1021/acs.jmedchem.9b01120 31553873
    [Google Scholar]
  30. Totsika M. Vagenas D. Paxman J.J. Wang G. Dhouib R. Sharma P. Martin J.L. Scanlon M.J. Heras B. Inhibition of diverse DsbA enzymes in multi-DsbA encoding pathogens. Antioxid. Redox Signal. 2018 29 7 653 666 10.1089/ars.2017.7104 29237285
    [Google Scholar]
  31. Carbone A. Cascioferro S. Parrino B. Carbone D. Pecoraro C. Schillaci D. Cusimano M.G. Cirrincione G. Diana P. Thiazole analogues of the marine alkaloid nortopsentin as inhibitors of bacterial biofilm formation. Molecules 2020 26 1 81 10.3390/molecules26010081 33375417
    [Google Scholar]
  32. Park J.S. Cho E. Hwang J.Y. Park S.C. Chung B. Kwon O.S. Sim C.J. Oh D.C. Oh K.B. Shin J. Bioactive Bis(indole) alkaloids from a Spongosorites sp. sponge. Mar. Drugs 2020 19 1 3 10.3390/md19010003 33374750
    [Google Scholar]
  33. Oh K.B. Mar W. Kim S. Kim J.Y. Lee T.H. Kim J.G. Shin D. Sim C.J. Shin J. Antimicrobial activity and cytotoxicity of bis(indole) alkaloids from the sponge Spongosorites sp. Biol. Pharm. Bull. 2006 29 3 570 573 10.1248/bpb.29.570 16508170
    [Google Scholar]
  34. Cascioferro S. Totsika M. Schillaci D. Sortase A. Sortase A. An ideal target for anti-virulence drug development. Microb. Pathog. 2014 77 105 112 10.1016/j.micpath.2014.10.007 25457798
    [Google Scholar]
  35. Dewan D. Basu A. Dolai D. Pal S. Biological and biophysical methods for evaluation of inhibitors of sortase A in Staphylococcus aureus: An overview. Cell Biochem. Funct. 2024 42 8 e70002 10.1002/cbf.70002 39470102
    [Google Scholar]
  36. Alksne L.E. Projan S.J. Bacterial virulence as a target for antimicrobial chemotherapy. Curr. Opin. Biotechnol. 2000 11 6 625 636 10.1016/S0958‑1669(00)00155‑5 11102800
    [Google Scholar]
  37. Burke Ó. Zeden M.S. O’Gara J.P. The pathogenicity and virulence of the opportunistic pathogen Staphylococcus epidermidis. Virulence 2024 15 1 2359483 10.1080/21505594.2024.2359483 38868991
    [Google Scholar]
  38. Schneewind O. Model P. Fischetti V.A. Sorting of protein a to the staphylococcal cell wall. Cell 1992 70 2 267 281 10.1016/0092‑8674(92)90101‑H 1638631
    [Google Scholar]
  39. Zheng Z. Liu Q. Kim W. Tharmalingam N. Fuchs B.B. Mylonakis E. Antimicrobial activity of 1,3,4-oxadiazole derivatives against planktonic cells and biofilm of Staphylococcus aureus. Future Med. Chem. 2018 10 3 283 296 10.4155/fmc‑2017‑0159 29334249
    [Google Scholar]
  40. Parrino B. Carbone D. Cascioferro S. Pecoraro C. Giovannetti E. Deng D. Di Sarno V. Musella S. Auriemma G. Cusimano M.G. Schillaci D. Cirrincione G. Diana P. 1,2,4-Oxadiazole topsentin analogs as staphylococcal biofilm inhibitors targeting the bacterial transpeptidase sortase A. Eur. J. Med. Chem. 2021 209 112892 10.1016/j.ejmech.2020.112892 33035921
    [Google Scholar]
  41. Valentini G. Chiarelli L. Fortin R. Speranza M.L. Galizzi A. Mattevi A. The allosteric regulation of pyruvate kinase. J. Biol. Chem. 2000 275 24 18145 18152 10.1074/jbc.M001870200 10751408
    [Google Scholar]
  42. Ma Q. Li J. Yu S. Liu Y. Zhou J. Wang X. Wang L. Zou J. Li Y. ActA-mediated PykF acetylation negatively regulates oxidative stress adaptability of Streptococcus mutans. MBio 2024 15 10 e01839 e24 10.1128/mbio.01839‑24 39248567
    [Google Scholar]
  43. Chuang Y.T. Yen C.Y. Tang J.Y. Wu K.C. Chang F.R. Tsai Y.H. Chien T.M. Chang H.W. Marine anticancer drugs in modulating miRNAs and antioxidant signaling. Chem. Biol. Interact. 2024 399 111142 10.1016/j.cbi.2024.111142 39019423
    [Google Scholar]
  44. Faulkner D.J. Marine natural products. Nat. Prod. Rep. 2002 19 1 1 48 10.1039/b009029h 11902436
    [Google Scholar]
  45. Norcross R.D. Paterson I. Total synthesis of bioactive marine macrolides. Chem. Rev. 1995 95 6 2041 2114 10.1021/cr00038a012
    [Google Scholar]
  46. Rinnerthaler M. Bischof J. Streubel M. Trost A. Richter K. Oxidative stress in aging human skin. Biomolecules 2015 5 2 545 589 10.3390/biom5020545 25906193
    [Google Scholar]
  47. Rittié L. Fisher G.J. UV-light-induced signal cascades and skin aging. Ageing Res. Rev. 2002 1 4 705 720 10.1016/S1568‑1637(02)00024‑7 12208239
    [Google Scholar]
  48. de Gruijl F.R. Photocarcinogenesis: UVA vs. UVB. Methods Enzymol. 2000 319 359 366 10.1016/S0076‑6879(00)19035‑4 10907526
    [Google Scholar]
  49. Jiao J. Mikulec C. Ishikawa T. Magyar C. Dumlao D.S. Dennis E.A. Fischer S.M. Herschman H. Cell-type-specific roles for COX-2 in UVB-induced skin cancer. Carcinogenesis 2014 35 6 1310 1319 10.1093/carcin/bgu020 24469308
    [Google Scholar]
  50. Lee M.E. Kim S.R. Lee S. Jung Y.J. Choi S.S. Kim W.J. Han J.A. Cyclooxygenase-2 inhibitors modulate skin aging in a catalytic activity-independent manner. Exp. Mol. Med. 2012 44 9 536 544 10.3858/emm.2012.44.9.061 22771771
    [Google Scholar]
  51. Williams C.S. Mann M. DuBois R.N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 1999 18 55 7908 7916 10.1038/sj.onc.1203286 10630643
    [Google Scholar]
  52. Cai Y. Yu X. Hu S. Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 2009 7 4 147 154 10.1016/S1672‑0229(08)60044‑3 20172487
    [Google Scholar]
  53. Bach D.H. Hong J.Y. Park H.J. Lee S.K. The role of exosomes and miRNAs in drug‐resistance of cancer cells. Int. J. Cancer 2017 141 2 220 230 10.1002/ijc.30669 28240776
    [Google Scholar]
  54. Sonkoly E. Ståhle M. Pivarcsi A. MicroRNAs: Novel regulators in skin inflammation. Clin. Exp. Dermatol. 2008 33 3 312 315 10.1111/j.1365‑2230.2008.02804.x 18419608
    [Google Scholar]
  55. Gu Y. Han J. Jiang C. Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020 59 101036 10.1016/j.arr.2020.101036 32105850
    [Google Scholar]
  56. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  57. Mosalem O.M. Abdelhakeem A. Abdel-Razeq N.H. Babiker H. Pancreatic ductal adenocarcinoma (PDAC): Clinical progress in the last five years. Expert Opin. Investig. Drugs 2025 34 3 149 160 10.1080/13543784.2025.2473698 40012027
    [Google Scholar]
  58. Wijnen R. Pecoraro C. Carbone D. Fiuji H. Avan A. Peters G.J. Giovannetti E. Diana P. Cyclin dependent kinase-1 (CDK-1) inhibition as a novel therapeutic strategy against pancreatic ductal adenocarcinoma (PDAC). Cancers 2021 13 17 4389 10.3390/cancers13174389 34503199
    [Google Scholar]
  59. Pelosi E. Castelli G. Testa U. Pancreatic cancer: Molecular characterization, clonal evolution and cancer stem cells. Biomedicines 2017 5 4 65 10.3390/biomedicines5040065 29156578
    [Google Scholar]
  60. Van Matre S. Huq S. Akana L. Eldridge D.E. Zuniga O. Rodrigues H. Wolfe A.R. Enhanced radiosensitivity of pancreatic cancer achieved through inhibition of Cyclin-dependent kinase 1. Radiother. Oncol. 2024 200 110531 10.1016/j.radonc.2024.110531 39270987
    [Google Scholar]
  61. Pecoraro C. Parrino B. Cascioferro S. Puerta A. Avan A. Peters G.J. Diana P. Giovannetti E. Carbone D. A new oxadiazole-based topsentin derivative modulates cyclin-dependent kinase 1 expression and exerts cytotoxic effects on pancreatic cancer cells. Molecules 2021 27 1 19 10.3390/molecules27010019 35011251
    [Google Scholar]
  62. Juneja M. Vanam U. Paranthaman S. Bharathan A. Keerthi V.S. Reena J.K. Rajaram R. Rajasekharan K.N. Karunagaran D. 4-Amino-2-arylamino-5-indoloyl/cinnamoythiazoles, analogs of topsentin-class of marine alkaloids, induce apoptosis in HeLa cells. Eur. J. Med. Chem. 2013 63 474 483 10.1016/j.ejmech.2013.02.032 23524113
    [Google Scholar]
  63. Shin J. Seo Y. Cho K.W. Rho J.R. Sim C.J. New Bis(Indole) alkaloids of the topsentin class from the sponge spongosorites genitrix. J. Nat. Prod. 1999 62 4 647 649 10.1021/np980507b 10217734
    [Google Scholar]
  64. Casapullo A. Bifulco G. Bruno I. Riccio R. New bisindole alkaloids of the topsentin and hamacanthin classes from the Mediterranean marine sponge Rhaphisia lacazei. J. Nat. Prod. 2000 63 4 447 451 10.1021/np9903292 10785411
    [Google Scholar]
  65. Carbone A. Parrino B. Barraja P. Spanò V. Cirrincione G. Diana P. Maier A. Kelter G. Fiebig H.H. Synthesis and antiproliferative activity of 2,5-bis(3′-indolyl)pyrroles, analogues of the marine alkaloid nortopsentin. Mar. Drugs 2013 11 3 643 654 10.3390/md11030643 23455514
    [Google Scholar]
  66. Pecoraro C. Terrana F. Panzeca G. Parrino B. Cascioferro S. Diana P. Giovannetti E. Carbone D. Nortopsentins as leads from marine organisms for anticancer and anti-inflammatory agent development. Molecules 2023 28 18 6450 10.3390/molecules28186450 37764226
    [Google Scholar]
  67. Gu X.H. Wan X.Z. Jiang B. Syntheses and biological activities of bis(3-indolyl)thiazoles, analogues of marine bis(indole)alkaloid nortopsentins. Bioorg. Med. Chem. Lett. 1999 9 4 569 572 10.1016/S0960‑894X(99)00037‑2 10098665
    [Google Scholar]
  68. Jiang B. Yang C.G. Xiong W.N. Wang J. Synthesis and cytotoxicity evaluation of novel indolylpyrimidines and indolylpyrazines as potential antitumor agents. Bioorg. Med. Chem. 2001 9 5 1149 1154 10.1016/S0968‑0896(00)00337‑0 11377173
    [Google Scholar]
  69. Diana P. Carbone A. Barraja P. Montalbano A. Martorana A. Dattolo G. Gia O. Via L.D. Cirrincione G. Synthesis and antitumor properties of 2,5-bis(3′-indolyl)thiophenes: Analogues of marine alkaloid nortopsentin. Bioorg. Med. Chem. Lett. 2007 17 8 2342 2346 10.1016/j.bmcl.2007.01.065 17306531
    [Google Scholar]
  70. Diana P. Carbone A. Barraja P. Martorana A. Gia O. DallaVia, L.; Cirrincione, G. 3,5-Bis(3′-indolyl)pyrazoles, analogues of marine alkaloid nortopsentin: Synthesis and antitumor properties. Bioorg. Med. Chem. Lett. 2007 17 22 6134 6137 10.1016/j.bmcl.2007.09.042 17911018
    [Google Scholar]
  71. Eldehna W.M. Hassan G.S. Al-Rashood S.T. Alkahtani H.M.A. Almehizia A. Al-Ansary G.H. Marine-inspired bis-indoles possessing antiproliferative activity against breast cancer; Design, synthesis, and biological evaluation. Mar. Drugs 2020 18 4 190 10.3390/md18040190 32252280
    [Google Scholar]
  72. Kumar D. Kumar Jain S. A comprehensive review of N-heterocycles as cytotoxic agents. Curr. Med. Chem. 2016 23 38 4338 4394 10.2174/0929867323666160809093930 27516198
    [Google Scholar]
  73. Kumar D. Arun V. Maruthi Kumar N. Acosta G. Noel B. Shah K. A facile synthesis of novel bis-(indolyl)-1,3,4-oxadiazoles as potent cytotoxic agents. ChemMedChem 2012 7 11 1915 1920 10.1002/cmdc.201200363 22997171
    [Google Scholar]
  74. Sreenivasulu R. Tej M.B. Jadav S.S. Sujitha P. Kumar C.G. Raju R.R. Synthesis, anticancer evaluation and molecular docking studies of 2,5-bis(indolyl)-1,3,4-oxadiazoles, Nortopsentin analogues. J. Mol. Struct. 2020 1208 127875 10.1016/j.molstruc.2020.127875
    [Google Scholar]
  75. Cascioferro S. Attanzio A. Di Sarno V. Musella S. Tesoriere L. Cirrincione G. Diana P. Parrino B. New 1,2,4-oxadiazole nortopsentin derivatives with cytotoxic activity. Mar. Drugs 2019 17 1 35 10.3390/md17010035 30626057
    [Google Scholar]
  76. Keyzers R.A. Davies-Coleman M.T. Anti-inflammatory metabolites from marine sponges. Chem. Soc. Rev. 2005 34 4 355 365 10.1039/b408600g 15778769
    [Google Scholar]
  77. Mitra S. Anand U. Sanyal R. Jha N.K. Behl T. Mundhra A. Ghosh A. Neoechinulins: Molecular, cellular, and functional attributes as promising therapeutics against cancer and other human diseases. Biomed. Pharmacother. 2022 145 112378 10.1016/j.biopha.2021.112378 34741824
    [Google Scholar]
  78. Godfray H.C.J. Beddington J.R. Crute I.R. Haddad L. Lawrence D. Muir J.F. Pretty J. Robinson S. Thomas S.M. Toulmin C. Food security: The challenge of feeding 9 billion people. Science 2010 327 5967 812 818 10.1126/science.1185383 20110467
    [Google Scholar]
  79. Lonikar N. Choudhari P. Bhusnuare O. In silico analysis of marine indole alkaloids for design of adenosine A2A receptor antagonist. J. Biomol. Struct. Dyn. 2021 39 10 3515 3522 10.1080/07391102.2020.1765874 32375596
    [Google Scholar]
  80. Pokharkar O. Lakshmanan H. Zyryanov G. Tsurkan M. In silico evaluation of antifungal compounds from marine sponges against COVID-19-associated mucormycosis. Mar. Drugs 2022 20 3 215 10.3390/md20030215 35323514
    [Google Scholar]
  81. Dvorak K.R. Tepe J.J. Advances in the total synthesis of bis- and tris-indole alkaloids containing N-heterocyclic linker moieties. Nat. Prod. Rep. 2024 41 8 1264 1293 10.1039/D4NP00012A 38666377
    [Google Scholar]
  82. Carbone A. Spanò V. Parrino B. Ciancimino C. Attanasi O. Favi G. A facile synthesis of deaza-analogues of the bisindole marine alkaloid topsentin. Molecules 2013 18 3 2518 2527 10.3390/molecules18032518 23442928
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575405016251027105418
Loading
/content/journals/mrmc/10.2174/0113895575405016251027105418
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: anticancer ; Marine sponge ; nortopsentin ; antimicrobial ; topsentin ; anti-inflammatory
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test