Skip to content
2000
image of Extraction, Physicochemical Properties, and Biomedical Applications of Locust Bean Gum: A Comprehensive Review

Abstract

Locust bean gum (LBG), a naturally derived polysaccharide from , exhibits high biocompatibility, degradability, and gel-forming capability, making it a potential contender for pharmaceutical applications. It has wide applications in drug delivery as well as wound healing because of its physicochemical characteristics, including mucoadhesive properties, swelling capability, and controlled release. This study explores the role of LBG-based composites in controlled drug release and wound dressing applications. LBG has been broadly used for drug delivery by oral, transdermal, and mucosal routes. Its mucoadhesive properties increase drug uptake, while gelation facilitates controlled and sustained drug release. Crosslinking and carboxymethylation have been used to improve its functional properties, and it has been utilised in targeted and responsive delivery systems. LBG-based hydrogels and films have also been developed for wound healing and have shown moisture retention, antimicrobial activity, and biocompatibility. Smart wound dressings with LBG and bioactive agents have enabled real-time infection monitoring with enhanced tissue regeneration. Studies have proven that LBG can improve the mechanical strength and drug-loading capacity of composite materials and is hence a potential candidate for next-generation biomedical applications. LBG-based composites hold significant potential in pharmaceuticals, particularly in wound healing and drug delivery.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575403772250824151020
2025-09-12
2025-09-21
Loading full text...

Full text loading...

References

  1. Chen Y. Guo J. Alamri A.S. Alhomrani M. Huang Z. Zhang W. Recent research progress on locust bean gum (LBG)-based composite films for food packaging. Carbohydr. Polym. 2025 348 Pt A 122815 10.1016/j.carbpol.2024.122815 39562090
    [Google Scholar]
  2. Goulas V. Stylos E. Chatziathanasiadou M. Mavromoustakos T. Tzakos A. Functional components of carob fruit: Linking the chemical and biological space. Int. J. Mol. Sci. 2016 17 11 1875 10.3390/ijms17111875 27834921
    [Google Scholar]
  3. Zhu B.J. Zayed M.Z. Zhu H.X. Zhao J. Li S.P. Functional polysaccharides of carob fruit: A review. United Kingdom Chinese Medicine 2019 14
    [Google Scholar]
  4. Nasrallah K. Khaled S. El Khatib S. Krayem M. Nutritional, biochemical and health properties of Locust beans and its applications in the food industry: A review. J. Food Sci. Technol. 2024 61 4 621 630 10.1007/s13197‑023‑05765‑5 38410274
    [Google Scholar]
  5. Testa M. Malandrino O. Santini C. Supino S. Nutraceutical and functional value of carob-based products The LBG Sicilia Srl Case Study. Case Studies on the Business of Nutraceuticals, Functional and Super Foods. Woodhead Publishing 2022
    [Google Scholar]
  6. Ben Ayache S. Reis F.S. Inês Dias M. Pereira C. Glamočlija J. Soković M. Behija Saafi E. Ferreira C F R. I.; Barros, L.; Achour, L. Chemical characterization of carob seeds (Ceratonia siliqua L.) and use of different extraction techniques to promote its bioactivity. Food Chem. 2021 351 129263 10.1016/j.foodchem.2021.129263 33631614
    [Google Scholar]
  7. Grenha A. Dionísio M. Locust bean gum: Exploring its potential for biopharmaceutical applications. J. Pharm. Bioallied Sci. 2012 4 3 175 185 10.4103/0975‑7406.99013 22923958
    [Google Scholar]
  8. Yadav H. Maiti S. Research progress in galactomannan-based nanomaterials: Synthesis and application. Int. J. Biol. Macromol. 2020 163 2113 2126 10.1016/j.ijbiomac.2020.09.062
    [Google Scholar]
  9. Han K.H. Jeon J.W. Chae Y.J. Lee M.K. Effect of ingestion methods of jellies for oral administration on drug absorption in beagle dogs. J. Pharm. Investig. 2021 51 5 587 595 10.1007/s40005‑021‑00535‑x
    [Google Scholar]
  10. Batal H El Hasib A Ouatmane A Abderrahim Jaouad MN Rheology and influence factor of Locust Bean Gum solution. Revue de Génie Industriel 2012 8
    [Google Scholar]
  11. Almukainzi M. Araujo G.L.B. Löbenberg R. Orally disintegrating dosage forms. J. Pharm. Investig. 2019 49 2 229 243 10.1007/s40005‑018‑0408‑2
    [Google Scholar]
  12. Kim J. Muhammad N. Jhun B.H. Yoo J.W. Probiotic delivery systems: A brief overview. J. Pharm. Investig. 2016 46 4 377 386 10.1007/s40005‑016‑0259‑7
    [Google Scholar]
  13. Cho H.J. Recent progresses in the development of hyaluronic acid-based nanosystems for tumor-targeted drug delivery and cancer imaging. J. Pharm. Investig. 2020 50 2 115 129 10.1007/s40005‑019‑00448‑w
    [Google Scholar]
  14. Hasan N. Rahman L. Kim S.H. Cao J. Arjuna A. Lallo S. Jhun B.H. Yoo J-W. Recent advances of nanocellulose in drug delivery systems. J. Pharm. Investig. 2020 50 6 553 572 10.1007/s40005‑020‑00499‑4
    [Google Scholar]
  15. Palaniraj A. Jayaraman V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng. 2011 106 1 1 12 10.1016/j.jfoodeng.2011.03.035
    [Google Scholar]
  16. Sana S.S. Raorane C.J. Venkatesan R. Roy S. Swain S.K. Kim S.C. Al-Tabakha M. Bhandare R.R. Raj V. Lee S. State-of-the-art progress on locust bean gum polysaccharide for sustainable food packaging and drug delivery applications: A review with prospectives. Int. J. Biol. Macromol. 2024 275 Pt 1 133619 10.1016/j.ijbiomac.2024.133619 38964694
    [Google Scholar]
  17. Tahmouzi S. Meftahizadeh H. Eyshi S. Mahmoudzadeh A. Alizadeh B. Mollakhalili-Meybodi N. Hatami M. Application of guar (Cyamopsis tetragonoloba L.) gum in food technologies: A review of properties and mechanisms of action. Food Sci. Nutr. 2023 11 9 4869 4897 10.1002/fsn3.3383 37701200
    [Google Scholar]
  18. King K. Gray R. The effect of gamma irradiation on guar gum, locust bean gum, gum tragacanth and gum karaya. Food Hydrocoll. 1993 6 6 559 569 10.1016/S0268‑005X(09)80079‑9
    [Google Scholar]
  19. Mostafavi F.S. Kadkhodaee R. Emadzadeh B. Koocheki A. Preparation and characterization of tragacanth–locust bean gum edible blend films. Carbohydr. Polym. 2016 139 20 27 10.1016/j.carbpol.2015.11.069 26794942
    [Google Scholar]
  20. Farshchi A. Ettelaie R. Holmes M. Influence of pH value and locust bean gum concentration on the stability of sodium caseinate-stabilized emulsions. Food Hydrocoll. 2013 32 2 402 411 10.1016/j.foodhyd.2013.01.010
    [Google Scholar]
  21. Xu X. Ye S. Zuo X. Fang S. Impact of guar gum and locust bean gum addition on the pasting, rheological properties, and freeze–thaw stability of rice starch gel. Foods 2022 11 16 2508 10.3390/foods11162508 36010508
    [Google Scholar]
  22. Zeira A. Nussinovitch A. Mechanical properties of weak locust bean gum (LBG) gels under controlled rapid freeze-thawing. J. Texture Stud. 2003 34 5-6 561 573 10.1111/j.1745‑4603.2003.tb01081.x
    [Google Scholar]
  23. Higiro J. Herald T.J. Alavi S. Rheological study of xanthan and locust bean gum interaction in dilute solution. Food Res. Int. 2006 39 2 165 175 10.1016/j.foodres.2005.07.011
    [Google Scholar]
  24. Kaur R. Sharma A. Puri V. Singh I. Preparation and characterization of biocomposite films of carrageenan/locust bean gum/montmorrillonite for transdermal delivery of curcumin. Bioimpacts 2018 9 1 37 43 10.15171/bi.2019.05 30788258
    [Google Scholar]
  25. El Batal H. Hasib A. Ouatmane A. Boulli A. Dehbi F. Jaouad A. Yield and composition of carob bean gum produced from different Moroccan populations of carob (Ceratonia siliqua L.). J. Mater. Environ. Sci. 2013 4 2
    [Google Scholar]
  26. Barak S. Mudgil D. Locust bean gum: Processing, properties and food applications—A review. Int. J. Biol. Macromol. 2014 66 74 80 10.1016/j.ijbiomac.2014.02.017 24548746
    [Google Scholar]
  27. Prakash Dev A review on natural polymer locust bean gum. World J. Biol. Pharm. Health. Sci. 2023 13 1
    [Google Scholar]
  28. Jo W. Yoo B. Effect of sucrose on rheological properties of xanthan gum-locust bean gum mixtures. Food Sci. Biotechnol. 2019 28 5 1487 1492 10.1007/s10068‑019‑00582‑z 31695947
    [Google Scholar]
  29. Sharma P. Sharma S. Ramakrishna G. Srivastava H. Gaikwad K. A comprehensive review on leguminous galactomannans: Structural analysis, functional properties, biosynthesis process and industrial applications. Crit. Rev. Food Sci. Nutr. 2022 62 2 443 465 10.1080/10408398.2020.1819196 33012173
    [Google Scholar]
  30. Sharma S. Tyagi A. Srivastava H. Ramakrishna G. Sharma P. Sevanthi A.M. Solanke A.U. Sharma R. Singh N.K. Sharma T.R. Gaikwad K. Exploring the edible gum (galactomannan) biosynthesis and its regulation during pod developmental stages in clusterbean using comparative transcriptomic approach. Sci. Rep. 2021 11 1 4000 10.1038/s41598‑021‑83507‑3 33597579
    [Google Scholar]
  31. Meunier L. Garthoff J.A. Schaafsma A. Krul L. Schrijver J. van Goudoever J.B. Speijers G. Vandenplas Y. Locust bean gum safety in neonates and young infants: An integrated review of the toxicological database and clinical evidence. Regul. Toxicol. Pharmacol. 2014 70 1 155 169 10.1016/j.yrtph.2014.06.023 24997231
    [Google Scholar]
  32. Papaefstathiou E. Agapiou A. Giannopoulos S. Kokkinofta R. Nutritional characterization of carobs and traditional carob products. Food Sci. Nutr. 2018 6 8 2151 2161 10.1002/fsn3.776 30510716
    [Google Scholar]
  33. Rached I. Barros L. Fernandes I.P. Santos-Buelga C. Rodrigues A.E. Ferchichi A. Barreiro M.F. Ferreira I.C.F.R. Ceratonia siliqua L. hydroethanolic extract obtained by ultrasonication: Antioxidant activity, phenolic compounds profile and effects in yogurts functionalized with their free and microencapsulated forms. Food Funct. 2016 7 3 1319 1328 10.1039/C6FO00100A 26887343
    [Google Scholar]
  34. Dakia P.A. Wathelet B. Paquot M. Isolation and chemical evaluation of carob (Ceratonia siliqua L.) seed germ. Food Chem. 2007 102 4 1368 1374 10.1016/j.foodchem.2006.05.059
    [Google Scholar]
  35. Gregoriou G. Neophytou C.M. Vasincu A. Gregoriou Y. Hadjipakkou H. Pinakoulaki E. Christodoulou M.C. Ioannou G.D. Stavrou I.J. Christou A. Kapnissi-Christodoulou C.P. Aigner S. Stuppner H. Kakas A. Constantinou A.I. Anti-cancer activity and phenolic content of extracts derived from cypriot carob (Ceratonia siliqua L.) pods using different solvents. Molecules 2021 26 16 5017 10.3390/molecules26165017 34443605
    [Google Scholar]
  36. McCleary B.V. Carob and guar galactomannans. Methods Enzymol 1988 160 C 523 527 10.1016/0076‑6879(88)60163‑7
    [Google Scholar]
  37. Brummer Y. Cui W. Wang Q. Extraction, Purification and Physicochemical Characterization of Seed Galactomannans. Food Hydrocoll. 2003 17 3 229 236 10.1016/S0268‑005X(02)00054‑1
    [Google Scholar]
  38. Sébastien G. Christophe B. Mario A. Pascal L. Michel P. Aurore R. Impact of purification and fractionation process on the chemical structure and physical properties of locust bean gum. Carbohydr. Polym. 2014 108 1 159 168 10.1016/j.carbpol.2014.02.092 24751260
    [Google Scholar]
  39. Amid B.T. Mirhosseini H. Effect of different purification techniques on the characteristics of heteropolysaccharide-protein biopolymer from durian (Durio zibethinus) seed. Molecules 2012 17 9 10875 10892 10.3390/molecules170910875 22964503
    [Google Scholar]
  40. McCleary B.V. Matheson N.K. α-d-Galactosidase activity and galactomannan and galactosylsucrose oligosaccharide depletion in germinating legume seeds. Phytochemistry 1974 13 9 1747 1757 10.1016/0031‑9422(74)85084‑3
    [Google Scholar]
  41. Kapoor V.P. A galactomannan from the seeds of Delonix regia. Phytochemistry 1972 11 3 1129 1132 10.1016/S0031‑9422(00)88465‑4
    [Google Scholar]
  42. Stepanenko B.N. Uzdenikova L.B. Precipitation of neutral polysaccharides and separation of their mixtures by use of various quaternary salts. Carbohydr. Res. 1972 25 2 526 530 10.1016/S0008‑6215(00)81667‑5
    [Google Scholar]
  43. Hoffman J. Lindberg B. Painter T. Schaumburg K. Vialle J. Anthonsen T. The distribution of the D-galactose residues in guaran and locust bean gum. Acta Chem. Scand. A 1976 30b 365 366 10.3891/acta.chem.scand.30b‑0365
    [Google Scholar]
  44. Grimaud F. Pizzut-Serin S. Tarquis L. Ladevèze S. Morel S. Putaux J.L. Potocki-Veronese G. In vitro synthesis and crystallization of β-1,4-Mannan. Biomacromolecules 2019 20 2 846 853 10.1021/acs.biomac.8b01457 30521331
    [Google Scholar]
  45. Ahmad S. Ahmad M. Manzoor K. Purwar R. Ikram S. A review on latest innovations in natural gums based hydrogels: Preparations & applications. Int. J. Biol. Macromol. 2019 136 870 890 10.1016/j.ijbiomac.2019.06.113
    [Google Scholar]
  46. Zhang X. Dai L. Li P. Wang T. Qin L. Xiang J. Chang H. Characterization of hydrophobic interaction of galactomannan in aqueous solutions using fluorescence-based technique. Carbohydr. Polym. 2021 267 118183 10.1016/j.carbpol.2021.118183 34119151
    [Google Scholar]
  47. Petkowicz C.L.O. Reicher F. Mazeau K. Conformational analysis of galactomannans: From oligomeric segments to polymeric chains. Carbohydr. Polym. 1998 37 1 25 39 10.1016/S0144‑8617(98)00051‑4
    [Google Scholar]
  48. Feng L. Yin J. Nie S. Wan Y. Xie M. Structure and conformation characterization of galactomannan from seeds of Cassia obtusifolia. Food Hydrocoll. 2018 76 67 77 10.1016/j.foodhyd.2017.06.008
    [Google Scholar]
  49. Xu W. Liu Y. Zhang F. Lei F. Wang K. Jiang J. Physicochemical characterization of Gleditsia triacanthos galactomannan during deposition and maturation. Int. J. Biol. Macromol. 2020 144 821 828 10.1016/j.ijbiomac.2019.09.161 31726147
    [Google Scholar]
  50. Petitjean M. Isasi J.R. Locust bean gum, a vegetable hydrocolloid with industrial and biopharmaceutical applications. Molecules 2022 27 23 8265 10.3390/molecules27238265 36500357
    [Google Scholar]
  51. Laaraj S. Salmaoui S. Addi M. El-rhouttais C. Tikent A. Elbouzidi A. Taibi M. Hano C. Noutfia Y. Elfazazi K. Carob (Ceratonia siliqua L.) seed constituents: A comprehensive review of composition, chemical profile, and diverse applications. J. Food Qual. 2023 2023 1 14 10.1155/2023/3438179
    [Google Scholar]
  52. Dea I.C.M. Morrison A. Chemistry and interactions of seed galactomannans. Adv. Carbohydr. Chem. Biochem. 1975 31 C 241 312 10.1016/S0065‑2318(08)60298‑X
    [Google Scholar]
  53. Santos M.B. Garcia-Rojas E.E. Recent advances in the encapsulation of bioactive ingredients using galactomannans-based as delivery systems. Food Hydrocoll. 2021 118 106815 10.1016/j.foodhyd.2021.106815
    [Google Scholar]
  54. Braz L. Grenha A. Ferreira D. Rosa da Costa A.M. Gamazo C. Sarmento B. Chitosan/sulfated locust bean gum nanoparticles: In vitro and in vivo evaluation towards an application in oral immunization. Int. J. Biol. Macromol. 2017 96 786 797 10.1016/j.ijbiomac.2016.12.076 28049014
    [Google Scholar]
  55. Ben Romdhane R. Atoui D. Ketata N. Dali S. Moussaoui Y. Ben Salem R. Pd supported on locust bean gum as reusable green catalyst for Heck and Sonogashira coupling reactions and 4‐nitroaniline reduction under ultrasound irradiation. Appl. Organomet. Chem. 2022 36 11 6870 10.1002/aoc.6870
    [Google Scholar]
  56. Tagad C.K. Rajdeo K.S. Kulkarni A. More P. Aiyer R.C. Sabharwal S. Green synthesis of polysaccharide stabilized gold nanoparticles: Chemo catalytic and room temperature operable vapor sensing application. RSC Advances 2014 4 46 24014 10.1039/c4ra02972k
    [Google Scholar]
  57. Singh I. Rani P. Gazali B.S.P. Kaur S. Microwave assisted synthesis of acrylamide grafted locust bean gum for colon specific drug delivery. Current Microwav Chem 2018 5 10.2174/2213335605666180129160145
    [Google Scholar]
  58. Jin E. Wang S. Song C. Li M. Influences of monomer compatibility on sizing performance of locust bean gum- g -P(MA-co-AA). J. Text. Inst. 2022 113 6 1083 1092 10.1080/00405000.2021.1915572
    [Google Scholar]
  59. Sagbas S. Sahiner N. Modifiable natural gum based microgel capsules as sustainable drug delivery systems. Carbohydr. Polym. 2018 200 128 136 10.1016/j.carbpol.2018.07.085 30177149
    [Google Scholar]
  60. Şen M. Hayrabolulu H. Radiation synthesis and characterisation of the network structure of natural/synthetic double-network superabsorbent polymers. Radiat. Phys. Chem. 2012 81 9 1378 1382 10.1016/j.radphyschem.2011.11.069
    [Google Scholar]
  61. Danish M. Mumtaz M.W. Fakhar M. Rashid U. Response surface methodology based optimized purification of the residual glycerol from biodiesel production process. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai 2017 44 4
    [Google Scholar]
  62. Kachel-Jakubowska M. Matwijczuk A. Gagoś M. Analysis of the physicochemical properties of post-manufacturing waste derived from production of methyl esters from rapeseed oil. Int. Agrophys. 2017 31 2 175 182 10.1515/intag‑2016‑0042
    [Google Scholar]
  63. Nayak A.K. Hasnain M.S. Aminabhavi T.M. Drug delivery using interpenetrating polymeric networks of natural polymers: A recent update. J. Drug Deliv. Sci. Technol. 2021 66 102915 10.1016/j.jddst.2021.102915
    [Google Scholar]
  64. Jana S. Sen K.K. Chitosan — Locust bean gum interpenetrating polymeric network nanocomposites for delivery of aceclofenac. Int. J. Biol. Macromol. 2017 102 878 884 10.1016/j.ijbiomac.2017.04.097 28456644
    [Google Scholar]
  65. Coviello T. Alhaique F. Dorigo A. Matricardi P. Grassi M. Two galactomannans and scleroglucan as matrices for drug delivery: Preparation and release studies. Eur. J. Pharm. Biopharm. 2007 66 2 200 209 10.1016/j.ejpb.2006.10.024 17156985
    [Google Scholar]
  66. Petitjean M. Aussant F. Vergara A. Isasi J.R. Solventless crosslinking of chitosan, xanthan, and locust bean gum networks functionalized with β-cyclodextrin. Gels 2020 6 4 51 10.3390/gels6040051 33333946
    [Google Scholar]
  67. Petitjean M. Isasi J.R. Chitosan, xanthan and locust bean gum matrices crosslinked with β-cyclodextrin as green sorbents of aromatic compounds. Int. J. Biol. Macromol. 2021 180 570 577 10.1016/j.ijbiomac.2021.03.098 33753196
    [Google Scholar]
  68. Petitjean M. Lamberto N. Zornoza A. Isasi J.R. Green synthesis and chemometric characterization of hydrophobic xanthan matrices: Interactions with phenolic compounds. Carbohydr. Polym. 2022 288 119387 10.1016/j.carbpol.2022.119387 35450648
    [Google Scholar]
  69. Hadinugroho W. Martodihardjo S. Fudholi A. Riyanto S. Esterification of citric acid with locust bean gum. Heliyon 2019 5 8 02337 10.1016/j.heliyon.2019.e02337 31485527
    [Google Scholar]
  70. Hadinugroho W. Martodihardjo S. Fudholi A. Riyanto S. Study of a catalyst of citric acid crosslinking on locust bean gum. J. Chem. Technol Metall 2017 52 6 1086 1091
    [Google Scholar]
  71. Liu X. Sala G. Scholten E. Role of polysaccharide structure in the rheological, physical and sensory properties of low-fat ice cream. Curr. Res. Food Sci. 2023 7 100531 10.1016/j.crfs.2023.100531 37441167
    [Google Scholar]
  72. Hadinugroho W. Martodihardjo S. Fudholi A. Riyanto S. Preparation of citric acid-locust bean gum (CA-LBG) for the disintegrating agent of tablet dosage forms. J. Pharm. Innov. 2022 17 4 1160 1175 10.1007/s12247‑021‑09591‑0
    [Google Scholar]
  73. Saha D. Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010 47 6 587 597 10.1007/s13197‑010‑0162‑6 23572691
    [Google Scholar]
  74. Xu H. Fan Q. Huang M. Cui L. Gao Z. Liu L. Chen Y. Jin J. Jin Q. Wang X. Combination of carrageenan with sodium alginate, gum arabic, and locust bean gum: Effects on rheological properties and quiescent stabilities of partially crystalline emulsions. Int. J. Biol. Macromol. 2023 253 Pt 8 127561 10.1016/j.ijbiomac.2023.127561 37865364
    [Google Scholar]
  75. Renou F. Petibon O. Malhiac C. Grisel M. Effect of xanthan structure on its interaction with locust bean gum: Toward prediction of rheological properties. Food Hydrocoll. 2013 32 2 331 340 10.1016/j.foodhyd.2013.01.012
    [Google Scholar]
  76. Copetti G. Grassi M. Lapasin R. Pricl S. Synergistic gelation of xanthan gum with locust bean gum: A rheological investigation. Glycoconj. J. 1997 14 8 951 961 10.1023/A:1018523029030 9486428
    [Google Scholar]
  77. Dakia P.A. Blecker C. Robert C. Wathelet B. Paquot M. Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocoll. 2008 22 5 807 818 10.1016/j.foodhyd.2007.03.007
    [Google Scholar]
  78. Haddarah A. Bassal A. Ismail A. Gaiani C. Ioannou I. Charbonnel C. Hamieh T. Ghoul M. The structural characteristics and rheological properties of Lebanese locust bean gum. J. Food Eng. 2014 120 1 204 214 10.1016/j.jfoodeng.2013.07.026
    [Google Scholar]
  79. Yadav S. Shire S.J. Kalonia D.S. Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies. J. Pharm. Sci. 2010 99 12 4812 4829 10.1002/jps.22190 20821382
    [Google Scholar]
  80. Anil M. Durmus Y. Tarakci Z. Effects of different concentrations of guar, xanthan and locust bean gums on physicochemical quality and rheological properties of corn flour tarhana. Nutr. Food Sci. 2021 51 1 137 150 10.1108/NFS‑03‑2020‑0082
    [Google Scholar]
  81. Brito-Oliveira T.C. Cazado C.P.S. Cavini A.C.M. Santos L.M.F. Moraes I.C.F. Pinho S.C. Cold-set NaCl-induced gels of soy protein isolate and locust bean gum: How the ageing process affect their microstructure and the stability of incorporated beta-carotene. Lebensm. Wiss. Technol. 2022 154 112677 10.1016/j.lwt.2021.112677
    [Google Scholar]
  82. Mezreli G. Kurt A. Akdeniz E. Ozmen D. Basyigit B. Toker O.S. A new synergistic hydrocolloid with superior rheology: Locust bean/xanthan gum binary solution powdered by different drying methods. Food Hydrocoll. 2024 154 110078 10.1016/j.foodhyd.2024.110078
    [Google Scholar]
  83. Puchart V. Vrsanská M. Bhat M.K. Biely P. Purification and characterization of α-galactosidase from a thermophilic fungus Thermomyces lanuginosus. Biochim. Biophys. Acta, Gen. Subj. 2000 1524 1 27 37 10.1016/S0304‑4165(00)00138‑0 11078955
    [Google Scholar]
  84. Gao G. Locust bean gum hydrolysis: Impact on molecular and functional properties. Manawatu, New Zealand Massey University 2021
    [Google Scholar]
  85. Pollard M.A. Fischer P. Partial aqueous solubility of low-galactose-content galactomannans—What is the quantitative basis? Curr. Opin. Colloid Interface Sci. 2006 11 2-3 184 190 10.1016/j.cocis.2005.12.001
    [Google Scholar]
  86. Wu Y. Cui W. Eskin N.A.M. Goff H.D. Rheological investigation of synergistic interactions between galactomannans and non-pectic polysaccharide fraction from water soluble yellow mustard mucilage. Carbohydr. Polym. 2009 78 1 112 116 10.1016/j.carbpol.2009.03.024
    [Google Scholar]
  87. Pollard M.A. Kelly R. Fischer P.A. Windhab E.J. Eder B. Amadò R. Investigation of molecular weight distribution of LBG galactomannan for flours prepared from individual seeds, mixtures, and commercial samples. Food Hydrocoll. 2008 22 8 1596 1606 10.1016/j.foodhyd.2007.11.004
    [Google Scholar]
  88. Behrouzian F. Razavi S.M.A. Steady shear rheological properties of emerging hydrocolloids. Emerging Natural Hydrocolloids. Rheology and Functions 2019 10.1002/9781119418511.ch3
    [Google Scholar]
  89. Wang W. Chang J. Zhang Z. Liu H. He L. Liu Y. Kang J. Goff H.D. Li Z. Guo Q. The galactomannan-EGCG physical complex: Effect of branching degree and molecular weight on structural and physiological properties. Carbohydr. Polym. 2024 343 122447 10.1016/j.carbpol.2024.122447 39174126
    [Google Scholar]
  90. Li R. Feke D.L. Rheological and kinetic study of the ultrasonic degradation of locust bean gum in aqueous saline and salt-free solutions. Ultrason. Sonochem. 2015 27 334 338 10.1016/j.ultsonch.2015.05.043 26186852
    [Google Scholar]
  91. Gadkari P.V. Tu S. Chiyarda K. Reaney M.J.T. Ghosh S. Rheological characterization of fenugreek gum and comparison with other galactomannans. Int. J. Biol. Macromol. 2018 119 486 495 10.1016/j.ijbiomac.2018.07.108 30031082
    [Google Scholar]
  92. Eiroboyi I. Ikiensikimama S.S. Oriji B.A. Okoye I.P. The effect of monovalent and divalent ions on biodegradable polymers in enhanced oil recovery. Paper presented at the SPE Nigeria Annual International Conference and Exhibition Lagos, Nigeria, August 05 2019 10.2118/198788‑MS
    [Google Scholar]
  93. Hussain R. Vatankhah H. Singh A. Ramaswamy H.S. Effect of high-pressure treatment on the structural and rheological properties of resistant corn starch/locust bean gum mixtures. Carbohydr. Polym. 2016 150 299 307 10.1016/j.carbpol.2016.05.039 27312641
    [Google Scholar]
  94. Shinwari K.J. Rao P.S. Changes in functional properties of food gels treated under high-hydrostatic pressure. Int. J. Adv. Res. Sci. Eng. 2018 7 4
    [Google Scholar]
  95. Das P. Ganguly S. Saravanan A. Margel S. Gedanken A. Srinivasan S. Rajabzadeh A.R. Naturally derived carbon dots in situ confined self-healing and breathable hydrogel monolith for anomalous diffusion-driven phytomedicine release. ACS Appl. Bio Mater. 2022 5 12 5617 5633 10.1021/acsabm.2c00664 36480591
    [Google Scholar]
  96. Ganguly S. Das P. Srinivasan S. Rajabzadeh A.R. Tang X.S. Margel S. Superparamagnetic amine-functionalized maghemite nanoparticles as a thixotropy promoter for hydrogels and magnetic field-driven diffusion-controlled drug release. ACS Appl. Nano Mater. 2024 7 5 5272 5286 10.1021/acsanm.3c05543
    [Google Scholar]
  97. Das B. Chattopadhyay D. Rana D. The gamut of perspectives, challenges, and recent trends for in situ hydrogels: A smart ophthalmic drug delivery vehicle. Biomater. Sci. 2020 8 17 4665 4691 10.1039/D0BM00532K
    [Google Scholar]
  98. Sav A.K. Fule R.A. Ali M.T. Amin P. Synthesis and evaluation of octenyl succinate anhydride derivative of fenugreek gum as extended release polymer. J. Pharm. Investig. 2013 43 5 417 429 10.1007/s40005‑013‑0088‑x
    [Google Scholar]
  99. Ding W.K. Shah N.P. Effect of various encapsulating materials on the stability of probiotic bacteria. J. Food Sci. 2009 74 2 M100 M107 10.1111/j.1750‑3841.2009.01067.x 19323757
    [Google Scholar]
  100. Dey P. Biswanath S.A. Maiti S. Carboxymethyl ethers of Locust bean gum-a review. Int. J. Pharm. Pharm. Sci. 2011 3 2 4 7
    [Google Scholar]
  101. Başyiğit B. Altun G. Yücetepe M. Karaaslan A. Karaaslan M. Locust bean gum provides excellent mechanical and release attributes to soy protein-based natural hydrogels. Int. J. Biol. Macromol. 2023 231 123352 10.1016/j.ijbiomac.2023.123352 36681221
    [Google Scholar]
  102. Mazumder R. Mahanti B. Majumdar S. Pal R. Pahari N. Satranidazole-loaded chitosan/locust bean gum/xanthan gum polysaccharide composite multiunit pellets for colon targeting: In vitro–in vivo investigation. Beni. Suef Univ. J. Basic Appl. Sci. 2022 11 1
    [Google Scholar]
  103. Reis F.P. Rigo G.V. Nogueira C.W. Tasca T. Sari M.H.M. Cruz L. Locust bean gum nano-based hydrogel for vaginal delivery of diphenyl diselenide in the treatment of trichomoniasis: Formulation characterization and in vitro biological evaluation. Pharmaceutics 2022 14 10 2112 10.3390/pharmaceutics14102112 36297547
    [Google Scholar]
  104. Kurmi S. Chaurasia R. Jain N. Investigation of rifampicin loaded interpenetrating polymer network (Ipn) microspheres for the treatment pf tuberculosis. Lat. Am. J. Pharm. 2022 41 11
    [Google Scholar]
  105. Ziar H. Yahla I. Sadoud M. Keddar K. Dilmi-Bouras A. Riazi A. Gérard P. Association of carob galactomannans with probiotic bacteria in synbiotic fermented milk and colon targeted-release carrier. Int. Food Res. J. 2022 29 4 879 891 10.47836/ifrj.29.4.15
    [Google Scholar]
  106. Matar G.H. Andac M. Antibacterial efficiency of silver nanoparticles-loaded locust bean gum/polyvinyl alcohol hydrogels. Polym. Bull. 2021 78 11 6095 6113 10.1007/s00289‑020‑03418‑7
    [Google Scholar]
  107. GIRI P. SINGH I. Synthesis and characterization of carboxymethylated locust bean gum for developing compression coated mucoadhesive tablets of cinnarizine. Asian J. Chem. 2021 33 9
    [Google Scholar]
  108. Katoch A. Nagpal M. Kaur M. Singh M. Aggarwal G. Dhingra G.A. Development and characterization of LBG-PVA interpenetrating networks incorporating gliclazide for sustained release. Curr. Drug Ther. 2021 16 1 54 63 10.2174/1574885515999200719143513
    [Google Scholar]
  109. Bala R. Madaan R. Gupta R. Chawla R. Sahoo U. Formulation of mouth dissolving strips of metoprolol succinate using locust bean gum. Egypt. J. Chem. 2021 64 1
    [Google Scholar]
  110. Giuliani L.M. Pegoraro N.S. Camponogara C. Osmari B.F. de Bastos Brum T. Reolon J.B. Rechia G.C. Oliveira S.M. Cruz L. Locust bean gum-based hydrogel containing nanocapsules for 3,3′-diindolylmethane delivery in skin inflammatory conditions. J. Drug Deliv. Sci. Technol. 2022 78 103960 10.1016/j.jddst.2022.103960
    [Google Scholar]
  111. Upadhyay M. Adena S.K.R. Vardhan H. Pandey S. Mishra B. Development and optimization of locust bean gum and sodium alginate interpenetrating polymeric network of capecitabine. Drug Dev. Ind. Pharm. 2018 44 3 511 521 10.1080/03639045.2017.1402921 29161913
    [Google Scholar]
  112. Pettinelli N. Rodríguez-Llamazares S. Farrag Y. Bouza R. Barral L. Feijoo-Bandín S. Lago F. Poly(hydroxybutyrate-co-hydroxyvalerate) microparticles embedded in κ-carrageenan/locust bean gum hydrogel as a dual drug delivery carrier. Int. J. Biol. Macromol. 2020 146 110 118 10.1016/j.ijbiomac.2019.12.193 31881300
    [Google Scholar]
  113. Kaity S. Isaac J. Ghosh A. Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery. Carbohydr. Polym. 2013 94 1 456 467 10.1016/j.carbpol.2013.01.070 23544563
    [Google Scholar]
  114. Laha B. Goswami R. Maiti S. Sen K.K. Smart karaya-locust bean gum hydrogel particles for the treatment of hypertension: Optimization by factorial design and pre-clinical evaluation. Carbohydr. Polym. 2019 210 274 288 10.1016/j.carbpol.2019.01.069 30732764
    [Google Scholar]
  115. Dey P. Maiti S. Sa B. Novel etherified locust bean gum-alginate hydrogels for controlled release of glipizide. J. Biomater. Sci. Polym. Ed. 2013 24 6 663 683 10.1080/09205063.2012.703950 23565908
    [Google Scholar]
  116. Prajapati V.D. Jani G.K. Moradiya N.G. Randeria N.P. Maheriya P.M. Nagar B.J. Locust bean gum in the development of sustained release mucoadhesive macromolecules of aceclofenac. Carbohydr. Polym. 2014 113 138 148 10.1016/j.carbpol.2014.06.061 25256468
    [Google Scholar]
  117. Pramoda, M.K. Lin S.L Mixed xanthan gum and locust bean gum therapeutic compositions. CA Patent 1093466A 1981
  118. Pharmaceutical formulations comprising capecitabine for colon-specific target. IN Patent 202241062045 2022
  119. Formulation which is albe to release nicorandil and contains polysaccharide and fatty acid ester. KR Patent 1020100007082 2010
  120. A kind of preparation method for wound healing antibacterial type hydrogel. CN Patent 106947095A 2017
  121. Combination of an oxidant and a photoactivator for the healing of wounds. NZ Patent 631218A 2009
  122. Combination of a novel topical gel and oral supplements for healing diabetic foot and other wounds. US Patent 20210106646A1 2019
  123. Solid polysaccharide materials for use as wound dressings. CA Patent 2198569A1 1996
  124. Peña O.A. Martin P. Cellular and molecular mechanisms of skin wound healing. Nat. Rev. Molecular Cell. Biol. 2024 25 599 616 10.1038/s41580‑024‑00715‑1
    [Google Scholar]
  125. Varaprasad K. Jayaramudu T. Kanikireddy V. Toro C. Sadiku E.R. Alginate-based composite materials for wound dressing application:A mini review. Carbohydr. Polym. 2020 236 116025 10.1016/j.carbpol.2020.116025 32172843
    [Google Scholar]
  126. Akkaya N.E. Ergun C. Saygun A. Yesilcubuk N. Akel-Sadoglu N. Kavakli I.H. Turkmen H.S. Catalgil-Giz H. New biocompatible antibacterial wound dressing candidates; agar-locust bean gum and agar-salep films. Int. J. Biol. Macromol. 2020 155 430 438 10.1016/j.ijbiomac.2020.03.214 32229209
    [Google Scholar]
  127. Zepon K.M. Martins M.M. Marques M.S. Heckler J.M. Dal Pont Morisso F. Moreira M.G. Ziulkoski A.L. Kanis L.A. Smart wound dressing based on κ–carrageenan/locust bean gum/cranberry extract for monitoring bacterial infections. Carbohydr. Polym. 2019 206 362 370 10.1016/j.carbpol.2018.11.014 30553333
    [Google Scholar]
  128. Silveira J.L.M. Bresolin T.M.B. Pharmaceutical use of galactomannans. Quim. Nova 2011 34 2 292 299 10.1590/S0100‑40422011000200023
    [Google Scholar]
  129. Devi G. Kaur M. Nagpal M. Sharma A. Puri V.P. Dhingra G.A. Arora M. Advanced dosage form design: Role of modified natural gums. Asian J. Chem. 2020 33 1 22937 10.14233/ajchem.2021.22937
    [Google Scholar]
  130. Alves A. Cavaco J. Guerreiro F. Lourenço J. Rosa da Costa A. Grenha A. Inhalable antitubercular therapy mediated by locust bean gum microparticles. Molecules 2016 21 6 702 10.3390/molecules21060702 27240337
    [Google Scholar]
  131. Moin A. Gangadharappa H.V. Adnan M. Rizvi S.M. Ashraf S.A. Patel M. Abu Lila A.S. Allam A.N. Modulation of drug release from natural polymer matrices by response surface methodology: In vitro and in vivo evaluation. Drug Des. Devel. Ther. 2020 14 5325 5336 10.2147/DDDT.S279955 33293794
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575403772250824151020
Loading
/content/journals/mrmc/10.2174/0113895575403772250824151020
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test