Skip to content
2000
image of Carbon Dot Nanoparticle-based Therapeutic Approaches in Major Neurological Disorders

Abstract

Neurological disorders (NDs) are diseases that arise due to deformities mainly in the central nervous system (CNS) and also affect the nerves throughout the human body. NDs, including Alzheimer’s disease (AD), Parkinson′s disease (PD), Multiple Sclerosis (MS), and a variety of brain malignancies, pose a major healthcare challenge and are the main cause of mortality on the global scale. There are very limited treatment options for the majority of the NDs, and the currently available drugs commonly fail to penetrate the BBB and deliver the drug to the target effectively. These challenges have necessitated the advent of new drug delivery methods that can cross the BBB with ease and deliver the drug by accurately targeting the diseased area in a safe and biocompatible manner. Nanoparticle-based drug delivery strategies offer significant advantages in BBB penetration and drug delivery due to their unique properties. Carbon dots, among nanoparticles with a size below 10 nm, are highly biocompatible, fluorescent molecules that offer ease of functionalization, drug conjugation, and effective detection within biological systems. The literature is rich in reviews on the synthesis, characterization, and application of CDs. However, a review specifically focused on the therapeutic potential of CDs in major NDs is missing. This review aims to fill that gap by presenting a detailed account of the carbon dot-based therapeutic approaches in the treatment of major NDs. It briefly discusses the properties of CDs, the main routes of synthesis, major raw materials, and key synthesis parameters that affect their properties, while placing a greater emphasis on their therapeutic potential. The review provides a detailed assessment of literature from the past 15 years on the development and current challenges in the application of CDs as therapeutic and drug delivery agents. Our analysis reveals that limited research has been conducted on CD-based therapeutics in NDs, particularly in MS and brain tumors, where original research is scarce. This review article highlights the major developments in the therapeutic uses of carbon dots in NDs, addresses a critical research gap, and provides a comprehensive overview of various studies related to carbon-dot-based therapeutic approaches for major NDs.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575398775250811070903
2025-10-08
2025-10-18
Loading full text...

Full text loading...

References

  1. Iqbal I. Saqib F. Mubarak Z. Latif M.F. Wahid M. Nasir B. Shahzad H. Sharifi-Rad J. Mubarak M.S. Alzheimer’s disease and drug delivery across the blood–brain barrier: Approaches and challenges. Eur. J. Med. Res. 2024 29 1 313 10.1186/s40001‑024‑01915‑3 38849950
    [Google Scholar]
  2. Gitler A.D. Dhillon P. Shorter J. Neurodegenerative disease: Models, mechanisms, and a new hope. Dis. Model. Mech. 2017 10 5 499 502 10.1242/dmm.030205 28468935
    [Google Scholar]
  3. Patel V. Mental, neurological, and substance use disorders: Disease control priorities. 3rd Ed Washington (DC) World Bank 2016
    [Google Scholar]
  4. Patabendige A. Janigro D. The role of the blood–brain barrier during neurological disease and infection. Biochem. Soc. Trans. 2023 51 2 613 626 10.1042/BST20220830 36929707
    [Google Scholar]
  5. Vashist A. Manickam P. Raymond A.D. Arias A.Y. Kolishetti N. Vashist A. Arias E. Nair M. Recent advances in nanotherapeutics for neurological disorders. ACS Appl. Bio Mater. 2023 6 7 2614 2621 10.1021/acsabm.3c00254 37368486
    [Google Scholar]
  6. Organization W.H. mhGAP intervention guide for mental, neurological and substance use disorders in non-specialized health settings: Mental Health. Gap Action Programme (mhGAP) World Health Organization Geneva 2016
    [Google Scholar]
  7. Waris A. Ali A. Khan A.U. Asim M. Zamel D. Fatima K. Raziq A. Khan M.A. Akbar N. Baset A. Abourehab M.A.S. Applications of various types of nanomaterials for the treatment of neurological disorders. Nanomaterials 2022 12 13 2140 10.3390/nano12132140 35807977
    [Google Scholar]
  8. Azam S. Haque M.E. Balakrishnan R. Kim I.S. Choi D.K. The ageing brain: Molecular and cellular basis of neurodegeneration. Front. Cell. Dev. Biol. 2021 9 683459 10.3389/fcell.2021.683459 34485280
    [Google Scholar]
  9. Mumtaz S. Rana J.N. Choi E.H. Han I. Microwave radiation and the brain: Mechanisms, current status, and future prospects. Int. J. Mol. Sci. 2022 23 16 9288 10.3390/ijms23169288 36012552
    [Google Scholar]
  10. Hales C.M. Alzheimer’s disease diagnosis and management in the age of amyloid monoclonal antibodies. Med. Clin. North Am. 2025 109 2 463 483 10.1016/j.mcna.2024.10.003 39893023
    [Google Scholar]
  11. Clarke C.E. Parkinson’s disease. BMJ 2007 335 7617 441 445 10.1136/bmj.39289.437454.AD 17762036
    [Google Scholar]
  12. Jiang Y.Q. Chen Q.Z. Yang Y. Zang C.X. Ma J.W. Wang J.R. Dong Y.R. Zhou N. Yang X. Li F.F. Bao X.Q. Zhang D. White matter lesions contribute to motor and non-motor disorders in Parkinson’s disease: A critical review. Geroscience 2024 47 1 591 609 10.1007/s11357‑024‑01428‑1 39576561
    [Google Scholar]
  13. Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann. N. Y. Acad. Sci. 2003 991 1 1 14 10.1111/j.1749‑6632.2003.tb07458.x 12846969
    [Google Scholar]
  14. Lassmann H. Bradl M. Multiple sclerosis: Experimental models and reality. Acta. Neuropathol. 2017 133 2 223 244 10.1007/s00401‑016‑1631‑4 27766432
    [Google Scholar]
  15. Gourraud P.A. Harbo H.F. Hauser S.L. Baranzini S.E. The genetics of multiple sclerosis: An up‐to‐date review. Immunol. Rev. 2012 248 1 87 103 10.1111/j.1600‑065X.2012.01134.x 22725956
    [Google Scholar]
  16. Goldenberg M.M. Multiple sclerosis review. 2012 37 3 175 184 22605909
    [Google Scholar]
  17. Oliva Ramirez A. Keenan A. Kalau O. Worthington E. Cohen L. Singh S. Prevalence and burden of multiple sclerosis-related fatigue: A systematic literature review. BMC Neurol. 2021 21 1 468 10.1186/s12883‑021‑02396‑1 34856949
    [Google Scholar]
  18. McFaline-Figueroa J.R. Lee E.Q. Brain tumors. Am. J. Med. 2018 131 8 874 882 10.1016/j.amjmed.2017.12.039 29371158
    [Google Scholar]
  19. Cowppli-Bony A. Bouvier G. Rué M. Loiseau H. Vital A. Lebailly P. Fabbro-Peray P. Baldi I. Brain tumors and hormonal factors: Review of the epidemiological literature. Cancer Causes Control. 2011 22 5 697 714 10.1007/s10552‑011‑9742‑7 21359526
    [Google Scholar]
  20. Wu D. Chen Q. Chen X. Han F. Chen Z. Wang Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal. Transduct. Target. Ther. 2023 8 1 217 10.1038/s41392‑023‑01481‑w 37231000
    [Google Scholar]
  21. Comi G. Dalla Costa G. Stankoff B. Hartung H.P. Soelberg Sørensen P. Vermersch P. Leocani L. Assessing disease progression and treatment response in progressive multiple sclerosis. Nat. Rev. Neurol. 2024 20 10 573 586 10.1038/s41582‑024‑01006‑1 39251843
    [Google Scholar]
  22. Banks W.A. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009 9 Suppl. 1 S3 10.1186/1471‑2377‑9‑S1‑S3 19534732
    [Google Scholar]
  23. Haseeb M. Anticancer and antibacterial potential of MDR Staphylococcus aureus mediated synthesized silver nanoparticles. Biosci. Biotechnol. Res. Commun. 2019 12 26 35
    [Google Scholar]
  24. Khan I. Nanomedicine for glioblastoma: Progress and future prospects. Seminars in Cancer Biology. Amsterdam, Netherlands Elsevier 2022 10.1016/j.semcancer.2022.06.007
    [Google Scholar]
  25. Furtado D. Björnmalm M. Ayton S. Bush A.I. Kempe K. Caruso F. Overcoming the blood–brain barrier: The role of nanomaterials in treating neurological diseases. Adv. Mater. 2018 30 46 1801362 10.1002/adma.201801362 30066406
    [Google Scholar]
  26. Hersh A.M. Alomari S. Tyler B.M. Crossing the blood-brain barrier: Advances in nanoparticle technology for drug delivery in neuro-oncology. Int. J. Mol. Sci. 2022 23 8 4153 10.3390/ijms23084153 35456971
    [Google Scholar]
  27. Gregori M. Masserini M. Mancini S. Nanomedicine for the treatment of Alzheimer’s disease. Nanomedicine 2015 10 7 1203 1218 10.2217/nnm.14.206 25929574
    [Google Scholar]
  28. Zhou Y. Peng Z. Seven E.S. Leblanc R.M. Crossing the blood-brain barrier with nanoparticles. J. Control. Release 2018 270 290 303 10.1016/j.jconrel.2017.12.015 29269142
    [Google Scholar]
  29. Ruan S. Qian J. Shen S. Zhu J. Jiang X. He Q. Gao H. A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging. Nanoscale 2014 6 17 10040 10047 10.1039/C4NR02657H 25031208
    [Google Scholar]
  30. Khan S. Haseeb M. Baig M.H. Bagga P.S. Siddiqui H.H. Kamal M.A. Khan M.S. Improved efficiency and stability of secnidazole – An ideal delivery system. Saudi J. Biol. Sci. 2015 22 1 42 49 10.1016/j.sjbs.2014.05.009 25561882
    [Google Scholar]
  31. Haseeb M. Khan I. Kartal Z. Mahfooz S. Hatiboglu M.A. Status quo in the liposome-based therapeutic strategies against glioblastoma: “targeting the tumor and tumor microenvironment”. Int. J. Mol. Sci. 2024 25 20 11271 10.3390/ijms252011271 39457052
    [Google Scholar]
  32. Xu X. Ray R. Gu Y. Ploehn H.J. Gearheart L. Raker K. Scrivens W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004 126 40 12736 12737 10.1021/ja040082h 15469243
    [Google Scholar]
  33. Ahmar H. Nonenzymatic electrochemical detection of glucose using screen-printed electrode modified with Pd‒Au nanoparticles encapsulated on dendrimer grafted multi-wall carbon nanotubes. Curr. Appl. Sci. 2024 2 2 67 78
    [Google Scholar]
  34. Wu W. Aiello M. Zhou T. Berliner A. Banerjee P. Zhou S. In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials 2010 31 11 3023 3031 10.1016/j.biomaterials.2010.01.011 20106519
    [Google Scholar]
  35. Das S. Mondal S. Ghosh D. Carbon quantum dots in bioimaging and biomedicines. Front. Bioeng. Biotechnol. 2024 11 1333752 10.3389/fbioe.2023.1333752 38318419
    [Google Scholar]
  36. Serag E. Helal M. El Nemr A. Curcumin loaded onto folic acid carbon dots as a potent drug delivery system for antibacterial and anticancer applications. J. Cluster Sci. 2024 35 2 519 532 10.1007/s10876‑023‑02491‑y
    [Google Scholar]
  37. Bartkowski M. Zhou Y. Nabil Amin Mustafa M. Eustace A.J. Giordani S. CARBON DOTS: Bioimaging and anticancer drug delivery. Chemistry 2024 30 19 202303982 10.1002/chem.202303982 38205882
    [Google Scholar]
  38. Daoudi W. Tiwari A. Tyagi M. Singh P. Saxena A. Verma D.K. Dagdag O. Sharma H.K. Fuertes P.O. El Aatiaoui A. Carbon dots nanoparticles: A promising breakthrough in biosensing, catalysis, biomedical and authers applications. Nano Struct. Nano Obj 2024 37 101074 10.1016/j.nanoso.2023.101074
    [Google Scholar]
  39. Etefa H.F. Kumar V. Dejene F.B. Efa M.T. Jule L.T. Modification of flexible electrodes for p-type (Nickel Oxide) dye-sensitized solar cell performance based on the cellulose nanofiber film. ACS Omega 2023 8 17 15249 15258 10.1021/acsomega.3c00383 37151496
    [Google Scholar]
  40. Jin J. Progress in the application of nanozymes compositing carbon dots. Front Chem. 2021 9 800 10.3389/fchem.2021.748044
    [Google Scholar]
  41. Nekoueian K. Amiri M. Sillanpää M. Marken F. Boukherroub R. Szunerits S. Carbon-based quantum particles: An electroanalytical and biomedical perspective. Chem. Soc. Rev. 2019 48 15 4281 4316 10.1039/C8CS00445E 31215906
    [Google Scholar]
  42. Zhao A. Chen Z. Zhao C. Gao N. Ren J. Qu X. Recent advances in bioapplications of C-dots. Carbon 2015 85 309 327 10.1016/j.carbon.2014.12.045
    [Google Scholar]
  43. Bhunia S.K. Saha A. Maity A.R. Ray S.C. Jana N.R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 2013 3 1 1473 10.1038/srep01473 23502324
    [Google Scholar]
  44. Malik S.A. Mondal S. Atreya H.S. Enhanced stability of an intrinsically disordered protein against proteolytic cleavage through interactions with silver nanoparticles. RSC Advances 2019 9 49 28746 28753 10.1039/C9RA05514B 35529627
    [Google Scholar]
  45. Jawad M.M. Abdullah L.A. Novel characteristics of CQDs synthesized by electrochemical method. J. Opt. 2024 1 9
    [Google Scholar]
  46. Pourmadadi M. Rahmani E. Rajabzadeh-Khosroshahi M. Samadi A. Behzadmehr R. Rahdar A. Ferreira L.F.R. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. J. Drug Deliv. Sci. Technol. 2023 80 104156 10.1016/j.jddst.2023.104156
    [Google Scholar]
  47. Ozyurt D. Kobaisi M.A. Hocking R.K. Fox B. Properties, synthesis, and applications of carbon dots: A review. Carbon Trends 2023 12 100276 10.1016/j.cartre.2023.100276
    [Google Scholar]
  48. Zheng X.T. Ananthanarayanan A. Luo K.Q. Chen P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015 11 14 1620 1636 10.1002/smll.201402648
    [Google Scholar]
  49. Alafeef M. Srivastava I. Aditya T. Pan D. Carbon dots: From synthesis to unraveling the fluorescence mechanism. Small 2024 20 4 2303937 10.1002/smll.202303937 37715112
    [Google Scholar]
  50. Lee B. Stokes G.A. Valimukhametova A. Nguyen S. Gonzalez-Rodriguez R. Bhaloo A. Coffer J. Naumov A.V. Automated approach to in vitro image-guided photothermal therapy with top-down and bottom-up-synthesized graphene quantum dots. Nanomaterials 2023 13 5 805 10.3390/nano13050805 36903683
    [Google Scholar]
  51. Gedda G. Sankaranarayanan S.A. Putta C.L. Gudimella K.K. Rengan A.K. Girma W.M. Green synthesis of multi-functional carbon dots from medicinal plant leaves for antimicrobial, antioxidant, and bioimaging applications. Sci. Rep. 2023 13 1 6371 10.1038/s41598‑023‑33652‑8 37076562
    [Google Scholar]
  52. Tao S. Zhu S. Feng T. Xia C. Song Y. Yang B. The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: A review. Mater. Today Chem. 2017 6 13 25 10.1016/j.mtchem.2017.09.001
    [Google Scholar]
  53. Sun X. Lei Y. Fluorescent carbon dots and their sensing applications. Trends Analyt. Chem. 2017 89 163 180 10.1016/j.trac.2017.02.001
    [Google Scholar]
  54. Choi Y. Choi Y. Kwon O.H. Kim B.S. Carbon dots: Bottom‐up syntheses, properties, and light‐harvesting applications. Chem. Asian J. 2018 13 6 586 598 10.1002/asia.201701736 29316309
    [Google Scholar]
  55. Crista D.M.A. El Mragui A. Algarra M. Esteves da Silva J.C.G. Luque R. Pinto da Silva L. Turning spent coffee grounds into sustainable precursors for the fabrication of carbon dots. Nanomaterials 2020 10 6 1209 10.3390/nano10061209 32575837
    [Google Scholar]
  56. Tan J. Li Q. Meng S. Li Y. Yang J. Ye Y. Tang Z. Qu S. Ren X. Time‐dependent phosphorescence colors from carbon dots for advanced dynamic information encryption. Adv. Mater. 2021 33 16 2006781 10.1002/adma.202006781 33709513
    [Google Scholar]
  57. Zhu S. Zhang J. Qiao C. Tang S. Li Y. Yuan W. Li B. Tian L. Liu F. Hu R. Gao H. Wei H. Zhang H. Sun H. Yang B. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011 47 24 6858 6860 10.1039/c1cc11122a 21584323
    [Google Scholar]
  58. Liu S. Yang M.Q. Xu Y.J. Surface charge promotes the synthesis of large, flat structured graphene–(CdS nanowire)–TiO 2 nanocomposites as versatile visible light photocatalysts. J. Mater. Chem. A Mater. Energy. Sustain. 2014 2 2 430 440 10.1039/C3TA13892E
    [Google Scholar]
  59. Li H. Ming H. Liu Y. Yu H. He X. Huang H. Pan K. Kang Z. Lee S-T. Fluorescent carbon nanoparticles: Electrochemical synthesis and their pH sensitive photoluminescence properties. New J. Chem. 2011 35 11 2666 2670 10.1039/c1nj20575g
    [Google Scholar]
  60. Li W. Zhang Z. Kong B. Feng S. Wang J. Wang L. Yang J. Zhang F. Wu P. Zhao D. Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew. Chem. Int. Ed. 2013 52 31 8151 8155 10.1002/anie.201303927 23788215
    [Google Scholar]
  61. Ostadhossein F. Sar D. Tripathi I. Soares J. Remsen E.E. Pan D. Oligodots: Structurally defined fluorescent nanoprobes for multiscale dual-color imaging in vitro and in vivo. ACS Appl. Mater. Interfaces 2020 12 9 10183 10192 10.1021/acsami.0c00705 32031773
    [Google Scholar]
  62. Qian Z. Shan X. Chai L. Ma J. Chen J. Feng H. Si-doped carbon quantum dots: A facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl. Mater. Interfaces 2014 6 9 6797 6805 10.1021/am500403n 24707855
    [Google Scholar]
  63. Han Y. Chen Y. Wang N. He Z. Magnesium doped carbon quantum dots synthesized by mechanical ball milling and displayed Fe 3+ sensing. Mater. Technol. 2019 34 6 336 342 10.1080/10667857.2018.1556469
    [Google Scholar]
  64. Mehta V.N. Jha S. Singhal R.K. Kailasa S.K. Preparation of multicolor emitting carbon dots for HeLa cell imaging. New J. Chem. 2014 38 12 6152 6160 10.1039/C4NJ00840E
    [Google Scholar]
  65. Zheng L. Chi Y. Dong Y. Lin J. Wang B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc. 2009 131 13 4564 4565 10.1021/ja809073f 19296587
    [Google Scholar]
  66. Ostadhossein F. Benig L. Tripathi I. Misra S.K. Pan D. Fluorescence detection of bone microcracks using monophosphonated carbon dots. ACS Appl. Mater. Interfaces 2018 10 23 19408 19415 10.1021/acsami.8b03727 29757601
    [Google Scholar]
  67. Zhai X. Zhang P. Liu C. Bai T. Li W. Dai L. Liu W. Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem. Commun. 2012 48 64 7955 7957 10.1039/c2cc33869f 22763501
    [Google Scholar]
  68. Ma Z. Ming H. Huang H. Liu Y. Kang Z. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J. Chem. 2012 36 4 861 864 10.1039/c2nj20942j
    [Google Scholar]
  69. Ahmed G.H.G. Laíño R.B. Calzón J.A.G. García M.E.D. Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters. Mikrochim. Acta. 2015 182 1-2 51 59 10.1007/s00604‑014‑1302‑x
    [Google Scholar]
  70. Tao H. Yang K. Ma Z. Wan J. Zhang Y. Kang Z. Liu Z. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 2012 8 2 281 290 10.1002/smll.201101706 22095931
    [Google Scholar]
  71. Yu H. Li X. Zeng X. Lu Y. Preparation of carbon dots by non-focusing pulsed laser irradiation in toluene. Chem. Commun. 2016 52 4 819 822 10.1039/C5CC08384B 26574881
    [Google Scholar]
  72. Lei C.H. Zhao X.E. Jiao S.L. He L. Li Y. Zhu S.Y. You J.M. A turn-on fluorescent sensor for the detection of melamine based on the anti-quenching ability of Hg 2+ to carbon nanodots. Anal. Methods 2016 8 22 4438 4444 10.1039/C6AY01063F
    [Google Scholar]
  73. Villamena F. Fluorescence technique. React. Spec. Det Biol. 2017 87 162
    [Google Scholar]
  74. Tiwari A. Walia S. Sharma S. Chauhan S. Kumar M. Gadly T. Randhawa J.K. High quantum yield carbon dots and nitrogen-doped carbon dots as fluorescent probes for spectroscopic dopamine detection in human serum. J. Mater. Chem. B Mater. Biol. Med. 2023 11 5 1029 1043 10.1039/D2TB02188A 36597935
    [Google Scholar]
  75. Lim S.Y. Shen W. Gao Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015 44 1 362 381 10.1039/C4CS00269E 25316556
    [Google Scholar]
  76. Guo Y. Zhao W. Hydrothermal synthesis of highly fluorescent nitrogen-doped carbon quantum dots with good biocompatibility and the application for sensing ellagic acid. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2020 240 118580 10.1016/j.saa.2020.118580 32554263
    [Google Scholar]
  77. Guo W. Ji M. Li Y. Qian M. Qin Y. Li W. Nie H. Lv W. Jiang G. Huang R. Lin C. Li H. Huang R. Iron ions-sequestrable and antioxidative carbon dot-based nano-formulation with nitric oxide release for Parkinson’s disease treatment. Biomaterials 2024 309 122622 10.1016/j.biomaterials.2024.122622 38797119
    [Google Scholar]
  78. Jiang K. Feng X. Gao X. Wang Y. Cai C. Li Z. Lin H. Preparation of multicolor photoluminescent carbon dots by tuning surface states. Nanomaterials 2019 9 4 529 10.3390/nano9040529 30987120
    [Google Scholar]
  79. Sun D. Liu T. Li S. Wang C. Zhuo K. Preparation and application of carbon dots with tunable luminescence by controlling surface functionalization. Opt. Mater. 2020 108 110450 10.1016/j.optmat.2020.110450
    [Google Scholar]
  80. Wu W. Mu L. Luo X. Zhang Y. Huang J. Peng H. Tao J. Effect of temperature on synthesis of carbon quantum dots and biochar through one-step hydrothermal treatment of distillers’ grains. Ind. Crops Prod. 2025 227 120832 10.1016/j.indcrop.2025.120832
    [Google Scholar]
  81. Ji L. Yu Z. Cao Q. Gui X. Fan X. Wei C. Jiang F. Wang J. Meng F. Li F. Wang J. Effect of hydrothermal temperature on the optical properties of hydrochar-derived dissolved organic matter and their interactions with copper (II). Biochar 2024 6 1 64 10.1007/s42773‑024‑00353‑y
    [Google Scholar]
  82. Zhang Y. Wang Y. Feng X. Zhang F. Yang Y. Liu X. Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots. Appl. Surf. Sci. 2016 387 1236 1246 10.1016/j.apsusc.2016.07.048
    [Google Scholar]
  83. Tian B. Liu S. Feng L. Liu S. Gai S. Dai Y. Xie L. Liu B. Yang P. Zhao Y. Renal‐clearable nickel‐doped carbon dots with boosted photothermal conversion efficiency for multimodal imaging‐guided cancer therapy in the second near‐infrared biowindow. Adv. Funct. Mater. 2021 31 26 2100549 10.1002/adfm.202100549
    [Google Scholar]
  84. Mintz K.J. Zhou Y. Leblanc R.M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 2019 11 11 4634 4652 10.1039/C8NR10059D 30834912
    [Google Scholar]
  85. Chen Y. Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev. 2012 64 7 640 665 10.1016/j.addr.2011.11.010 22154620
    [Google Scholar]
  86. Vallejo F.A. Sigdel G. Veliz E.A. Leblanc R.M. Vanni S. Graham R.M. Carbon dots in treatment of pediatric brain tumors: Past, present, and future directions. Int. J. Mol. Sci. 2023 24 11 9562 10.3390/ijms24119562 37298513
    [Google Scholar]
  87. Zhang W. Smith N. Zhou Y. McGee C.M. Bartoli M. Fu S. Chen J. Domena J.B. Joji A. Burr H. Lv G. Cilingir E.K. Bedendo S. Claure M.L. Tagliaferro A. Eliezer D. Veliz E.A. Zhang F. Wang C. Leblanc R.M. Carbon dots as dual inhibitors of tau and amyloid-beta aggregation for the treatment of Alzheimer’s disease. Acta. Biomater. 2024 183 341 355 10.1016/j.actbio.2024.06.001 38849023
    [Google Scholar]
  88. Yan C. Wang Y. Ma Y. Liu H. Tang S. Li Y. Shi J. Ding S. Lyu Z. A multifunctional carbon quantum dot overcoming the BBB for modulating amyloid aggregation and scavenging reactive oxygen species. Mater. Today Chem. 2024 40 102222 10.1016/j.mtchem.2024.102222
    [Google Scholar]
  89. Seven E.S. Seven Y.B. Zhou Y. Poudel-Sharma S. Diaz-Rucco J.J. Kirbas Cilingir E. Mitchell G.S. Van Dyken J.D. Leblanc R.M. Crossing the blood–brain barrier with carbon dots: Uptake mechanism and in vivo cargo delivery. Nanoscale Adv. 2021 3 13 3942 3953 10.1039/D1NA00145K 34263140
    [Google Scholar]
  90. Mintz K.J. Mercado G. Zhou Y. Ji Y. Hettiarachchi S.D. Liyanage P.Y. Pandey R.R. Chusuei C.C. Dallman J. Leblanc R.M. Tryptophan carbon dots and their ability to cross the blood-brain barrier. Colloids Surf. B Biointerfaces 2019 176 488 493 10.1016/j.colsurfb.2019.01.031 30690384
    [Google Scholar]
  91. Li S. Su W. Wu H. Yuan T. Yuan C. Liu J. Deng G. Gao X. Chen Z. Bao Y. Yuan F. Zhou S. Tan H. Li Y. Li X. Fan L. Zhu J. Chen A.T. Liu F. Zhou Y. Li M. Zhai X. Zhou J. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nat. Biomed. Eng. 2020 4 7 704 716 10.1038/s41551‑020‑0540‑y 32231314
    [Google Scholar]
  92. Li S. Peng Z. Dallman J. Baker J. Othman A.M. Blackwelder P.L. Leblanc R.M. Crossing the blood–brain–barrier with transferrin conjugated carbon dots: A zebrafish model study. Colloids Surf B Bioint 2016 145 251 256 10.1016/j.colsurfb.2016.05.007 27187189
    [Google Scholar]
  93. Liu Y. Liu J. Zhang J. Li X. Lin F. Zhou N. Yang B. Lu L. Noninvasive brain tumor imaging using red emissive carbonized polymer dots across the blood–brain barrier. ACS Omega 2018 3 7 7888 7896 10.1021/acsomega.8b01169 30087926
    [Google Scholar]
  94. Puranik N. Yadav D. Song M. Advancements in the application of nanomedicine in alzheimer’s disease: A therapeutic perspective. Int. J. Mol. Sci. 2023 24 18 14044 10.3390/ijms241814044 37762346
    [Google Scholar]
  95. Gustavsson A. Norton N. Fast T. Frölich L. Georges J. Holzapfel D. Kirabali T. Krolak-Salmon P. Rossini P.M. Ferretti M.T. Lanman L. Chadha A.S. van der Flier W.M. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement. 2023 19 2 658 670 10.1002/alz.12694 35652476
    [Google Scholar]
  96. DeTure M.A. Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019 14 1 32 10.1186/s13024‑019‑0333‑5 31375134
    [Google Scholar]
  97. Bhalani D.V. Nutan B. Kumar A. Singh Chandel A.K. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines 2022 10 9 2055 10.3390/biomedicines10092055 36140156
    [Google Scholar]
  98. Feng L. Wang H. Xue X. Recent progress of nanomedicine in the treatment of central nervous system diseases. Adv. Ther. 2020 3 5 1900159 10.1002/adtp.201900159
    [Google Scholar]
  99. Chung Y.J. Lee C.H. Lim J. Jang J. Kang H. Park C.B. Photomodulating carbon dots for spatiotemporal suppression of Alzheimer’s β-amyloid aggregation. ACS Nano 2020 14 12 16973 16983 10.1021/acsnano.0c06078 33236883
    [Google Scholar]
  100. Chung Y.J. Kim K. Lee B.I. Park C.B. Carbon nanodot‐sensitized modulation of alzheimer’s β‐amyloid self‐assembly, disassembly, and toxicity. Small 2017 13 34 1700983 10.1002/smll.201700983 28714246
    [Google Scholar]
  101. Zhou X. Hu S. Wang S. Pang Y. Lin Y. Li M. Large amino acid mimicking selenium-doped carbon quantum dots for multi-target therapy of Alzheimer’s disease. Front. Pharmacol. 2021 12 778613 10.3389/fphar.2021.778613 34776988
    [Google Scholar]
  102. Mosalam E.M. Abdel-Bar H.M. Elberri A.I. Abdallah M.S. Zidan A.A.A. Batakoushy H.A. Abo Mansour H.E. Enhanced neuroprotective effect of verapamil-loaded hyaluronic acid modified carbon quantum dots in an in-vitro model of amyloid-induced Alzheimer’s disease. Int. J. Biol. Macromol. 2024 275 Pt 2 133742 10.1016/j.ijbiomac.2024.133742 38986998
    [Google Scholar]
  103. Popović N. Morales-Delgado N. Vidal Mena D. Alonso A. Pascual Martínez M. Caballero Bleda M. Popović M. Verapamil and Alzheimer’s disease: Past, present, and future. Front. Pharmacol. 2020 11 562 10.3389/fphar.2020.00562 32431612
    [Google Scholar]
  104. Wei Z. Dong X. Sun Y. Quercetin-derived red emission carbon dots: A multifunctional theranostic nano-agent against Alzheimer’s β-amyloid fibrillogenesis. Colloids Surf. B Biointerfaces 2024 238 113907 10.1016/j.colsurfb.2024.113907 38608464
    [Google Scholar]
  105. Lim J.L. Lin C.J. Huang C.C. Chang L.C. Curcumin-derived carbon quantum dots: Dual actions in mitigating tau hyperphosphorylation and amyloid beta aggregation. Colloids Surf B Bioint 2024 234 113676 10.1016/j.colsurfb.2023.113676 38056413
    [Google Scholar]
  106. Shao X. Fan T. Yan C. Cao X. Wang C. Wang X. Guan P. Fan L. Hu X. Multifunctional selenium-doped carbon dots for modulating Alzheimer’s disease related toxic ions, inhibiting amyloid aggregation and scavenging reactive oxygen species. Int. J. Biol. Macromol. 2025 293 139333 10.1016/j.ijbiomac.2024.139333 39743062
    [Google Scholar]
  107. Colvert E. Tick B. McEwen F. Stewart C. Curran S.R. Woodhouse E. Gillan N. Hallett V. Lietz S. Garnett T. Ronald A. Plomin R. Rijsdijk F. Happé F. Bolton P. Heritability of autism spectrum disorder in a UK population-based twin sample. JAMA Psychiatry 2015 72 5 415 423 10.1001/jamapsychiatry.2014.3028 25738232
    [Google Scholar]
  108. Hua X. Thompson P.M. Leow A.D. Madsen S.K. Caplan R. Alger J.R. O’Neill J. Joshi K. Smalley S.L. Toga A.W. Levitt J.G. Brain growth rate abnormalities visualized in adolescents with autism. Hum. Brain Mapp. 2013 34 2 425 436 10.1002/hbm.21441 22021093
    [Google Scholar]
  109. Davis K.L. Neuropsychopharmacology: The fifth generation of progress: An official publication of the American College of Neuropsychopharmacology Philadelphia 2002
    [Google Scholar]
  110. Zafar S. Yaddanapudi S.S. Parkinson disease. StatPearls. United States StatPearls Publishing 2023
    [Google Scholar]
  111. Schapira A.H.V. Etiology and pathogenesis of Parkinson disease. Neurol. Clin. 2009 27 3 583 603, v 10.1016/j.ncl.2009.04.004 19555823
    [Google Scholar]
  112. Valente E.M. Abou-Sleiman P.M. Caputo V. Muqit M.M.K. Harvey K. Gispert S. Ali Z. Del Turco D. Bentivoglio A.R. Healy D.G. Albanese A. Nussbaum R. González-Maldonado R. Deller T. Salvi S. Cortelli P. Gilks W.P. Latchman D.S. Harvey R.J. Dallapiccola B. Auburger G. Wood N.W. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 2004 304 5674 1158 1160 10.1126/science.1096284 15087508
    [Google Scholar]
  113. Bogers J.S. Bloem B.R. Den Heijer J.M. The etiology of Parkinson’s disease: New perspectives from gene-environment interactions. J. Parkinsons Dis. 2023 13 8 1281 1288 10.3233/JPD‑230250
    [Google Scholar]
  114. Zhang X.L. Gu Y-Y. Liu Y-C. Cai Y-T. Sun H. Liu Y-X. Liu M-X. Near-infrared enhanced organic Se-doped carbon nitride quantum dots nanozymes as SOD/CAT mimics for anti-Parkinson via ROS-NF-κB-NLRP3 inflammasome axis. Chem. Eng. J. 2024 499 156028 10.1016/j.cej.2024.156028
    [Google Scholar]
  115. Bloch D.N. Sandre M. Ben Zichri S. Masato A. Kolusheva S. Bubacco L. Jelinek R. Scavenging neurotoxic aldehydes using lysine carbon dots. Nanoscale Adv. 2023 5 5 1356 1367 10.1039/D2NA00804A 36866263
    [Google Scholar]
  116. Kumar J. Varela‐Ramirez A. Narayan M. Development of novel carbon-based biomedical platforms for intervention in xenotoxicant-induced Parkinson’s disease onset. BMEmat 2024 2 4 e12072 10.1002/bmm2.12072
    [Google Scholar]
  117. Han M. Yi B. Song R. Wang D. Huang N. Ma Y. Zhao L. Liu S. Zhang H. Xu R. Lu J. Shen X. Zhou Q. Fucoidanderived carbon dots as nanopenetrants of blood-brain barrier for Parkinson’s disease treatment. J. Colloid Interface Sci. 2025 680 Pt A 516 527 10.1016/j.jcis.2024.10.173 39522246
    [Google Scholar]
  118. Yang C. Song Y. Luo M. Wang Q. Zhang Y. Cen J. Du G. Shi J. Exosomes-encapsulated biomimetic polydopamine carbon dots with dual-targeting effect alleviate motor and non-motor symptoms of Parkinson’s disease via anti-neuroinflammation. Int. J. Biol. Macromol. 2025 296 139724 10.1016/j.ijbiomac.2025.139724 39809402
    [Google Scholar]
  119. Browne P. Chandraratna D. Angood C. Tremlett H. Baker C. Taylor B.V. Thompson A.J. Atlas of multiple sclerosis 2013: A growing global problem with widespread inequity. Neurology 2014 83 11 1022 1024 10.1212/WNL.0000000000000768 25200713
    [Google Scholar]
  120. Khalil M. Teunissen C.E. Lehmann S. Otto M. Piehl F. Ziemssen T. Bittner S. Sormani M.P. Gattringer T. Abu-Rumeileh S. Thebault S. Abdelhak A. Green A. Benkert P. Kappos L. Comabella M. Tumani H. Freedman M.S. Petzold A. Blennow K. Zetterberg H. Leppert D. Kuhle J. Neurofilaments as biomarkers in neurological disorders — towards clinical application. Nat. Rev. Neurol. 2024 20 5 269 287 10.1038/s41582‑024‑00955‑x 38609644
    [Google Scholar]
  121. Ascherio A. Environmental factors in multiple sclerosis. Expert Rev. Neurother. 2013 13 12 Suppl 3 9 10.1586/14737175.2013.865866
    [Google Scholar]
  122. Trapp B.D. Nave K.A. Multiple sclerosis: An immune or neurodegenerative disorder? Annu. Rev. Neurosci. 2008 31 1 247 269 10.1146/annurev.neuro.30.051606.094313 18558855
    [Google Scholar]
  123. Tosic J. Stanojevic Z. Vidicevic S. Isakovic A. Ciric D. Martinovic T. Kravic-Stevovic T. Bumbasirevic V. Paunovic V. Jovanovic S. Todorovic-Markovic B. Markovic Z. Danko M. Micusik M. Spitalsky Z. Trajkovic V. Graphene quantum dots inhibit T cell-mediated neuroinflammation in rats. Neuropharmacology 2019 146 95 108 10.1016/j.neuropharm.2018.11.030 30471296
    [Google Scholar]
  124. Wang X. Kimbrel E.A. Ijichi K. Paul D. Lazorchak A.S. Chu J. Kouris N.A. Yavanian G.J. Lu S.J. Pachter J.S. Crocker S.J. Lanza R. Xu R.H. Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell. Reports 2014 3 1 115 130 10.1016/j.stemcr.2014.04.020 25068126
    [Google Scholar]
  125. Luo W. Wang Y. Lin F. Liu Y. Gu R. Liu W. Xiao C. Selenium-doped carbon quantum dots efficiently ameliorate secondary spinal cord injury via scavenging reactive oxygen species. Int. J. Nanomed 2020 15 10113 10125 10.2147/IJN.S282985 33363370
    [Google Scholar]
  126. Hatiboglu M.A. Akdur K. Sakarcan A. Seyithanoglu M.H. Turk H.M. Sinclair G. Oztanir M.N. Promising outcome of patients with recurrent glioblastoma after Gamma Knife-based hypofractionated radiotherapy. Neurochirurgie 2024 70 2 101532 10.1016/j.neuchi.2024.101532 38215936
    [Google Scholar]
  127. Guler E.M. Sisman B.H. Kocyigit A. Hatiboglu M.A. Investigation of cellular effects of thymoquinone on glioma cell. Toxicol. Rep. 2021 8 162 170 10.1016/j.toxrep.2020.12.026 33489775
    [Google Scholar]
  128. Khan I. Mahfooz S. Hatiboglu M.A. Herbal medicine for glioblastoma: Current and future prospects. Med. Chem. 2020 16 8 1022 1043 10.2174/1573406416666200130100833 32000653
    [Google Scholar]
  129. Rasheed S. Rehman K. Akash M.S.H. An insight into the risk factors of brain tumors and their therapeutic interventions. Biomed. Pharmacother. 2021 143 112119 10.1016/j.biopha.2021.112119 34474351
    [Google Scholar]
  130. Wirsching H-G. Weller M. Predictors of tumor progression of low-grade glioma in adult patients within 5 years follow-up after surgery. Front. Surg. 2022 9 937556 10.3389/fsurg.2022.937556
    [Google Scholar]
  131. Bikfalvi A. da Costa C.A. Avril T. Barnier J.V. Bauchet L. Brisson L. Cartron P.F. Castel H. Chevet E. Chneiweiss H. Clavreul A. Constantin B. Coronas V. Daubon T. Dontenwill M. Ducray F. Entz-Werlé N. Figarella-Branger D. Fournier I. Frenel J.S. Gabut M. Galli T. Gavard J. Huberfeld G. Hugnot J.P. Idbaih A. Junier M.P. Mathivet T. Menei P. Meyronet D. Mirjolet C. Morin F. Mosser J. Moyal E.C.J. Rousseau V. Salzet M. Sanson M. Seano G. Tabouret E. Tchoghandjian A. Turchi L. Vallette F.M. Vats S. Verreault M. Virolle T. Challenges in glioblastoma research: Focus on the tumor microenvironment. Trends Cancer 2023 9 1 9 27 10.1016/j.trecan.2022.09.005 36400694
    [Google Scholar]
  132. Obrador E. Moreno-Murciano P. Oriol-Caballo M. López-Blanch R. Pineda B. Gutiérrez-Arroyo J. Loras A. Gonzalez-Bonet L. Martinez-Cadenas C. Estrela J. Marqués-Torrejón M. Glioblastoma therapy: Past, present and future. Int. J. Mol. Sci. 2024 25 5 2529 10.3390/ijms25052529 38473776
    [Google Scholar]
  133. Tian B. Liu S. Yu C. Liu S. Dong S. Feng L. Hu N. Yang P. A metal‐free mesoporous carbon dots/silica hybrid type i photosensitizer with enzyme‐activity for synergistic treatment of hypoxic tumor. Adv. Funct. Mater. 2023 33 25 2300818 10.1002/adfm.202300818
    [Google Scholar]
  134. Lu S. Guo S. Xu P. Li X. Zhao Y. Gu W. Xue M. Hydrothermal synthesis of nitrogen-doped carbon dots with real-time live-cell imaging and blood–brain barrier penetration capabilities. Int. J. Nanomedicine 2016 11 6325 6336 10.2147/IJN.S119252 27932880
    [Google Scholar]
  135. Zheng M. Ruan S. Liu S. Sun T. Qu D. Zhao H. Xie Z. Gao H. Jing X. Sun Z. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 2015 9 11 11455 11461 10.1021/acsnano.5b05575 26458137
    [Google Scholar]
  136. Li S. Amat D. Peng Z. Vanni S. Raskin S. De Angulo G. Othman A.M. Graham R.M. Leblanc R.M. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale 2016 8 37 16662 16669 10.1039/C6NR05055G 27714111
    [Google Scholar]
  137. Hettiarachchi S.D. Graham R.M. Mintz K.J. Zhou Y. Vanni S. Peng Z. Leblanc R.M. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale 2019 11 13 6192 6205 10.1039/C8NR08970A 30874284
    [Google Scholar]
  138. Muhammad P. Hanif S. Li J. Guller A. Rehman F.U. Ismail M. Zhang D. Yan X. Fan K. Shi B. Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today 2022 45 101530 10.1016/j.nantod.2022.101530
    [Google Scholar]
  139. Algarra M. Soto J. Pino-González M.S. Gonzalez-Munoz E. Dučić T. Multifunctionalized carbon dots as an active nanocarrier for drug delivery to the glioblastoma cell line. ACS Omega 2024 9 12 13818 13830 10.1021/acsomega.3c08459 38559983
    [Google Scholar]
  140. Shamsipour M. Mansouri A.M. Moradipour P. Temozolomide conjugated carbon quantum dots embedded in core/shell nanofibers prepared by coaxial electrospinning as an implantable delivery system for cell imaging and sustained drug release. AAPS Pharm. Sci. Tech. 2019 20 7 259 10.1208/s12249‑019‑1466‑0 31332574
    [Google Scholar]
  141. Liyanage P.Y. Graham R.M. Pandey R.R. Chusuei C.C. Mintz K.J. Zhou Y. Harper J.K. Wu W. Wikramanayake A.H. Vanni S. Leblanc R.M. Carbon nitride dots: A selective bioimaging nanomaterial. Bioconjug. Chem. 2019 30 1 111 123 10.1021/acs.bioconjchem.8b00784 30525487
    [Google Scholar]
  142. Liyanage P.Y. Zhou Y. Al-Youbi A.O. Bashammakh A.S. El-Shahawi M.S. Vanni S. Graham R.M. Leblanc R.M. Pediatric glioblastoma target-specific efficient delivery of gemcitabine across the blood–brain barrier via carbon nitride dots. Nanoscale 2020 12 14 7927 7938 10.1039/D0NR01647K 32232249
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575398775250811070903
Loading
/content/journals/mrmc/10.2174/0113895575398775250811070903
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test