Skip to content
2000
Volume 25, Issue 15
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Locust bean gum (LBG), a naturally derived polysaccharide from , exhibits high biocompatibility, degradability, and gel-forming capability, making it a potential contender for pharmaceutical applications. It has wide applications in drug delivery as well as wound healing because of its physicochemical characteristics, including mucoadhesive properties, swelling capability, and controlled release. This study explores the role of LBG-based composites in controlled drug release and wound dressing applications. LBG has been broadly used for drug delivery by oral, transdermal, and mucosal routes. Its mucoadhesive properties increase drug uptake, while gelation facilitates controlled and sustained drug release. Crosslinking and carboxymethylation have been used to improve its functional properties, and it has been utilised in targeted and responsive delivery systems. LBG-based hydrogels and films have also been developed for wound healing and have shown moisture retention, antimicrobial activity, and biocompatibility. Smart wound dressings with LBG and bioactive agents have enabled real-time infection monitoring with enhanced tissue regeneration. Studies have proven that LBG can improve the mechanical strength and drug-loading capacity of composite materials and is hence a potential candidate for next-generation biomedical applications. LBG-based composites hold significant potential in pharmaceuticals, particularly in wound healing and drug delivery.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575403772250824151020
2025-09-15
2026-02-21
Loading full text...

Full text loading...

References

  1. ChenY. GuoJ. AlamriA.S. AlhomraniM. HuangZ. ZhangW. Recent research progress on locust bean gum (LBG)-based composite films for food packaging.Carbohydr. Polym.2025348Pt A12281510.1016/j.carbpol.2024.12281539562090
    [Google Scholar]
  2. GoulasV. StylosE. ChatziathanasiadouM. MavromoustakosT. TzakosA. Functional components of carob fruit: Linking the chemical and biological space.Int. J. Mol. Sci.20161711187510.3390/ijms1711187527834921
    [Google Scholar]
  3. ZhuB.J. ZayedM.Z. ZhuH.X. ZhaoJ. LiS.P. Functional polysaccharides of carob fruit: A review.United KingdomChinese Medicine201914
    [Google Scholar]
  4. NasrallahK. KhaledS. El KhatibS. KrayemM. Nutritional, biochemical and health properties of Locust beans and its applications in the food industry: A review.J. Food Sci. Technol.202461462163010.1007/s13197‑023‑05765‑538410274
    [Google Scholar]
  5. TestaM. MalandrinoO. SantiniC. SupinoS. Nutraceutical and functional value of carob-based products The LBG Sicilia Srl Case Study.Case Studies on the Business of Nutraceuticals, Functional and Super Foods.Woodhead Publishing2022
    [Google Scholar]
  6. Ben AyacheS. ReisF.S. Inês DiasM. PereiraC. GlamočlijaJ. SokovićM. Behija SaafiE. C F R.Ferreira I.; Barros, L.; Achour, L. Chemical characterization of carob seeds (Ceratonia siliqua L.) and use of different extraction techniques to promote its bioactivity.Food Chem.202135112926310.1016/j.foodchem.2021.12926333631614
    [Google Scholar]
  7. GrenhaA. DionísioM. Locust bean gum: Exploring its potential for biopharmaceutical applications.J. Pharm. Bioallied Sci.20124317518510.4103/0975‑7406.9901322923958
    [Google Scholar]
  8. YadavH. MaitiS. Research progress in galactomannan-based nanomaterials: Synthesis and application.Int. J. Biol. Macromol.20201632113212610.1016/j.ijbiomac.2020.09.062
    [Google Scholar]
  9. HanK.H. JeonJ.W. ChaeY.J. LeeM.K. Effect of ingestion methods of jellies for oral administration on drug absorption in beagle dogs.J. Pharm. Investig.202151558759510.1007/s40005‑021‑00535‑x
    [Google Scholar]
  10. BatalH; El, HasibA OuatmaneA Abderrahim JaouadMN Rheology and influence factor of Locust Bean Gum solution.Revue de Génie Industriel20128
    [Google Scholar]
  11. AlmukainziM. AraujoG.L.B. LöbenbergR. Orally disintegrating dosage forms.J. Pharm. Investig.201949222924310.1007/s40005‑018‑0408‑2
    [Google Scholar]
  12. KimJ. MuhammadN. JhunB.H. YooJ.W. Probiotic delivery systems: A brief overview.J. Pharm. Investig.201646437738610.1007/s40005‑016‑0259‑7
    [Google Scholar]
  13. ChoH.J. Recent progresses in the development of hyaluronic acid-based nanosystems for tumor-targeted drug delivery and cancer imaging.J. Pharm. Investig.202050211512910.1007/s40005‑019‑00448‑w
    [Google Scholar]
  14. HasanN. RahmanL. KimS.H. CaoJ. ArjunaA. LalloS. JhunB.H. YooJ-W. Recent advances of nanocellulose in drug delivery systems.J. Pharm. Investig.202050655357210.1007/s40005‑020‑00499‑4
    [Google Scholar]
  15. PalanirajA. JayaramanV. Production, recovery and applications of xanthan gum by Xanthomonas campestris.J. Food Eng.2011106111210.1016/j.jfoodeng.2011.03.035
    [Google Scholar]
  16. SanaS.S. RaoraneC.J. VenkatesanR. RoyS. SwainS.K. KimS.C. Al-TabakhaM. BhandareR.R. RajV. LeeS. State-of-the-art progress on locust bean gum polysaccharide for sustainable food packaging and drug delivery applications: A review with prospectives.Int. J. Biol. Macromol.2024275Pt 113361910.1016/j.ijbiomac.2024.13361938964694
    [Google Scholar]
  17. TahmouziS. MeftahizadehH. EyshiS. MahmoudzadehA. AlizadehB. Mollakhalili-MeybodiN. HatamiM. Application of guar (Cyamopsis tetragonoloba L.) gum in food technologies: A review of properties and mechanisms of action.Food Sci. Nutr.20231194869489710.1002/fsn3.338337701200
    [Google Scholar]
  18. KingK. GrayR. The effect of gamma irradiation on guar gum, locust bean gum, gum tragacanth and gum karaya.Food Hydrocoll.19936655956910.1016/S0268‑005X(09)80079‑9
    [Google Scholar]
  19. MostafaviF.S. KadkhodaeeR. EmadzadehB. KoochekiA. Preparation and characterization of tragacanth–locust bean gum edible blend films.Carbohydr. Polym.2016139202710.1016/j.carbpol.2015.11.06926794942
    [Google Scholar]
  20. FarshchiA. EttelaieR. HolmesM. Influence of pH value and locust bean gum concentration on the stability of sodium caseinate-stabilized emulsions.Food Hydrocoll.201332240241110.1016/j.foodhyd.2013.01.010
    [Google Scholar]
  21. XuX. YeS. ZuoX. FangS. Impact of guar gum and locust bean gum addition on the pasting, rheological properties, and freeze–thaw stability of rice starch gel.Foods20221116250810.3390/foods1116250836010508
    [Google Scholar]
  22. ZeiraA. NussinovitchA. Mechanical properties of weak locust bean gum (LBG) gels under controlled rapid freeze-thawing.J. Texture Stud.2003345-656157310.1111/j.1745‑4603.2003.tb01081.x
    [Google Scholar]
  23. HigiroJ. HeraldT.J. AlaviS. Rheological study of xanthan and locust bean gum interaction in dilute solution.Food Res. Int.200639216517510.1016/j.foodres.2005.07.011
    [Google Scholar]
  24. KaurR. SharmaA. PuriV. SinghI. Preparation and characterization of biocomposite films of carrageenan/locust bean gum/montmorrillonite for transdermal delivery of curcumin.Bioimpacts201891374310.15171/bi.2019.0530788258
    [Google Scholar]
  25. El BatalH. HasibA. OuatmaneA. BoulliA. DehbiF. JaouadA. Yield and composition of carob bean gum produced from different Moroccan populations of carob (Ceratonia siliqua L.).J. Mater. Environ. Sci.201342
    [Google Scholar]
  26. BarakS. MudgilD. Locust bean gum: Processing, properties and food applications—A review.Int. J. Biol. Macromol.201466748010.1016/j.ijbiomac.2014.02.01724548746
    [Google Scholar]
  27. PrakashDev A review on natural polymer locust bean gum.World J. Biol. Pharm. Health. Sci.2023131
    [Google Scholar]
  28. JoW. YooB. Effect of sucrose on rheological properties of xanthan gum-locust bean gum mixtures.Food Sci. Biotechnol.20192851487149210.1007/s10068‑019‑00582‑z31695947
    [Google Scholar]
  29. SharmaP. SharmaS. RamakrishnaG. SrivastavaH. GaikwadK. A comprehensive review on leguminous galactomannans: Structural analysis, functional properties, biosynthesis process and industrial applications.Crit. Rev. Food Sci. Nutr.202262244346510.1080/10408398.2020.181919633012173
    [Google Scholar]
  30. SharmaS. TyagiA. SrivastavaH. RamakrishnaG. SharmaP. SevanthiA.M. SolankeA.U. SharmaR. SinghN.K. SharmaT.R. GaikwadK. Exploring the edible gum (galactomannan) biosynthesis and its regulation during pod developmental stages in clusterbean using comparative transcriptomic approach.Sci. Rep.2021111400010.1038/s41598‑021‑83507‑333597579
    [Google Scholar]
  31. MeunierL. GarthoffJ.A. SchaafsmaA. KrulL. SchrijverJ. van GoudoeverJ.B. SpeijersG. VandenplasY. Locust bean gum safety in neonates and young infants: An integrated review of the toxicological database and clinical evidence.Regul. Toxicol. Pharmacol.201470115516910.1016/j.yrtph.2014.06.02324997231
    [Google Scholar]
  32. PapaefstathiouE. AgapiouA. GiannopoulosS. KokkinoftaR. Nutritional characterization of carobs and traditional carob products.Food Sci. Nutr.2018682151216110.1002/fsn3.77630510716
    [Google Scholar]
  33. RachedI. BarrosL. FernandesI.P. Santos-BuelgaC. RodriguesA.E. FerchichiA. BarreiroM.F. FerreiraI.C.F.R. Ceratonia siliqua L. hydroethanolic extract obtained by ultrasonication: Antioxidant activity, phenolic compounds profile and effects in yogurts functionalized with their free and microencapsulated forms.Food Funct.2016731319132810.1039/C6FO00100A26887343
    [Google Scholar]
  34. DakiaP.A. WatheletB. PaquotM. Isolation and chemical evaluation of carob (Ceratonia siliqua L.) seed germ.Food Chem.200710241368137410.1016/j.foodchem.2006.05.059
    [Google Scholar]
  35. GregoriouG. NeophytouC.M. VasincuA. GregoriouY. HadjipakkouH. PinakoulakiE. ChristodoulouM.C. IoannouG.D. StavrouI.J. ChristouA. Kapnissi-ChristodoulouC.P. AignerS. StuppnerH. KakasA. ConstantinouA.I. Anti-cancer activity and phenolic content of extracts derived from cypriot carob (Ceratonia siliqua L.) pods using different solvents.Molecules20212616501710.3390/molecules2616501734443605
    [Google Scholar]
  36. McClearyB.V. Carob and guar galactomannans.Methods Enzymol1988160C52352710.1016/0076‑6879(88)60163‑7
    [Google Scholar]
  37. BrummerY. CuiW. WangQ. Extraction, Purification and Physicochemical Characterization of Seed Galactomannans.Food Hydrocoll.200317322923610.1016/S0268‑005X(02)00054‑1
    [Google Scholar]
  38. SébastienG. ChristopheB. MarioA. PascalL. MichelP. AuroreR. Impact of purification and fractionation process on the chemical structure and physical properties of locust bean gum.Carbohydr. Polym.2014108115916810.1016/j.carbpol.2014.02.09224751260
    [Google Scholar]
  39. AmidB.T. MirhosseiniH. Effect of different purification techniques on the characteristics of heteropolysaccharide-protein biopolymer from durian (Durio zibethinus) seed.Molecules2012179108751089210.3390/molecules17091087522964503
    [Google Scholar]
  40. McClearyB.V. MathesonN.K. α-d-Galactosidase activity and galactomannan and galactosylsucrose oligosaccharide depletion in germinating legume seeds.Phytochemistry19741391747175710.1016/0031‑9422(74)85084‑3
    [Google Scholar]
  41. KapoorV.P. A galactomannan from the seeds of Delonix regia.Phytochemistry19721131129113210.1016/S0031‑9422(00)88465‑4
    [Google Scholar]
  42. StepanenkoB.N. UzdenikovaL.B. Precipitation of neutral polysaccharides and separation of their mixtures by use of various quaternary salts.Carbohydr. Res.197225252653010.1016/S0008‑6215(00)81667‑5
    [Google Scholar]
  43. HoffmanJ. LindbergB. PainterT. SchaumburgK. VialleJ. AnthonsenT. The distribution of the D-galactose residues in guaran and locust bean gum.Acta Chem. Scand197630b36536610.3891/acta.chem.scand.30b‑0365
    [Google Scholar]
  44. GrimaudF. Pizzut-SerinS. TarquisL. LadevèzeS. MorelS. PutauxJ.L. Potocki-VeroneseG. In vitro synthesis and crystallization of β-1,4-Mannan.Biomacromolecules201920284685310.1021/acs.biomac.8b0145730521331
    [Google Scholar]
  45. AhmadS. AhmadM. ManzoorK. PurwarR. IkramS. A review on latest innovations in natural gums based hydrogels: Preparations & applications.Int. J. Biol. Macromol.201913687089010.1016/j.ijbiomac.2019.06.113
    [Google Scholar]
  46. ZhangX. DaiL. LiP. WangT. QinL. XiangJ. ChangH. Characterization of hydrophobic interaction of galactomannan in aqueous solutions using fluorescence-based technique.Carbohydr. Polym.202126711818310.1016/j.carbpol.2021.11818334119151
    [Google Scholar]
  47. PetkowiczC.L.O. ReicherF. MazeauK. Conformational analysis of galactomannans: From oligomeric segments to polymeric chains.Carbohydr. Polym.1998371253910.1016/S0144‑8617(98)00051‑4
    [Google Scholar]
  48. FengL. YinJ. NieS. WanY. XieM. Structure and conformation characterization of galactomannan from seeds of Cassia obtusifolia.Food Hydrocoll.201876677710.1016/j.foodhyd.2017.06.008
    [Google Scholar]
  49. XuW. LiuY. ZhangF. LeiF. WangK. JiangJ. Physicochemical characterization of Gleditsia triacanthos galactomannan during deposition and maturation.Int. J. Biol. Macromol.202014482182810.1016/j.ijbiomac.2019.09.16131726147
    [Google Scholar]
  50. PetitjeanM. IsasiJ.R. Locust bean gum, a vegetable hydrocolloid with industrial and biopharmaceutical applications.Molecules20222723826510.3390/molecules2723826536500357
    [Google Scholar]
  51. LaarajS. SalmaouiS. AddiM. El-rhouttaisC. TikentA. ElbouzidiA. TaibiM. HanoC. NoutfiaY. ElfazaziK. Carob (Ceratonia siliqua L.) seed constituents: A comprehensive review of composition, chemical profile, and diverse applications.J. Food Qual.2023202311410.1155/2023/3438179
    [Google Scholar]
  52. DeaI.C.M. MorrisonA. Chemistry and interactions of seed galactomannans.Adv. Carbohydr. Chem. Biochem.197531C24131210.1016/S0065‑2318(08)60298‑X
    [Google Scholar]
  53. SantosM.B. Garcia-RojasE.E. Recent advances in the encapsulation of bioactive ingredients using galactomannans-based as delivery systems.Food Hydrocoll.202111810681510.1016/j.foodhyd.2021.106815
    [Google Scholar]
  54. BrazL. GrenhaA. FerreiraD. Rosa da CostaA.M. GamazoC. SarmentoB. Chitosan/sulfated locust bean gum nanoparticles: In vitro and in vivo evaluation towards an application in oral immunization.Int. J. Biol. Macromol.20179678679710.1016/j.ijbiomac.2016.12.07628049014
    [Google Scholar]
  55. Ben RomdhaneR. AtouiD. KetataN. DaliS. MoussaouiY. Ben SalemR. Pd supported on locust bean gum as reusable green catalyst for Heck and Sonogashira coupling reactions and 4‐nitroaniline reduction under ultrasound irradiation.Appl. Organomet. Chem.20223611687010.1002/aoc.6870
    [Google Scholar]
  56. TagadC.K. RajdeoK.S. KulkarniA. MoreP. AiyerR.C. SabharwalS. Green synthesis of polysaccharide stabilized gold nanoparticles: Chemo catalytic and room temperature operable vapor sensing application.RSC Advances20144462401410.1039/c4ra02972k
    [Google Scholar]
  57. SinghI. RaniP. GazaliBSP. KaurS. Microwave assisted synthesis of acrylamide grafted locust bean gum for colon specific drug delivery.Current Microwav Chem2018510.2174/2213335605666180129160145
    [Google Scholar]
  58. JinE. WangS. SongC. LiM. Influences of monomer compatibility on sizing performance of locust bean gum- g -P(MA-co-AA).J. Text. Inst.202211361083109210.1080/00405000.2021.1915572
    [Google Scholar]
  59. SagbasS. SahinerN. Modifiable natural gum based microgel capsules as sustainable drug delivery systems.Carbohydr. Polym.201820012813610.1016/j.carbpol.2018.07.08530177149
    [Google Scholar]
  60. ŞenM. HayraboluluH. Radiation synthesis and characterisation of the network structure of natural/synthetic double-network superabsorbent polymers.Radiat. Phys. Chem.20128191378138210.1016/j.radphyschem.2011.11.069
    [Google Scholar]
  61. DanishM. MumtazM.W. FakharM. RashidU. Response surface methodology based optimized purification of the residual glycerol from biodiesel production process.Warasan Khana Witthayasat Maha Witthayalai Chiang Mai2017444
    [Google Scholar]
  62. Kachel-JakubowskaM. MatwijczukA. GagośM. Analysis of the physicochemical properties of post-manufacturing waste derived from production of methyl esters from rapeseed oil.Int. Agrophys.201731217518210.1515/intag‑2016‑0042
    [Google Scholar]
  63. NayakA.K. HasnainM.S. AminabhaviT.M. Drug delivery using interpenetrating polymeric networks of natural polymers: A recent update.J. Drug Deliv. Sci. Technol.20216610291510.1016/j.jddst.2021.102915
    [Google Scholar]
  64. JanaS. SenK.K. Chitosan — Locust bean gum interpenetrating polymeric network nanocomposites for delivery of aceclofenac.Int. J. Biol. Macromol.201710287888410.1016/j.ijbiomac.2017.04.09728456644
    [Google Scholar]
  65. CovielloT. AlhaiqueF. DorigoA. MatricardiP. GrassiM. Two galactomannans and scleroglucan as matrices for drug delivery: Preparation and release studies.Eur. J. Pharm. Biopharm.200766220020910.1016/j.ejpb.2006.10.02417156985
    [Google Scholar]
  66. PetitjeanM. AussantF. VergaraA. IsasiJ.R. Solventless crosslinking of chitosan, xanthan, and locust bean gum networks functionalized with β-cyclodextrin.Gels2020645110.3390/gels604005133333946
    [Google Scholar]
  67. PetitjeanM. IsasiJ.R. Chitosan, xanthan and locust bean gum matrices crosslinked with β-cyclodextrin as green sorbents of aromatic compounds.Int. J. Biol. Macromol.202118057057710.1016/j.ijbiomac.2021.03.09833753196
    [Google Scholar]
  68. PetitjeanM. LambertoN. ZornozaA. IsasiJ.R. Green synthesis and chemometric characterization of hydrophobic xanthan matrices: Interactions with phenolic compounds.Carbohydr. Polym.202228811938710.1016/j.carbpol.2022.11938735450648
    [Google Scholar]
  69. HadinugrohoW. MartodihardjoS. FudholiA. RiyantoS. Esterification of citric acid with locust bean gum.Heliyon2019580233710.1016/j.heliyon.2019.e0233731485527
    [Google Scholar]
  70. HadinugrohoW. MartodihardjoS. FudholiA. RiyantoS. Study of a catalyst of citric acid crosslinking on locust bean gum.J. Chem. Technol. Metall.201752610861091
    [Google Scholar]
  71. LiuX. SalaG. ScholtenE. Role of polysaccharide structure in the rheological, physical and sensory properties of low-fat ice cream.Curr. Res. Food Sci.2023710053110.1016/j.crfs.2023.10053137441167
    [Google Scholar]
  72. HadinugrohoW. MartodihardjoS. FudholiA. RiyantoS. Preparation of citric acid-locust bean gum (CA-LBG) for the disintegrating agent of tablet dosage forms.J. Pharm. Innov.20221741160117510.1007/s12247‑021‑09591‑0
    [Google Scholar]
  73. SahaD. BhattacharyaS. Hydrocolloids as thickening and gelling agents in food: A critical review.J. Food Sci. Technol.201047658759710.1007/s13197‑010‑0162‑623572691
    [Google Scholar]
  74. XuH. FanQ. HuangM. CuiL. GaoZ. LiuL. ChenY. JinJ. JinQ. WangX. Combination of carrageenan with sodium alginate, gum arabic, and locust bean gum: Effects on rheological properties and quiescent stabilities of partially crystalline emulsions.Int. J. Biol. Macromol.2023253Pt 812756110.1016/j.ijbiomac.2023.12756137865364
    [Google Scholar]
  75. RenouF. PetibonO. MalhiacC. GriselM. Effect of xanthan structure on its interaction with locust bean gum: Toward prediction of rheological properties.Food Hydrocoll.201332233134010.1016/j.foodhyd.2013.01.012
    [Google Scholar]
  76. CopettiG. GrassiM. LapasinR. PriclS. Synergistic gelation of xanthan gum with locust bean gum: A rheological investigation.Glycoconj. J.199714895196110.1023/A:10185230290309486428
    [Google Scholar]
  77. DakiaP.A. BleckerC. RobertC. WatheletB. PaquotM. Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment.Food Hydrocoll.200822580781810.1016/j.foodhyd.2007.03.007
    [Google Scholar]
  78. HaddarahA. BassalA. IsmailA. GaianiC. IoannouI. CharbonnelC. HamiehT. GhoulM. The structural characteristics and rheological properties of Lebanese locust bean gum.J. Food Eng.2014120120421410.1016/j.jfoodeng.2013.07.026
    [Google Scholar]
  79. YadavS. ShireS.J. KaloniaD.S. Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies.J. Pharm. Sci.201099124812482910.1002/jps.2219020821382
    [Google Scholar]
  80. AnilM. DurmusY. TarakciZ. Effects of different concentrations of guar, xanthan and locust bean gums on physicochemical quality and rheological properties of corn flour tarhana.Nutr. Food Sci.202151113715010.1108/NFS‑03‑2020‑0082
    [Google Scholar]
  81. Brito-OliveiraT.C. CazadoC.P.S. CaviniA.C.M. SantosL.M.F. MoraesI.C.F. PinhoS.C. Cold-set NaCl-induced gels of soy protein isolate and locust bean gum: How the ageing process affect their microstructure and the stability of incorporated beta-carotene.Lebensm. Wiss. Technol.202215411267710.1016/j.lwt.2021.112677
    [Google Scholar]
  82. MezreliG. KurtA. AkdenizE. OzmenD. BasyigitB. TokerO.S. A new synergistic hydrocolloid with superior rheology: Locust bean /xanthan gum binary solution powdered by different drying methods.Food Hydrocoll.202415411007810.1016/j.foodhyd.2024.110078
    [Google Scholar]
  83. PuchartV. VrsanskáM. BhatM.K. BielyP. Purification and characterization of α-galactosidase from a thermophilic fungus Thermomyces lanuginosus.Biochim. Biophys. Acta, Gen. Subj.200015241273710.1016/S0304‑4165(00)00138‑011078955
    [Google Scholar]
  84. GaoG. Locust bean gum hydrolysis: Impact on molecular and functional properties.Manawatu, New ZealandMassey University2021
    [Google Scholar]
  85. PollardM.A. FischerP. Partial aqueous solubility of low-galactose-content galactomannans—What is the quantitative basis?Curr. Opin. Colloid Interface Sci.2006112-318419010.1016/j.cocis.2005.12.001
    [Google Scholar]
  86. WuY. CuiW. EskinN.A.M. GoffH.D. Rheological investigation of synergistic interactions between galactomannans and non-pectic polysaccharide fraction from water soluble yellow mustard mucilage.Carbohydr. Polym.200978111211610.1016/j.carbpol.2009.03.024
    [Google Scholar]
  87. PollardM.A. KellyR. FischerP.A. WindhabE.J. EderB. AmadòR. Investigation of molecular weight distribution of LBG galactomannan for flours prepared from individual seeds, mixtures, and commercial samples.Food Hydrocoll.20082281596160610.1016/j.foodhyd.2007.11.004
    [Google Scholar]
  88. BehrouzianF. RazaviS.M.A. Steady shear rheological properties of emerging hydrocolloids.Emerging Natural Hydrocolloids.Rheology and Functions201910.1002/9781119418511.ch3
    [Google Scholar]
  89. WangW. ChangJ. ZhangZ. LiuH. HeL. LiuY. KangJ. GoffH.D. LiZ. GuoQ. The galactomannan-EGCG physical complex: Effect of branching degree and molecular weight on structural and physiological properties.Carbohydr. Polym.202434312244710.1016/j.carbpol.2024.12244739174126
    [Google Scholar]
  90. LiR. FekeD.L. Rheological and kinetic study of the ultrasonic degradation of locust bean gum in aqueous saline and salt-free solutions.Ultrason. Sonochem.20152733433810.1016/j.ultsonch.2015.05.04326186852
    [Google Scholar]
  91. GadkariP.V. TuS. ChiyardaK. ReaneyM.J.T. GhoshS. Rheological characterization of fenugreek gum and comparison with other galactomannans.Int. J. Biol. Macromol.201811948649510.1016/j.ijbiomac.2018.07.10830031082
    [Google Scholar]
  92. EiroboyiI. IkiensikimamaS.S. OrijiB.A. OkoyeI.P. The effect of monovalent and divalent ions on biodegradable polymers in enhanced oil recovery.Paper presented at the SPE Nigeria Annual International Conference and ExhibitionLagos, Nigeria,August 05201910.2118/198788‑MS
    [Google Scholar]
  93. HussainR. VatankhahH. SinghA. RamaswamyH.S. Effect of high-pressure treatment on the structural and rheological properties of resistant corn starch/locust bean gum mixtures.Carbohydr. Polym.201615029930710.1016/j.carbpol.2016.05.03927312641
    [Google Scholar]
  94. ShinwariK.J. RaoP.S. Changes in functional properties of food gels treated under high-hydrostatic pressure.Int. J. Adv. Res. Sci. Eng.201874
    [Google Scholar]
  95. DasP. GangulyS. SaravananA. MargelS. GedankenA. SrinivasanS. RajabzadehA.R. Naturally derived carbon dots in situ confined self-healing and breathable hydrogel monolith for anomalous diffusion-driven phytomedicine release.ACS Appl. Bio Mater.20225125617563310.1021/acsabm.2c0066436480591
    [Google Scholar]
  96. GangulyS. DasP. SrinivasanS. RajabzadehA.R. TangX.S. MargelS. Superparamagnetic amine-functionalized maghemite nanoparticles as a thixotropy promoter for hydrogels and magnetic field-driven diffusion-controlled drug release.ACS Appl. Nano Mater.2024755272528610.1021/acsanm.3c05543
    [Google Scholar]
  97. DasB. ChattopadhyayD. RanaD. The gamut of perspectives, challenges, and recent trends for in situ hydrogels: A smart ophthalmic drug delivery vehicle.Biomater. Sci.20208174665469110.1039/D0BM00532K
    [Google Scholar]
  98. SavA.K. FuleR.A. AliM.T. AminP. Synthesis and evaluation of octenyl succinate anhydride derivative of fenugreek gum as extended release polymer.J. Pharm. Investig.201343541742910.1007/s40005‑013‑0088‑x
    [Google Scholar]
  99. DingW.K. ShahN.P. Effect of various encapsulating materials on the stability of probiotic bacteria.J. Food Sci.2009742M100M10710.1111/j.1750‑3841.2009.01067.x19323757
    [Google Scholar]
  100. DeyP. BiswanathS.A. MaitiS. Carboxymethyl ethers of Locust bean gum-a review.Int. J. Pharm. Pharm. Sci.20113247
    [Google Scholar]
  101. BaşyiğitB. AltunG. YücetepeM. KaraaslanA. KaraaslanM. Locust bean gum provides excellent mechanical and release attributes to soy protein-based natural hydrogels.Int. J. Biol. Macromol.202323112335210.1016/j.ijbiomac.2023.12335236681221
    [Google Scholar]
  102. MazumderR. MahantiB. MajumdarS. PalR. PahariN. Satranidazole-loaded chitosan/locust bean gum/xanthan gum polysaccharide composite multiunit pellets for colon targeting: In vitro–in vivo investigation.Beni. Suef Univ. J. Basic Appl. Sci.2022111
    [Google Scholar]
  103. ReisF.P. RigoG.V. NogueiraC.W. TascaT. SariM.H.M. CruzL. Locust bean gum nano-based hydrogel for vaginal delivery of diphenyl diselenide in the treatment of trichomoniasis: Formulation characterization and in vitro biological evaluation.Pharmaceutics20221410211210.3390/pharmaceutics1410211236297547
    [Google Scholar]
  104. KurmiS. ChaurasiaR. JainN. Investigation of rifampicin loaded interpenetrating polymer network (Ipn) microspheres for the treatment pf tuberculosis.Lat. Am. J. Pharm.20224111
    [Google Scholar]
  105. ZiarH. YahlaI. SadoudM. KeddarK. Dilmi-BourasA. RiaziA. GérardP. Association of carob galactomannans with probiotic bacteria in synbiotic fermented milk and colon targeted-release carrier.Int. Food Res. J.202229487989110.47836/ifrj.29.4.15
    [Google Scholar]
  106. MatarG.H. AndacM. Antibacterial efficiency of silver nanoparticles-loaded locust bean gum/polyvinyl alcohol hydrogels.Polym. Bull.202178116095611310.1007/s00289‑020‑03418‑7
    [Google Scholar]
  107. GIRIP. SINGHI. Synthesis and characterization of carboxymethylated locust bean gum for developing compression coated mucoadhesive tablets of cinnarizine.Asian J. Chem.2021339
    [Google Scholar]
  108. KatochA. NagpalM. KaurM. SinghM. AggarwalG. DhingraG.A. Development and characterization of LBG-PVA interpenetrating networks incorporating gliclazide for sustained release.Curr. Drug Ther.2021161546310.2174/1574885515999200719143513
    [Google Scholar]
  109. BalaR. MadaanR. GuptaR. ChawlaR. SahooU. Formulation of mouth dissolving strips of metoprolol succinate using locust bean gum.Egypt. J. Chem.2021641
    [Google Scholar]
  110. GiulianiL.M. PegoraroN.S. CamponogaraC. OsmariB.F. de Bastos BrumT. ReolonJ.B. RechiaG.C. OliveiraS.M. CruzL. Locust bean gum-based hydrogel containing nanocapsules for 3,3′-diindolylmethane delivery in skin inflammatory conditions.J. Drug Deliv. Sci. Technol.20227810396010.1016/j.jddst.2022.103960
    [Google Scholar]
  111. UpadhyayM. AdenaS.K.R. VardhanH. PandeyS. MishraB. Development and optimization of locust bean gum and sodium alginate interpenetrating polymeric network of capecitabine.Drug Dev. Ind. Pharm.201844351152110.1080/03639045.2017.140292129161913
    [Google Scholar]
  112. PettinelliN. Rodríguez-LlamazaresS. FarragY. BouzaR. BarralL. Feijoo-BandínS. LagoF. Poly(hydroxybutyrate-co-hydroxyvalerate) microparticles embedded in κ-carrageenan/locust bean gum hydrogel as a dual drug delivery carrier.Int. J. Biol. Macromol.202014611011810.1016/j.ijbiomac.2019.12.19331881300
    [Google Scholar]
  113. KaityS. IsaacJ. GhoshA. Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery.Carbohydr. Polym.201394145646710.1016/j.carbpol.2013.01.07023544563
    [Google Scholar]
  114. LahaB. GoswamiR. MaitiS. SenK.K. Smart karaya-locust bean gum hydrogel particles for the treatment of hypertension: Optimization by factorial design and pre-clinical evaluation.Carbohydr. Polym.201921027428810.1016/j.carbpol.2019.01.06930732764
    [Google Scholar]
  115. DeyP. MaitiS. SaB. Novel etherified locust bean gum-alginate hydrogels for controlled release of glipizide.J. Biomater. Sci. Polym. Ed.201324666368310.1080/09205063.2012.70395023565908
    [Google Scholar]
  116. PrajapatiV.D. JaniG.K. MoradiyaN.G. RanderiaN.P. MaheriyaP.M. NagarB.J. Locust bean gum in the development of sustained release mucoadhesive macromolecules of aceclofenac.Carbohydr. Polym.201411313814810.1016/j.carbpol.2014.06.06125256468
    [Google Scholar]
  117. PramodaM.K. LinS.L Mixed xanthan gum and locust bean gum therapeutic compositions.CA Patent 1093466A1981
  118. Pharmaceutical formulations comprising capecitabine for colonspecific target.IN Patent 2022410620452022
  119. Formulation which is albe to release nicorandil and contains polysaccharide and fatty acid ester.KR Patent 10201000070822010
  120. A kind of preparation method for wound healing antibacterial type hydrogel.CN Patent 106947095A2017
  121. Combination of an oxidant and a photoactivator for the healing of wounds.NZ Patent 631218A2009
  122. Combination of a novel topical gel and oral supplements for healing diabetic foot and other wounds.US Patent 20210106646A12019
  123. Solid polysaccharide materials for use as wound dressings.CA Patent 2198569A11996
  124. PeñaO.A. MartinP. Cellular and molecular mechanisms of skin wound healing.Nat. Rev. Molecular Cell. Biol.20242559961610.1038/s41580‑024‑00715‑1
    [Google Scholar]
  125. VaraprasadK. JayaramuduT. KanikireddyV. ToroC. SadikuE.R. Alginate-based composite materials for wound dressing application:A mini review.Carbohydr. Polym.202023611602510.1016/j.carbpol.2020.11602532172843
    [Google Scholar]
  126. AkkayaN.E. ErgunC. SaygunA. YesilcubukN. Akel-SadogluN. KavakliI.H. TurkmenH.S. Catalgil-GizH. New biocompatible antibacterial wound dressing candidates; agar-locust bean gum and agar-salep films.Int. J. Biol. Macromol.202015543043810.1016/j.ijbiomac.2020.03.21432229209
    [Google Scholar]
  127. ZeponK.M. MartinsM.M. MarquesM.S. HecklerJ.M. Dal Pont MorissoF. MoreiraM.G. ZiulkoskiA.L. KanisL.A. Smart wound dressing based on κ–carrageenan/locust bean gum/cranberry extract for monitoring bacterial infections.Carbohydr. Polym.201920636237010.1016/j.carbpol.2018.11.01430553333
    [Google Scholar]
  128. SilveiraJ.L.M. BresolinT.M.B. Pharmaceutical use of galactomannans.Quim. Nova201134229229910.1590/S0100‑40422011000200023
    [Google Scholar]
  129. DeviG. KaurM. NagpalM. SharmaA. PuriV.P. DhingraG.A. AroraM. Advanced dosage form design: Role of modified natural gums.Asian J. Chem.20203312293710.14233/ajchem.2021.22937
    [Google Scholar]
  130. AlvesA. CavacoJ. GuerreiroF. LourençoJ. Rosa da CostaA. GrenhaA. Inhalable antitubercular therapy mediated by locust bean gum microparticles.Molecules201621670210.3390/molecules2106070227240337
    [Google Scholar]
  131. MoinA. GangadharappaH.V. AdnanM. RizviS.M. AshrafS.A. PatelM. Abu LilaA.S. AllamA.N. Modulation of drug release from natural polymer matrices by response surface methodology: In vitro and in vivo evaluation.Drug Des. Devel. Ther.2020145325533610.2147/DDDT.S27995533293794
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575403772250824151020
Loading
/content/journals/mrmc/10.2174/0113895575403772250824151020
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test