Skip to content
2000
image of Current Developments in the Pharmacological Activities and Synthesis of Carbazole Derivatives

Abstract

aThe growing prevalence of multidrug resistance and its detrimental effects pose a significant threat to public health, which is one reason for the current interest in the introduction of novel agents. To combat this adverse effect and drug resistance, numerous drugs have been developed over time, and their safety is still being evaluated; derivatives or medications based on the carbazole moiety are one of the key contributors. Therefore, this review explores carbazole-based derivatives as possible drugs to treat Alzheimer's, diabetes, inflammation, cancer, and many more, along with their synthetic schemes, SARs, and activity. Some of the carbazole-based drugs available in the market and under clinical trials are also tabulated. By integrating this insight, describe how these compounds are being reinvented as targeted therapeutic agents. This comprehensive analysis is designed to guide researchers in developing next-generation drugs to address various challenges and leverage the unique pharmacological properties of carbazole-derived drugs.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575407122250822095143
2025-09-02
2025-09-22
Loading full text...

Full text loading...

References

  1. Schmidt A.W. Reddy K.R. Knölker H.J. Occurrence, biogenesis, and synthesis of biologically active carbazole alkaloids. Chem Rev 2012 112 6 3193 3328 10.1021/cr200447s 22480243
    [Google Scholar]
  2. Kaplancikli Z.A. Yurttaş L. Turan-Zitouni G. Özdemir A. Özic R. Ulusoylar-Yıldırım Ş. Synthesis, antimicrobial activity and cytotoxicity of some new carbazole derivatives. J Enzyme Inhib Med Chem 2012 27 6 868 874 10.3109/14756366.2011.622273 21999633
    [Google Scholar]
  3. Zur Abwehr G.C. Zur abwehr. Ber Dtsch Chem Ges 1872 5 2 968 969 10.1002/cber.187200502112
    [Google Scholar]
  4. Chakraborty D.P. Roy S. Carbazole alkaloids IV. Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products Wien GmbH Cham Springer-Verlag 2003 85 125 230 10.1007/978‑3‑7091‑6051‑0_3
    [Google Scholar]
  5. Mustafa Y.F. Mohammed N.A. A promising oral 5-fluorouracil prodrug for lung tumor: Synthesis, characterization and release. Biochem Cell Arch 2021 21 Supplement 1 1991 1999
    [Google Scholar]
  6. Bashir M. Bano A. Ijaz A. Chaudhary B. Recent developments and biological activities of N-substituted carbazole derivatives: A review. Molecules 2015 20 8 13496 13517 10.3390/molecules200813496 26213906
    [Google Scholar]
  7. Kasim S.M. Al-Dabbagh B.M. Mustafa Y.F. A review on the biological potentials of carbazole and its derived products. Eurasian Chem Commun 2022 4 6 495 512
    [Google Scholar]
  8. Issa S. Walchshofer N. Kassab I. Termoss H. Chamat S. Geahchan A. Bouaziz Z. Synthesis and antiproliferative activity of oxazinocarbazole and N,N-bis(carbazolylmethyl)amine derivatives. Eur J Med Chem 2010 45 6 2567 2577 10.1016/j.ejmech.2010.02.045 20236739
    [Google Scholar]
  9. Knölker H.J. Reddy K.R. Biological and pharmacological activities of carbazole alkaloids. Alkaloids Chem Biol 2008 65 181 193 10.1016/S1099‑4831(07)00004‑1
    [Google Scholar]
  10. Indumathi T. Fronczek F.R. Rajendra Prasad K.J. Synthesis of 2-amino-8-chloro-4-phenyl-5,11-dihydro-6H-pyrido[2,3-a]carbazole-3-carbonitrile: Structural and biological evaluation. J Mol Struct 2012 1016 134 139 10.1016/j.molstruc.2012.01.032
    [Google Scholar]
  11. Mustafa Y.F. Bashir M.K. Oglah M.K. Original and innovative advances in the synthetic schemes of coumarin-based derivatives: A review. Syst Rev Pharm 2020 11 6 598 612
    [Google Scholar]
  12. Li JJ Bucherer carbazole synthesis. Available from: https://en.wikipedia.org/wiki/Bucherer_carbazole_synthesis 2006
  13. Zhang H. Zhang R.H. Wang L.X. Li Y.J. Liao S.G. Zhou M. Synthesis strategies for α‐, β‐, γ‐ and δ‐carbolines. Asian J Org Chem 2021 10 3 429 452 10.1002/ajoc.202000690
    [Google Scholar]
  14. Creencia E.C. Kosaka M. Muramatsu T. Kobayashi M. Iizuka T. Horaguchi T. Microwave‐assisted Cadogan reaction for the synthesis of 2‐aryl‐2 H ‐indazoles, 2‐aryl‐1 H ‐benzimidazoles, 2‐carbonylindoles, carbazole, and phenazine. J Heterocycl Chem 2009 46 6 1309 1317 10.1002/jhet.267
    [Google Scholar]
  15. Stokes B.J. Jovanović B. Dong H. Richert K.J. Riell R.D. Driver T.G. Rh(2)(II)-catalyzed synthesis of carbazoles from biaryl azides. J Org Chem 2009 74 8 3225 3228 10.1021/jo9002536 19296584
    [Google Scholar]
  16. Hung T.Q. Dang T.T. Langer P. Do H.N. Quan N.M. Van Phuc B. Van Tinh D. Tien N.Q. Nga T.T.T. Nguyen V.T. Efficient copper-Catalysed synthesis of Carbazoles by double N-Arylation of primary amines with 2, 2′-dibromobiphenyl in the presence of air. Synlett 2021 32 6 611 615 10.1055/s‑0040‑1706641
    [Google Scholar]
  17. James M.J. Clubley R.E. Palate K.Y. Procter T.J. Wyton A.C. O’Brien P. Taylor R.J.K. Unsworth W.P. Silver (I)-catalyzed dearomatization of alkyne-tethered indoles: Divergent synthesis of spirocyclic indolenines and carbazoles. Org Lett 2015 17 17 4372 4375 10.1021/acs.orglett.5b02216 26293968
    [Google Scholar]
  18. Qiu Y. Kong W. Fu C. Ma S. Carbazoles via AuCl 3 -Catalyzed cyclization of 1-(Indol-2-yl)-3-alkyn-1-ols. Org Lett 2012 14 24 6198 6201 10.1021/ol3029498 23228044
    [Google Scholar]
  19. Samala S. Mandadapu A.K. Saifuddin M. Kundu B. Gold-catalyzed sequential alkyne activation: One-pot synthesis of NH-carbazoles via cascade hydroarylation of alkyne/6-endo-dig carbocyclization reactions. J Org Chem 2013 78 13 6769 6774 10.1021/jo400799b 23789909
    [Google Scholar]
  20. Sharma S. Chauhan A. Ranjan A. Mathkor D.M. Haque S. Ramniwas S. Tuli H.S. Jindal T. Yadav V. Emerging challenges in antimicrobial resistance: Implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front Microbiol 2024 15 1403168 10.3389/fmicb.2024.1403168 38741745
    [Google Scholar]
  21. Sharma M Bakshi AK Mittapelly N Gautam S Marwaha D Rai N Singh N Tiwari P Agarwal N Kumar A Mishra PR Recent updates on innovative approaches to overcome drug resistance for better outcomes in cancer. J Cont Rel 2022 346 43 70
    [Google Scholar]
  22. Rochester C.D. Akiyode O. Novel and emerging diabetes mellitus drug therapies for the type 2 diabetes patient. World J Diabetes 2014 5 3 305 315 10.4239/wjd.v5.i3.305 24936252
    [Google Scholar]
  23. Alhazmi H.A. Albratty M. An update on the novel and approved drugs for Alzheimer disease. Saudi Pharm J 2022 30 12 1755 1764 10.1016/j.jsps.2022.10.004 36601504
    [Google Scholar]
  24. National center for biotechnology information. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Carbazole 2021
  25. Ondansetron. Available from: https://go.drugbank.com/drugs/DB00904 2015
  26. Carvedilol. Available from: https://go.drugbank.com/drugs/DB01136 2011
  27. Ellipticine. Available from: https://go.drugbank.com/drugs/DB17026 2006
  28. MedKoo biosciences. Available from: https://www.medkoo.com/products/6078 2021
  29. Carprofen. Available from: https://go.drugbank.com/drugs/DB00821 2019
  30. Staurosporine. Available from: https://go.drugbank.com/drugs/DB02010 2019
  31. Midostaurin. Available from: https://go.drugbank.com/drugs/DB06595 2017
  32. Olivacine is an alkaloid with antitumor and antileukemic activity isolated from Aspidosperma olivaceum. Available from: https://www.medkoo.com/products/35099 2021
  33. Datelliptium chloride is a DNA-intercalating agent derived from ellipticine. Datelliptium chloride showed anti-tumor activities. Available from: https://www.medkoo.com/products/34055
  34. Carazostatin is an antioxidant, free radical scavenger and potent inhibitor of lipid peroxidation. Available from: https://www.medkoo.com/products/20868
  35. Chiglitazar. Available from: https://go.drugbank.com/drugs/DB19023 2024
  36. Pegcantratinib. Available from: https://go.drugbank.com/drugs/DB16280 2024
  37. 7-Hydroxystaurosporine. Available from: https://go.drugbank.com/drugs/DB01933 2019
  38. CHEBI:138650 - CBL0137. Available from: https://www.ebi.ac.uk/chebi/chebiOntology.do?chebiId=CHEBI:138650 2021
  39. ESK981. Available from: https://go.drugbank.com/drugs/DB18155 2024
  40. CEP-1347. Available from: https://go.drugbank.com/drugs/DB05403 2019
  41. Alectinib. Available from: https://go.drugbank.com/drugs/DB11363 2015
  42. Ramatroban. Available from: https://go.drugbank.com/drugs/DB13036 2019
  43. Begley C.G. Ellis L.M. Raise standards for preclinical cancer research. Nature 2012 483 7391 531 533 10.1038/483531a 22460880
    [Google Scholar]
  44. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  45. Piñeros M. Mery L. Soerjomataram I. Bray F. Steliarova-Foucher E. Scaling up the surveillance of childhood cancer: A global roadmap. J Natl Cancer Inst 2021 113 1 9 15 10.1093/jnci/djaa069 32433739
    [Google Scholar]
  46. Pradhan S. Bacolla A. Wells R.D. Roberts R.J. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 1999 274 46 33002 33010 10.1074/jbc.274.46.33002 10551868
    [Google Scholar]
  47. Liu J. Ruan M. Liu Y. Hong X. Zhang L. Zhang Q. Identification of 3-(9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acids as promising DNMT1 inhibitors. Eur J Med Chem 2024 274 116538 10.1016/j.ejmech.2024.116538 38823264
    [Google Scholar]
  48. Zhu W. Chen C. Sun C. Xu S. Wu C. Lei F. Xia H. Tu Q. Zheng P. Design, synthesis and docking studies of novel thienopyrimidine derivatives bearing chromone moiety as mTOR/PI3Kα inhibitors. Eur J Med Chem 2015 93 64 73 10.1016/j.ejmech.2015.01.061 25659752
    [Google Scholar]
  49. Xu S. Sun C. Chen C. Zheng P. Zhou Y. Zhou H. Zhu W. Synthesis and biological evaluation of novel 8-morpholinoimidazo [1, 2-a] pyrazine derivatives bearing phenylpyridine/phenylpyrimidine-carboxamides. Molecules 2017 22 2 310 10.3390/molecules22020310 28218676
    [Google Scholar]
  50. Sun C. Chen C. Xu S. Wang J. Zhu Y. Kong D. Tao H. Jin M. Zheng P. Zhu W. Synthesis and anticancer activity of novel 4-morpholino-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine derivatives bearing chromone moiety. Bioorg Med Chem 2016 24 16 3862 3869 10.1016/j.bmc.2016.06.032 27353887
    [Google Scholar]
  51. Wang Q. Li X. Sun C. Zhang B. Zheng P. Zhu W. Xu S. Synthesis and structure–activity relationships of 4-morpholino-7,8-dihydro-5h-thiopyrano[4,3-d]pyrimidine derivatives bearing pyrazoline scaffold. Molecules 2017 22 11 1870 10.3390/molecules22111870 29088090
    [Google Scholar]
  52. Çapan İ. Hawash M. Qaoud M.T. Gülüm L. Tunoglu E.N.Y. Çifci K.U. Çevrimli B.S. Sert Y. Servi S. Koca İ. Tutar Y. Synthesis of novel carbazole hydrazine-carbothioamide scaffold as potent antioxidant, anticancer and antimicrobial agents. BMC Chem 2024 18 1 102 10.1186/s13065‑024‑01207‑1 38773663
    [Google Scholar]
  53. Warfel N.A. Kraft A.S. PIM kinase (and Akt) biology and signaling in tumors. Pharmacol Ther 2015 151 41 49 10.1016/j.pharmthera.2015.03.001 25749412
    [Google Scholar]
  54. Asati V. Agarwal S. Mishra M. Das R. Kashaw S.K. Structural prediction of novel pyrazolo-pyrimidine derivatives against PIM-1 kinase: In-silico drug design studies. J Mol Struct 2020 1217 128375 10.1016/j.molstruc.2020.128375
    [Google Scholar]
  55. Asati V. Mahapatra D.K. Bharti S.K. PIM kinase inhibitors: Structural and pharmacological perspectives. Eur J Med Chem 2019 172 95 108 10.1016/j.ejmech.2019.03.050 30954777
    [Google Scholar]
  56. Chen C.H. Xu M.J. Zheng Q. Li D.D. Cheng L. Sun J. Wu Z.M. Biological evaluation of carbazoyl hydrazine derivatives as potential Pim-1 kinase inhibitors for the treatment of human liver cancer. J Mol Struct 2024 1295 136742 10.1016/j.molstruc.2023.136742
    [Google Scholar]
  57. Rajender O. Pallavi H. Sultana R. Synthesis, characterization, DNA-binding, and anticancer activity of 7-methoxytetrahydropyrrolo[3,4-a]carbazole-1,3-diones derivatives with different hydroxyl-alkyl side chains. Russ J Bioorganic Chem 2024 50 3 1082 1093 10.1134/S1068162024080223
    [Google Scholar]
  58. Wang J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat Rev Mol Cell Biol 2002 3 6 430 440 10.1038/nrm831 12042765
    [Google Scholar]
  59. Wang J.C. DNA topoisomerases. Annu Rev Biochem 1996 65 1 635 692 10.1146/annurev.bi.65.070196.003223 8811192
    [Google Scholar]
  60. Forterre P. Gribaldo S. Gadelle D. Serre M.C. Origin and evolution of DNA topoisomerases. Biochimie 2007 89 4 427 446 10.1016/j.biochi.2006.12.009 17293019
    [Google Scholar]
  61. Bailly C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem Rev 2012 112 7 3611 3640 10.1021/cr200325f 22397403
    [Google Scholar]
  62. Olszewski M. Maciejewska N. Kallingal A. Chylewska A. Dąbrowska A.M. Biedulska M. Makowski M. Padrón J.M. Baginski M. Palindromic carbazole derivatives: Unveiling their antiproliferative effect via topoisomerase II catalytic inhibition and apoptosis induction. J Enzyme Inhib Med Chem 2024 39 1 2302920 10.1080/14756366.2024.2302920 38221785
    [Google Scholar]
  63. Ménard S. Pupa S.M. Campiglio M. Tagliabue E. Biologic and therapeutic role of HER2 in cancer. Oncogene 2003 22 42 6570 6578 10.1038/sj.onc.1206779 14528282
    [Google Scholar]
  64. Beniwal S.C. Virmani T. Synthesis, characterization and evaluation of novel carbazole boronic acid derivatives in the treatment of breast cancer. Int J Pharm Sci Res 2023 14 1992 2001
    [Google Scholar]
  65. Ullah H. Rahim F. Uddin I. Khan M.U. Khan F. Hussain A. Hussain R. Khan S. Synthesis, in vitro α-amylase activity and molecular docking study of benzoxazole derivatives. Chemical Data Collections 2024 51 101133 10.1016/j.cdc.2024.101133
    [Google Scholar]
  66. Huntington G.B. Harmon D.L. Richards C.J. Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle1. J Anim Sci 2006 84 Suppl. 13 E14 E24 10.2527/2006.8413_supplE14x 16582085
    [Google Scholar]
  67. Zahra S. Zaib S. Khan I. Identification of isobenzofuranone derivatives as promising antidiabetic agents: Synthesis, in vitro and in vivo inhibition of α-glucosidase and α-amylase, computational docking analysis and molecular dynamics simulations. Int J Biol Macromol 2024 259 Pt 2 129241 10.1016/j.ijbiomac.2024.129241 38199537
    [Google Scholar]
  68. Diabetes. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes 2024
  69. Sohrabi M Binaeizadeh MR Iraji A Larijani B Saeedi M Mahdavi M A review on α-glucosidase inhibitory activity of first row transition metal complexes: A futuristic strategy for treatment of type 2 diabetes. 2022 12 19 12011 12052
    [Google Scholar]
  70. Taha M. Irshad M. Imran S. Rahim F. Selvaraj M. Almandil N.B. Mosaddik A. Chigurupati S. Nawaz F. Ismail N.H. Ibrahim M. Thiazole based carbohydrazide derivatives as α -Amylase inhibitor and their molecular docking study. Heteroatom Chem 2019 2019 1 1 8 10.1155/2019/7502347
    [Google Scholar]
  71. Shahzad D. Saeed A. Larik F.A. Channar P.A. Abbas Q. Alajmi M.F. Arshad M.I. Erben M.F. Hassan M. Raza H. Seo S.Y. El-Seedi H.R. Novel C-2 symmetric molecules as α-glucosidase and α-amylase inhibitors: Design, synthesis, kinetic evaluation, molecular docking and pharmacokinetics. Molecules 2019 24 8 1511 10.3390/molecules24081511 30999646
    [Google Scholar]
  72. Çapan İ. Hawash M. Qaoud M.T. Jaradat N. Next-generation carbazole-linked 1,2,4-Triazole-thione derivatives: Strategic design, synthesis, molecular docking, and evaluation of antidiabetic potential. ACS Omega 2025 10 1 848 861 10.1021/acsomega.4c07896 39829592
    [Google Scholar]
  73. Luo S. Zhao L. Peng H. Peng Z. Wang G. Novel carbazole-oxadiazole derivatives as anti-α-glucosidase and anti-α-amylase agents: Design, synthesis, molecular docking, and biological evaluation. Eur J Med Chem 2024 275 116600 10.1016/j.ejmech.2024.116600 38889608
    [Google Scholar]
  74. Uslu Uçar T.N. Bingul M. Sahin H. Kandemir H. Sengul I.F. Synthesis of furo[2,3-c]carbazoles as potent α -glucosidase and α -amylase inhibitors. Synth Commun 2024 54 19 1698 1706 10.1080/00397911.2024.2401628
    [Google Scholar]
  75. Hassine K. Zrida H. Saidi I. Hriz K. Hamdan K. Ben Jannet H. Majdoub H. Novel functionalized triazole/carbazole-based chitosan: In vitro, in vivo and in silico evaluation of anti-diabetic and anti-obesity activities. Chemistry Africa 2024 7 2 643 659 10.1007/s42250‑023‑00790‑5
    [Google Scholar]
  76. Şahin H. Arslantürk Bingül A. Şengül İ. Bingül M. Biological and computational evaluation of carbazole-based bis-thiosemicarbazones: A selective enzyme inhibition study between α-amylase and α-glucosidase. İstanbul J Phar 2023 53 1 39 44 10.26650/IstanbulJPharm.2023.1164443
    [Google Scholar]
  77. Tinkov A.A. Bjørklund G. Skalny A.V. Holmgren A. Skalnaya M.G. Chirumbolo S. Aaseth J. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: Towards a possible prognostic marker? Cell Mol Life Sci 2018 75 9 1567 1586 10.1007/s00018‑018‑2745‑8 29327078
    [Google Scholar]
  78. Kentrup H. Becker W. Heukelbach J. Wilmes A. Schürmann A. Huppertz C. Kainulainen H. Joost H.G. Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII. J Biol Chem 1996 271 7 3488 3495 10.1074/jbc.271.7.3488 8631952
    [Google Scholar]
  79. Song W.J. Sternberg L.R. Kasten-Sportès C. Keuren M.L.V. Chung S.H. Slack A.C. Miller D.E. Glover T.W. Chiang P.W. Lou L. Kurnit D.M. Isolation of human and murine homologues of the Drosophila minibrain gene: Human homologue maps to 21q22.2 in the Down syndrome “critical region”. Genomics 1996 38 3 331 339 10.1006/geno.1996.0636 8975710
    [Google Scholar]
  80. Li A. Guan L. Su W. Zhao N. Song X. Wang J. Tang X. Li W. Jiao X. TXNIP inhibition in the treatment of type 2 diabetes mellitus: Design, synthesis, and biological evaluation of quinazoline derivatives. J Enzyme Inhib Med Chem 2023 38 1 2166937 10.1080/14756366.2023.2166937 36651294
    [Google Scholar]
  81. Guan L. Li A. Song P. Su W. Zhang S. Chen J. Jiao X. Li W. Design, synthesis, and biological evaluation of β-carboline-cinnamic acid derivatives as DYRK1A inhibitors in the treatment of diabetes. Bioorg Chem 2024 151 107676 10.1016/j.bioorg.2024.107676 39068716
    [Google Scholar]
  82. Su W. Guan L. Zhao J.N. He Z.L. Song P. Li A. Li W. Jiao X. Design, synthesis and biological evaluation of quinazoline-carbazole derivatives as potent dual txnip/dyrk1a inhibitors for the treatment of type 2 diabetes mellitus. Available from: https://www.researchgate.net/publication/383325126_Design_Synthesis_and_Biological_Evaluation_of_Quinazoline-_Carbazole_Derivatives_as_Potent_Dual_TXNIP/DYRK1A_Inhibitors_for_the_Treatment_of_Type_2_Diabetes_Mellitus 2024
  83. Anand P. Singh B. Singh N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg Med Chem 2012 20 3 1175 1180 10.1016/j.bmc.2011.12.042 22257528
    [Google Scholar]
  84. Dementia. Available from: https://www.who.int/news-room/fact-sheets/detail/dementia 2025
  85. Waxenbaum JA Reddy V Varacallo M Anatomy, autonomic nervous system. StatPearls United States StatPearls Publishing 2023
    [Google Scholar]
  86. Kumar S. Paliwal D. Sahu R. Kaushik N. Recent Advancements in the Synthesis of Pyrazole Derivative for the Treatment of Alzheimer’s Disease. Curr Org Chem 2025 29 18 1409 1423 10.2174/0113852728360592250214110907
    [Google Scholar]
  87. Sharon N. Ugale V.G. Padmaja P. Lokwani D. Salunkhe C. Shete P. Reddy P.N. Kulkarni P.P. Development of novel 9H-carbazole-4H-chromene hybrids as dual cholinesterase inhibitors for the treatment of Alzheimer’s disease. Mol Divers 2025 29 1 379 396 10.1007/s11030‑024‑10859‑z 38683486
    [Google Scholar]
  88. Faghih Z. Khabnadideh S. Sakhteman A. Shirazi A.K. Yari H.A. Chatraei A. Rezaei Z. Sadeghian S. Synthesis, biological evaluation and molecular modeling studies of novel carbazole-benzylpiperazine hybrids as acetylcholinesterase and butyrylcholinesterase inhibitors. J Mol Struct 2023 1272 134209 10.1016/j.molstruc.2022.134209
    [Google Scholar]
  89. Song M. Min W. Wang J. Si X.X. Wang X.J. Liu Y.W. Shi D.H. Design, synthesis and biological evaluation of new carbazole-coumarin hybrids as dual binding site inhibitors of acetylcholinesterase. J Mol Struct 2021 1229 129784 10.1016/j.molstruc.2020.129784
    [Google Scholar]
  90. Patel D.V. Patel N.R. Kanhed A.M. Teli D.M. Patel K.B. Joshi P.D. Patel S.P. Gandhi P.M. Chaudhary B.N. Prajapati N.K. Patel K.V. Yadav M.R. Novel carbazole-stilbene hybrids as multifunctional anti-Alzheimer agents. Bioorg Chem 2020 101 103977 10.1016/j.bioorg.2020.103977 32485470
    [Google Scholar]
  91. Fu P. Sun W. Zhang Z. Molecular cloning, expression and characterization of acylpeptide hydrolase in the silkworm, Bombyx mori. Gene 2016 580 1 8 16 10.1016/j.gene.2015.12.069 26778207
    [Google Scholar]
  92. Venäläinen J.I. Juvonen R.O. Männistö P.T. Evolutionary relationships of the prolyl oligopeptidase family enzymes. Eur J Biochem 2004 271 13 2705 2715 10.1111/j.1432‑1033.2004.04199.x 15206935
    [Google Scholar]
  93. Hannula M.J. Myöhänen T.T. Tenorio-Laranga J. Männistö P.T. Garcia-Horsman J.A. Prolyl oligopeptidase colocalizes with α-synuclein, β-amyloid, tau protein and astroglia in the post-mortem brain samples with Parkinson’s and Alzheimer’s diseases. Neuroscience 2013 242 140 150 10.1016/j.neuroscience.2013.03.049 23562579
    [Google Scholar]
  94. Alvarez V.E. Niemirowicz G.T. Cazzulo J.J. The peptidases of Trypanosoma cruzi: Digestive enzymes, virulence factors, and mediators of autophagy and programmed cell death. Biochim Biophys Acta Proteins Proteomics 2012 1824 1 195 206 10.1016/j.bbapap.2011.05.011 21621652
    [Google Scholar]
  95. Ullah S. Mansoor F. Khan S.A. Jabeen U. Almars A.I. Almohaimeed H.M. Basri A.M. Alshabrmi F.M. Exploring bi-carbazole-linked triazoles as inhibitors of prolyl endo peptidase via integrated in vitro and in silico study. Sci Rep 2024 14 1 7675 10.1038/s41598‑024‑58428‑6 38561470
    [Google Scholar]
  96. MacLean R.C. San Millan A. The evolution of antibiotic resistance. Science 2019 365 6458 1082 1083 10.1126/science.aax3879 31515374
    [Google Scholar]
  97. Bakkeren E. Diard M. Hardt W.D. Evolutionary causes and consequences of bacterial antibiotic persistence. Nat Rev Microbiol 2020 18 9 479 490 10.1038/s41579‑020‑0378‑z 32461608
    [Google Scholar]
  98. Koulenti D. Xu E. Yin Sum Mok I. Song A. Karageorgopoulos D.E. Armaganidis A. Lipman J. Tsiodras S. Novel antibiotics for multidrug-resistant gram-positive microorganisms. Microorganisms 2019 7 8 270 10.3390/microorganisms7080270 31426596
    [Google Scholar]
  99. Chen C.H. Liu C.S. Guo X.M. Tong J.P. Huang J. Shi T.T. Sun J. Design, synthesis, and biological evaluation of carbazole derivatives as potent antibacterial agents targeting membrane function via FabH Inhibition. J Mol Struct 2024 1306 137891 10.1016/j.molstruc.2024.137891
    [Google Scholar]
  100. Ma S.Y. Ding Y.G. Tuo X.X. Wang G.Q. Liu H.W. Meng J. Zhang T.H. Liu L.W. Qi P.Y. Zhou X. Yang S. Design, synthesis, and evaluation of novel 3-(piperazin-1-yl)propan-2-ol-modified carbazole derivatives targeting the bacterial membrane. Arab J Chem 2024 17 9 105850 10.1016/j.arabjc.2024.105850
    [Google Scholar]
  101. Ashok D. Thara G. Kumar B.K. Srinivas G. Ravinder D. Vishnu T. Sarasija M. Sushmitha B. Microwave-assisted synthesis, molecular docking studies of 1,2,3-triazole-based carbazole derivatives as antimicrobial, antioxidant and anticancer agents. RSC Advances 2022 13 1 25 40 10.1039/D2RA05960F 36545291
    [Google Scholar]
  102. Niedziałkowska K. Felczak A. Głowacka I.E. Piotrowska D.G. Lisowska K. Antimicrobial activity and toxicity of newly synthesized 4-[4-(benzylamino)butoxy]-9H-carbazole derivatives. Int J Mol Sci 2023 24 18 13722 10.3390/ijms241813722 37762024
    [Google Scholar]
  103. Sabale PM Design, synthesis and biological screening of novel carbazole tethered oxyethylamino derivatives as antimicrobial agent. Ind J Pharm Edu Res 2023 57
    [Google Scholar]
  104. Merzouki O. Arrousse N. El Barnossi A. Ech-chihbi E. Fernine Y. Iraqi Housseini A. Rais Z. Taleb M. Eco-friendly synthesis, characterization, in-silico ADMET and molecular docking analysis of novel carbazole derivatives as antibacterial and antifungal agents. J Mol Struct 2023 1271 133966 10.1016/j.molstruc.2022.133966
    [Google Scholar]
  105. Ünver Y. Süleymanoğlu N. Ustabaş R. Bektaş K.İ. Bektaş E. Güler H.İ. 3-(5-(1 H -imidazol-1-yl) pent-1-en-1-yl)-9-ethyl-9 H -carbazole: Synthesis, characterization (IR, NMR), DFT, antimicrobial-antioxidant activities and docking study. J Biomol Struct Dyn 2022 40 23 12990 13000 10.1080/07391102.2021.1977708 34514967
    [Google Scholar]
  106. Shaikh M.S. Kanhed A.M. Chandrasekaran B. Palkar M.B. Agrawal N. Lherbet C. Hampannavar G.A. Karpoormath R. Discovery of novel N-methyl carbazole tethered rhodanine derivatives as direct inhibitors of Mycobacterium tuberculosis InhA. Bioorg Med Chem Lett 2019 29 16 2338 2344 10.1016/j.bmcl.2019.06.015 31227345
    [Google Scholar]
  107. Bashir M.K. Mustafa Y.F. Oglah M.K. Synthesis and antitumor activity of new multifunctional coumarins. Periód Tchê Quím 2020 17 36 871 883 10.52571/PTQ.v17.n36.2020.886_Periodico36_pgs_871_883.pdf
    [Google Scholar]
  108. Marufa S.S. Rahman M.M. Rahman M.M. Debnath J.R. Mim M.A. Jahan R. Nishino H. Alam M.S. Haque M.A. Conventional and microwave-assisted synthesis, antimicrobial and antioxidant activity evaluation with in silico studies of carbazole-thiazole-Schiff base hybrids. J Mol Struct 2025 1321 139861 10.1016/j.molstruc.2024.139861
    [Google Scholar]
  109. Alothman S. Kandil F. Deep A. Carbazole derivatives as antioxidant and anticorrosion materials. Results Chem 2024 9 101667 10.1016/j.rechem.2024.101667
    [Google Scholar]
  110. Marufa S.S. Rahman M.M. Rahman M. Jahan R. Ara G. Nishino H. Alam M.S. Haque M.A. Synthesis, antimicrobial and antioxidant activity with in silico ADMET prediction, molecular docking and dynamics studies of carbazole ring containing thiazole Schiff bases. Asian J Org Chem 2024 13 12 202400363 10.1002/ajoc.202400363
    [Google Scholar]
  111. Abbas Z.M. Thejeel K.A. Ali S.A. Mubarak H.A. Lihumis H.S. Synthesis, design, biological and anti-oxidant assessment of some new 9H-carbazole derivatives. J Pak Inst Chem Eng 2023 51 2 10.54693/piche.05123
    [Google Scholar]
  112. Dumitrascu F. Caira M.R. Avram S. Buiu C. Udrea A.M. Vlad I.M. Zarafu I. Ioniță P. Nuță D.C. Popa M. Chifiriuc M.C. Limban C. Repurposing anti-inflammatory drugs for fighting planktonic and biofilm growth. New carbazole derivatives based on the NSAID carprofen: Synthesis, in silico and in vitro bioevaluation. Front Cell Infect Microbiol 2023 13 1181516 10.3389/fcimb.2023.1181516 37680749
    [Google Scholar]
  113. Ross D.S. Burch H.B. Cooper D.S. Greenlee M.C. Laurberg P. Maia A.L. Rivkees S.A. Samuels M. Sosa J.A. Stan M.N. Walter M.A. 2016 American thyroid association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid 2016 26 10 1343 1421 10.1089/thy.2016.0229 27521067
    [Google Scholar]
  114. Sawin C.T. Cooper D.S. The origin of antithyroid drugs. Thyroid 2023 33 12 1395 1401 10.1089/thy.2022.0410 37594736
    [Google Scholar]
  115. Cooper D.S. Antithyroid drugs in the management of patients with Graves’ disease: An evidence-based approach to therapeutic controversies. J Clin Endocrinol Metab 2003 88 8 3474 3481 10.1210/jc.2003‑030185 12915620
    [Google Scholar]
  116. Rani P. In vitro assessment to evaluate the anti-thyroid potential of selected carbazole derivatives. MSW Manag J 2024 34 1 350 366
    [Google Scholar]
  117. Cao S. Zhang X. Edwards J.P. Mosser D.M. NF-kappaB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. J Biol Chem 2006 281 36 26041 26050 10.1074/jbc.M602222200 16835236
    [Google Scholar]
  118. Aoki T. Narumiya S. Prostaglandins and chronic inflammation. Trends Pharmacol Sci 2012 33 6 304 311 10.1016/j.tips.2012.02.004 22464140
    [Google Scholar]
  119. Mittal M. Siddiqui M.R. Tran K. Reddy S.P. Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 2014 20 7 1126 1167 10.1089/ars.2012.5149 23991888
    [Google Scholar]
  120. Iqbal Andrabi N. Sarkar A.R. Assim Haq S. kumar D. Kour D. Saroch D. Kumar Shukla S. Kumar A. Bhagat A. Ali A. Kour G. Ahmed Z. Site-selective synthesis and pharmacological elucidation of novel semi-synthetic analogues of koenimbine as a potential anti-inflammatory agent. Int Immunopharmacol 2024 126 111059 10.1016/j.intimp.2023.111059 37979450
    [Google Scholar]
  121. Perlis ML Posner D Riemann D Bastien CH Teel J Insomnia TM Insomnia. Lancet 400 10357 1047 1060
    [Google Scholar]
  122. Oh D.R. Kim Y. Jo A. Choi E.J. Oh K.N. Kim J. Kang H. Kim Y.R. Choi C. Sedative and hypnotic effects of Vaccinium bracteatum Thunb. through the regulation of serotonegic and GABAA-ergic systems: Involvement of 5-HT1A receptor agonistic activity. Biomed Pharmacother 2019 109 2218 2227 10.1016/j.biopha.2018.10.003 30551479
    [Google Scholar]
  123. Lovato N. Lack L. Insomnia and mortality: A meta-analysis. Sleep Med Rev 2019 43 71 83 10.1016/j.smrv.2018.10.004 30529432
    [Google Scholar]
  124. Su X.X. Chen Y.R. Wu J.Q. Wu X.Z. Li K.T. Wang X.N. Sun J.W. Wang H. Ou T.M. Design, synthesis, and evaluation of 9-(pyrimidin-2-yl)-9H-carbazole derivatives disrupting mitochondrial homeostasis in human lung adenocarcinoma. Eur J Med Chem 2022 232 114200 10.1016/j.ejmech.2022.114200 35219149
    [Google Scholar]
  125. Naidoo J. De Jesus-Cortes H. Huntington P. Estill S. Morlock L.K. Starwalt R. Mangano T.J. Williams N.S. Pieper A.A. Ready J.M. Discovery of a neuroprotective chemical, (S)-N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-fluoropropyl)-6-methoxypyridin-2-amine [(-)-P7C3-S243], with improved druglike properties. J Med Chem 2014 57 9 3746 3754 10.1021/jm401919s 24697290
    [Google Scholar]
  126. Bertini S. Asso V. Ghilardi E. Granchi C. Manera C. Minutolo F. Saccomanni G. Bortolato A. Mason J. Moro S. Macchia M. Carbazole-containing arylcarboxamides as BACE1 inhibitors. Bioorg Med Chem Lett 2011 21 22 6657 6661 10.1016/j.bmcl.2011.09.064 21986588
    [Google Scholar]
  127. Li Z. Fang F. Li Y. Lv X. Zheng R. Jiao P. Wang Y. Zhu G. Jin Z. Xu X. Qiu Y. Zhang G. Li Z. Liu Z. Zhang L. Carbazole and tetrahydro-carboline derivatives as dopamine D3 receptor antagonists with the multiple antipsychotic-like properties. Acta Pharm Sin B 2023 13 11 4553 4577 10.1016/j.apsb.2023.07.024 37969740
    [Google Scholar]
  128. Xu T. Li F. Feng Z. Dang C. Yang Y. Wang J. Zang C.X. Bao X.Q. Yu S.S. Zhang D. Wang R.B. Design, synthesis and evaluation of pyrimidine derivatives as sedative-hypnotic agents. Eur J Med Chem 2025 284 117213 10.1016/j.ejmech.2024.117213 39742697
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575407122250822095143
Loading
/content/journals/mrmc/10.2174/0113895575407122250822095143
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: anti-alzheimer ; anti-inflammatory ; carbazole ; treatment ; anticancer ; antithyroid ; antidiabetic ; Synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test